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Abstract: In the Smart Grid (SG) residential environment, consumers change
their power consumption routine according to the price and incentives
announced by the utility, which causes the prices to deviate from the initial
pattern. Thereby, electricity demand and price forecasting play a significant
role and can help in terms of reliability and sustainability. Due to the
massive amount of data, big data analytics for forecasting becomes a hot
topic in the SG domain. In this paper, the changing and non-linearity
of consumer consumption pattern complex data is taken as input. To
minimize the computational cost and complexity of the data, the average
of the feature engineering approaches includes: Recursive Feature Eliminator
(RFE), Extreme Gradient Boosting (XGboost), Random Forest (RF), and
are upgraded to extract the most relevant and significant features. To this
end, we have proposed the DensetNet-121 network and Support Vector
Machine (SVM) ensemble with Aquila Optimizer (AO) to ensure adaptability
and handle the complexity of data in the classification. Further, the AO
method helps to tune the parameters of DensNet (121 layers) and SVM,
which achieves less training loss, computational time, minimized overfitting
problems and more training/test accuracy. Performance evaluation metrics
and statistical analysis validate the proposed model results are better than the
benchmark schemes. Our proposed method has achieved a minimal value of
the Mean Average Percentage Error (MAPE) rate i.e., 8% by DenseNet-AO
and 6% by SVM-AO and the maximum accurateness rate of 92% and 95%,
respectively.
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1 Introduction

Power markets are evolving from a centralized functional approach to a realistic one in several
countries throughout the world. The power market, which perceives electrical power as a communal
utility, tries to reduce power costs through competition. Power cannot be stored in large quantities,
therefore a stable power system requires a constant balance of power supply and energy demand. A
deregulated electricity market serves as the framework for future intelligent/smart grid installations,
which aim to balance supply and demand through customer engagement. Residential areas utilize
roughly 66% of the power generated, according to [1]. During the generation, transfer, and supply of
power, the majority of energy is dissipated in the traditional system. The SG was founded to address
the existing challenges. A regular grid can be turned into an SG by integrating two-way information
sharing between the provider and the consumer.

SG is an intelligent energy system that effectively manages energy generation. Transmission is an
electricity process that integrates modern technologies and allows users and utilities to interact on
both ends. Energy is a requirement as well as a valued asset. Demand Side Management (DSM) is a
method of planning household appliances that employ optimization techniques to lessen the cost of
energy, optimize the ratio of points, and strike a healthy balance between user convenience and energy
expenditures [2]. SG assists users in attaining productivity and reliability with the help of DSM. The
advent of Smart Meter (SM) is very helpful as it is used to collect adequate information of consumption
patterns about future generations of energy by guiding the users and the energy providers to interact
in actual instances. It will ensure that energy production and consumption are both in balance. By
moving demand from high consumption hours to off-peak hours and saving resources, the customer
engages in SG services and saves money on energy. The abstract view of the SG domain is shown in
Fig. 1 [3].

Customers may track their energy use trends using DSM, which is dependent on the utility’s
pricing. Market competitors gain more from load forecasting. Energy Growth, production planning,
distribution management, quality control and performance analysis are all factors that must be
considered in light of forthcoming load forecasts. Another issue in the power industry is the efficient
production and utilization of energy. The essential aim of the energy user and the energy provider is
utility maximization. The energy generators will face higher costs as a result of more accurate load
forecasts, while consumers will benefit from lower electricity prices. In Singapore, there is no suitable
energy-generating policy. To reduce needless generation, stability among the energy consumed and
power generated is essential. As a result, for market setup management, accurate load forecasting
is increasingly important. The Independent System Operator for the New England control region
is a local energy distribution organization that is operated by a sovereign power system (ISO-NE).
Responsible for managing the activity of the wholesale energy market. In England, ISO-NE serves
the states of Massachusetts, Vermont, Rhode Island, and Connecticut. The investigation in this
publication is based on a huge collection of ISO NE data. Temperature, weather conditions, and other
factors all have an impact on electrical load, thus pricing isn’t the only factor. There is a substantial
amount of accurate data [4]. In the end-user, a good decision process minimizes power loss, lowers
energy expenditures and lowers Peak Average Ratio (PAR) [5].
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Figure 1: SG domain (abstract diagram)

1.1 Contributions
In light of the above concerns, researchers are focusing their efforts on the power scheduling

problem. The energy problem was solved using certain optimization methods [6].

This paper’s key contribution is:

• The number of features is reduced to minimize the computational time and complexity of
training by selecting the most relevant features with the proposed feature selection ensembler.

• Processing large amounts of data using traditional methods is difficult. We proposed two
modified versions (ensembler) of the classifiers, SVM and DenseNet121 with the AO method
to forecast the electric load and price.

• With the proposed feature engineering methods and ensembler classifier, our proposed model
training accuracy is increased by 7%, minimizing the model loss by 9%. In required available
resources, our proposed ensembler scheme outperforms in electricity load and price prediction
with accuracy by 8%, minimizing the computational time by 8%.

• We applied performance metrics including MAPE, accuracy, Mean Average Error (MAE),
recall, prediction, f-score and statistical analysis tools (pearson test, ANOVA test, studentas
test, chi-square test, etc.) to assess the working of our suggested schemes (SVM-AO and
DenseNet121-AO) and existing mechanisms (Linear Regression (LR), Linear Discriminant
Analysis (LDA), RF). Our suggested schemes have the lowest performance error value and
low computational complexity than benchmark schemes.

1.2 Motivation and Problem Statement
Each machine learning approach has advantages and limitations. The key concerns in anticipating

the power load are improved performance and accuracy. A high number of data makes accurate
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prediction more difficult. As a result, a variety of systems have been designed and implemented to
address these issues within the time restrictions; nonetheless, certain concerns remain, such as adjusting
energy production and utilization to monitor inconsistencies in power consumption and production
patterns [7]. On the electricity load and price forecasting side, the methods are showing a good accuracy
on some range of data, however, these methods overfit if data is increased and the results start varying
[8]. Furthermore, the existence of redundant attributes has very little influence on the objective and
increases the algorithm’s time complexity [9].

A Deep Learning (DL) and Statistical Learning-based solution are being developed to overcome
these difficulties. Furthermore, to achieve maximum accuracy, the classifier’s variables are fine-tuned
utilizing an optimization method. In the Feature Engineering process, RF and XGBoost are used to
reduce duplication and sanitize the data. Finally, the AO technique is utilized to determine the best
DenseNet121 hyperparameter settings. The DenseNet121 neural net has the benefit of being able to
deal with large amounts of data.

2 Background

The future generation of electricity networks is referred to as “SGs.”A power system that improves
energy generation and management by utilizing the continuous two-way connection. Capability in
pervasive computing and interactions for improved control dependability, durability, and security.
An intelligent grid transports electricity from producers to users. Two-way digital communication
technologies It monitors smart appliances. Buyers’ houses or buildings save energy and money even
while improving reliability, performance and responsibility [10]. An SG is required to upgrade the older
power system. It automatically regulates, maintains, and optimizes the operation of the connected
components. It includes everything from classic main utilities to emerging regeneration scattered
generators, as well as the power transmission networks and technologies that link them to industrial
customers or home users with smart appliances, battery technology, and heating systems [11].

An SG provides an integrated, globally distributed transmission network by connecting energy
and data flows in both directions. It leverages the benefits of digital technologies with existing
power infrastructure to deliver near-instantaneous supply-side control and real information [12].
Many SG systems are presently in use in other industries, such as industrial sensor networks and
telecommunications wireless networks. They’re being developed specifically for use in this cutting-
edge, smart, and interconnected system. The five key domains in which SG networking systems may
be characterized are advanced materials, enhanced interfaces, sensing and measurement, protocols,
decision supports, integrated communications, and classes. Data centers employ diverse area networks,
such as home (HANs), community (NANs), business (BANs), and industrial automation converging
approaches, as a wide base for SG networking architectures [13].

SGs are devices that transfer electrical energy between generators (including traditional and
distributed energy generating sources) and end-users, decreasing costs and conserving energy while
enhancing system performance and reliability. On the user end, they leverage a two-way flow of
information to manage intelligent systems. Smart metering strategies can combine actual energy
consumption as a review and relate to demand from utilities with the help of a network design. Network
service centers can provide customer electrical load data and online market rates to optimize the
supply of electricity and distribution based on energy consumption. The wide adoption of modern
SG elements, as well as the incorporation of current communication and knowledge technologies used
in the traditional electricity network in a dynamic SG architecture, would benefit both customers
and suppliers [14]. Integrating digital networking technologies into SGs will improve the reliability
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of traditional generating electricity and distribution while also encouraging the use of sustainable
power. An SG’s basis is the ability of many organizations (e.g., control center, dedicated software,
intelligent instruments, systems, etc.) to communicate with a network infrastructure. As a consequence,
the development of SG network technologies depends on the establishment of a robust and broad
network infrastructure [15].

3 Related Work

The term “big data” refers to a significant amount of data concerning electrical load. Large data
is a term used to indicate a large volume of highly complicated data. The discovery of previously
undiscovered trends, market dynamics and other important information is aided by a huge volume of
data collection. There are several load forecasting techniques presented in the literature. It’s difficult
to deal with training data since it’s so large and intricate. A DNN’s processing capabilities allow it to
handle huge data training [16]. DNN can properly anticipate and analyze enormous volumes of data.
The literature covers a wide range of estimate techniques. Forecasting is done using RF, naive bays
and ARIMA, among other classifier-based approaches. A variety of approaches are used to forecast
the load or pricing. Due to various appropriate feature selection and retraining procedures, neural
networks outperform alternative strategies. Shallow Neural Network (SNN) has poor results and an
overfitting problem, according to the authors [17]. DNN outperforms SNN in terms of pricing and
load predictions. For prediction, the author used the Rectified Linear Unit (ReLU) activation function
in conjunction with the generative stochastic mechanism, i.e., Restricted Boltzmann Machine (RBM).
RBM is in charge of data processing and training, whereas ReLU is in charge of load forecasting.
RBM is in charge of data processing and training, whereas ReLU is in charge of load forecasting. In
[18], KPCA is used to extract features and DE-based SVM is used to anticipate prices. The author
implemented Deep Auto Encoders (DAE) to predict the cooling load [19]. In terms of information
acquisition and reliability, DAE outperforms. DAE is an approach for machine learning that beats
other schemes in terms of efficiency.

The pricing is projected and unusual load activity is detected in [20] utilizing the Gated Recurrent
Units (GRU) approach. The GRU approach forecasts the price using DAE that outperforms other
approaches in terms of precision. With the extensive amount of data, SG will help forecast load
and complex trends. Furthermore, It also assists utilities in developing the market, transmission, and
assessment operating procedures necessary for demand-supply stability. DNN models have greater
predictability. The use of SG’s big data would aid in the assessment of load and cost trends. It assists
utilities in producing a creation, supply, and control process, all of which are required to maintain
production balance. One of the classifier’s uses is feature engineering. The authors used Hybrid
Structured DNN to forecast prices in [21], although the execution time and probability of dropout
of neurons are very high in this model.

In [22], the author proposed a cost forecasting strategy based on DL techniques that included
DNN as an expansion of the combination LSTM-DNN framework, the hybrid GRU Convolutional
Neural Network (CNN) methodology, the DNN framework, and the traditional MLP. Following
that, the proposed structure is compared to 27 alternative plans. To increase prediction consistency,
the recommended DL framework was discovered. To compare the proposed model to all existing
approaches, a single dataset is employed. A single dataset is insufficient for all real-time investigations.
Kernel Principal Component Analysis (KPCA), SVM, and Grey Component Analysis (GCA) were
combined to build a dual process for feature selection, filtration, and measurement reduction.
However, because the authors employed a large dataset that includes pricing for oil, wind, steam,
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gas, and wood, the computational overhead of the model has grown. Furthermore, it is difficult to
collect all of these expenditures in a single instantaneous database; Pricing for certain resources cannot
be provided ahead of time. The developers of [23] made use of DNN templates as well as the Stacked
DE noising Autoencoder (SDA). SVM, traditional neural networks, and multivariate regression DNN
were among the models compared by the authors. In addition, the authors used Bayesian optimization
of variance and functional analysis to choose features. The prototype was proposed by the designers for
estimating the prices of two marketplaces at the same time. Furthermore, aspect removal approaches
can be used to enhance prediction. They limit the possibility of over-fitting. The authors contrasted a
model that had previously only been offered for price prediction, which was inadequate. This article,
on the other hand, forecasts both price and load.

4 Proposed Methodology

This article proposes two models i.e., predicting the energy load as well as electricity price. Both
models apply the same strategies, as these models are related. One model is used to predict the demand
of the electric load and market electricity price.

The main aim of the current work is to enhance market energy price and price predictions. The
suggested methodology is described in Fig. 2.

Figure 2: Proposed electricity prediction model

We present an improved technique to predict load calculated based on average of attributes, feature
extraction, and prediction/forecasting after analyzing the literature study and the aforementioned
methodologies. The feature extraction is done with RFE, while the feature processing is done with XGB
and RF. The average feature selection values for XGB and RF are very close. The mean value of XGB
and RF is employed to pick features, as shown in Eq. (1) for average feature selection. Classification is
also performed using the DenseNet121 and SVM methods. In addition, the DenseNet121 and SVM
parameter values are obtained using the AO meta-heuristic approach. Fig. 3a depicts the model’s
working flowchart.
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Figure 3: Proposed workflow and input data distribution/relation

4.1 Data Collection/Dataset
In this article, the history of energy load and price information from several different new England

cities is utilized. ISONE, which is utilized in this article [5], maintains the power load information.
The vertical data, or columns, are referred to as “features.” Data is structured on a monthly basis
and conducting training activities on the dataset on a monthly basis offers the benefit of boosting
performance and learning rate. Trustworthy consumers have different patterns of use than power
thieves, according to data on energy usage. There are 14 distinct characteristics in the dataset collection.
The feature labeled “System Load” is considered as a target or label attribute. 70% of the data in the
dataset was used to train our proposed model and 30% was used to test it. Figs. 3b and 4 provide a
high-level overview and correlation of the dataset.

4.2 Feature Engineering
Feature engineering consists of selection features and extraction of features. With the use of

machine learning to select important features, RF and XGB are utilized [8]. The impact of features



4256 CMC, 2022, vol.72, no.3

on the target is computed with these methods. The range of 0 and 1 is used for feature importance
calculation. As indicated in Eq. (1), the average of feature importance is used to improve feature
selection.

Fs = Fi (XGB) + Fi (RF)

2
(1)

The letters Fi and Fs stand for feature importance and feature selection, respectively.

Extraction of features is a technique for removing certain dataset features to minimize the
time complexity. A subset of the collected data is chosen in this manner to provide more detailed
information than the original data (new data is generated from the old data). In the literature, several
methods for extracting characteristics from data have been proposed. The proposed model uses RFE
and RF to remove the most redundant features during the training phase of classification to reduce
the complexity. The RFE technique determines the priority and dimension of features using positive
integers and true/false. To remove unnecessary features, the drop-out rate has been computed. If
the average feature weight/importance exceeds the defined threshold and the priority exceeds the
defined priority barrier, features are reserved/selected, according to Eq. (2). Features with a lower
weight are discarded, while those with a higher weight are chosen. Using the average algorithm, the
degree of features extraction is 0.63. Additionally, attributes having a priority value of more than 5 are
considered when making a selection. Eq. (2) is utilized to aid in the selection of overall features.

Fos =
n∑

fr=0

{
reserveFeature, avgimp (f ) ≥ αRFE(f )pr ≤ βpr
dropFeature, avgimp (f ) ≥ αRFE(fr)pr > βpr (2)

where avgimp shows the average importance of a feature, f is the feature and pr is the priority of
feature. α and β are the threshold for the selection of features. It represents the overall feature
selection, whereas f represents the particular feature. The terms avg imp and pr stand for average
feature importance and feature priority, respectively. The levels of feature significance and priority are
indicated by the selection and extraction methods. The classifier obtains the most relevant features for
predictions/forecasting after feature identification and categorization.

Figure 4: Dataset description
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4.3 DenseNet
DenseNet is a network design that concentrates on deepening deep learning algorithms while also

order to be more productive to training by employing shorter associations among layers. Each layer
receives updated inputs among all future levels and passes upon the feature space to all subsequent
layers to maintain the feed-forward nature. A CNN classifier is created by extracting features from the
data and applying them to the labels to categorize categories from a dataset. Torchvision and PyTorch
(two DL libraries) will also be required to complete this task. In contrast to other data learning models,
Torchvision is a pre-trained data modeling technique that provides the highest level of control against
overfitting while also boosting the optimization of results from the start.

Using the DenseNet block architecture and a growth rate of L = 5, a five-layer dense block is
defined as the result of the network’s computation as a consequence of the network’s calculation. The
number 121 in DenseNet-121 denotes that the neural network has 121 layers, which is a crucial feature.
A typical DenseNet-121 composition consists of multiple different layers that are combined. In total,
five convolution and pooling layers are used, as well as three transition layers (48, 24, 12, and 6), two
DenseBlocks convolutions (1, 33), and one classification layer. There are additionally three transition
layers used (6, 12, 24 and 48). According to the authors, DenseNet encourages the reuse of features,
minimizes the set of variables, and improves the model’s multi-label classification and classification
accuracy. Among the layers in the composite process are a non-linear activation layer, pooling layer,
convolution layer and batch normalizing layer.

Fig. 5 depicts the function of a DenseNet process, which is made up of transition layers and dense
blocks and is used to categorize an input review depending on its content. When a text is fed into
the DenseNet, it is processed via several dense blocks, with the feature maps of each layer remaining
consistent from layer to layer except the number of filters, which varies from layer to layer inside a single
dense block. After going through a huge block of ice, it continues to the transition layer. Convolution
and pooling are the two processes handled by the transition layer. The transition layer, which is located
outside of the dense layer, performs the downsampling procedures.

Figure 5: DenseNet model layers connection and flow

4.4 SVM-AO
A machine learning approach i.e., SVM is used for the regression problems as well as classification

of data. SVM’s main purpose is to discover the n-dimensional hyperplane [10], where the number
of features is denoted by “n”. SVM draws a hyperplane among the data which better classifies the
data. Support Vector Classification (SVC) for classification and Support Vector Regression (SVR) for
regression are mainly two characteristics of SVM. This study proposes a better SVR by dynamically
optimizing parameters with AO. A collection of parameters inside the range of SVM parameters is
referred to as a subset. The main parameters of SVR are kernel, Cost function (C), gamma and epsilon.
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The fitness of this combination is calculated after each variation is introduced to the classifier and the
k number of cross-validation approach which is utilized to verify the classifier’s prediction is accurate.

The next step is to optimize the classifier after assessing its consistency and complexity. It’s a multi-
objective optimization issue, similar to single-objective optimization in standard learning algorithms.
It may be resolved by utilizing the weight-sum technique to convert multi-objective optimization to
single-objective optimization. Furthermore, because the ensemble’s potential to generalize is primarily
defined by the trade-off between two objectives, such a technique is prone to weight shifting. To
regulate the trade-off between model accuracy and diversity, we employed the AO, a swarm multi-
objective optimization technique. Through the swarm population, AO will investigate optimum trade-
offs. This technique tackles the multi-objective reduction issue without losing generality.

4.5 Performance Evaluation
The following models are assessed based on performance metrics: MSE, MAPE, MAE and

RMSE. The MSE, MAE, RMSE and MAPE formulae are provided by Eqs. (3)–(6). The MAPE is
computed using the following formula [18]:

MAPE = 1
y

yn∑
yn=1

100

∣∣∣∣Sb − Gb

Ab

∣∣∣∣ (3)

The RMSE is calculated using the formula [21]:

RMSE =
√√√√ 1

Y

YM∑
yn=1

(Sb − Gb)
2 (4)

The average error calculation using MAE as well as the MSE are [23]:

MSE = 1
Y

YN∑
yn=1

(Sb − Gb)
2 (5)

MAE =
∑YN

yn=1 |(Gb − Sb)|
Y

(6)

The sensitivity analysis method, which is a simple and powerful approach to analyzing a learning
model, is also used to investigate the effects of each feature on the model’s prediction. To compute
feature sensitivity, we modify the feature value or try to neglect it in some way while keeping the other
features constant and observing the model’s output. If altering the feature value dramatically changes
the model’s output, it indicates that this feature has a significant influence on prediction.

5 Simulation Environment and Results

The environment setup for simulation and implementation impacts of our suggested approach in
light of error and computational performance indicators are discussed in this section. Our suggested
model is implemented on a machine with a Core i7 9th Gen processor, RAM with 8GB capacity along
a dual 4.8 GHz processor chip. The IDE of Anaconda (Spyder) and programming language Python
are utilized.
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5.1 Prediction of Energy Load/Demand
The relevant appropriate features are selected according to the feature importance determined by

XGBoost and RF as shown in Figs. 6a and 6b. The feature relevance of a variable reveals how much
it affects the desired feature, in this case, the power load. The high significance value of the feature
suggests that it has a considerable impact on the function being studied. The feature’s high impact
reveals how important it is to the target/label. A minor change in these most appropriate attributes can
have an effective impact on the objective. Low-impact characteristics are defined as features with a low
relevance value. If these characteristics are removed, they have little or no effect on the target. Getting
rid of unnecessary features improves computation cost and decreases computational complexity. The
feature score/importance computed by the XGBoost method is shown in Fig. 6a. The importance of
features determined by RF is shown in Fig. 6b. Fig. 7a depicts daily standard load power from January
2017 to December 2020. We can see that the normal load has a unique pattern in terms of time. The
historical consumption behavior of customers is also shown in Fig. 7a.

(a) XgBoost (b) RF

Figure 6: Computed feature importance

(a) Normal load (b) One day forecast

Figure 7: Normal electricity of ISO-NE 2017–2020 and forecasted load

We anticipate the electrical load for one day using the updated DL algorithm DenseNet and the
machine learning algorithm SVM, as illustrated in Fig. 7b. Furthermore, as shown in Figs. 8a and 8b,
we forecasted the impending power load for the following three days and one week using the same
methods with high accuracy of 96 percent.
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In Figs. 7a to 8b, we can observe that our suggested method beats the other standard algorithms in
terms of forecasting. DenseNet-AO, the proposed algorithm, outperforms than proposed algorithm
SVM-AO. The accuracy and loss curves of our suggested model are shown in Figs. 9a and 9b. The
training and testing accuracy curves in Fig. 9a are growing, whereas the model loss value in Fig. 9b is
dropping.

(a) Three days (b) One week

Figure 8: Electricity demand forecast

The superiority of the suggested model is demonstrated with the rise in accuracy parameter and
the decrease in the loss marker-line, indicating that our proposed model works better in obtaining
accuracy.

(a) Accuracy plot curve (b) Loss plot curve

Figure 9: Accuracy curve and loss curve electricity load forecasting model

5.2 Electricity Price Forecasting
Fig. 10a depicts the average electricity price from January 2012 to December 2020. The price of

power fluctuates throughout time. Figs. 10b, 11a and 11b depict one-week, three-day, two-day, and
24-hour electricity price projections. The suggested method performs effectively in terms of estimating
electricity, as shown in Fig. 10b. We can see that the proposed algorithm’s curve is quite close to the
actual electricity price when compared to the actual electricity price. Our proposed approach beats
comparable algorithms in anticipating short-term electricity prices.
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(a) Normal price distribution chart (b) One day forecasted price

Figure 10: Electricity price of ISO-NE 2012–2020 and forecasted price

Figs. 12a and 12b describe the proposed model loss and accuracy. With the number of iterations,
the proposed model’s accuracy improves while the loss value decreases. Our proposed technique
performs better in terms of accuracy, attaining 96% and 93%, respectively. As the model training is
improved using the AO optimized parameter values, the accuracy is increasing. The model complexity
is reduced at the initial stage when the features are reduced and secondly when the AO technique
provides the optimized values to the parameter of the proposed method.

(a) Three days (b) One week

Figure 11: Forecasted price of three days and one week (proposed vs. existing schemes)

5.3 Performance Assessment of Model for Electricity Demand and Cost Forecasting
Using performance evaluation approaches, statistical analysis, and error measurements, this

section analyses the recommended model and benchmark systems.

The error measures MAE, RMSE, MSE, and MAPE were used to assess the performance, as
shown in Fig. 13a and 13b. The suggested models SVM-AO and DenseNet-AO have the lowermost
error rate than the RFE, LDA and RF methods. When it comes to projecting power prices and loads,
the LDA method has the greatest inaccuracy rate. The lowest error indicates that the recommended
approaches are preferable.

The suggested model is also evaluated and compared to the benchmark algorithm using perfor-
mance evaluation criteria such as precision, F-score, accuracy, and recall. Figs. 13a and 13b show the
performance error of the proposed model as well as benchmarking techniques.
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(a) Model accuracy (b) Model loss

Figure 12: Price forecasting model accuracy and loss

(a) Load data (b) Price data

Figure 13: Performance error metrics results on existing and proposed approaches

Figs. 14a and 14b clearly illustrate that DenseNet-AO and SVM-AO are more accurate than the
other benchmark algorithms. The optimization part of the suggested model has provided precise
results to the models, boosting the accuracy of our developed framework. The reduction in the
performance error values means our model is working better with less error rate. The accuracy of
our suggested model, namely DenseNet-AO and SVM-AO in power price forecasting, is 95% and
92 percent, respectively. Furthermore, in terms of the power load forecasting model, DenseNet-AO
obtained 96 percent accuracy, while SVM-AO reached 93 percent accuracy. The computational cost
of DenseeNet-AO, SVM-AO, LinReg, CNN-GRU, untuned SVM and LDA is 400, 550, 880, 800, 970
and 930 s, respectively.

The performance evaluation of load demand and predictive analysis values is shown in Fig. 14.
As demonstrated in Figs. 14a and 14b, our suggested technique DenseNet-AO obtained 96 percent
accuracy whereas SVM-AO achieved 92 percent accuracy in load forecasting and 95 percent as well
as 90 percent accuracy in price forecasting. Our approach beats existing best practices.
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(a) Load data (b) Price data

Figure 14: Performance evaluation metrics results on existing and proposed approaches

The proposed algorithm’s statistical analysis is shown in Tab. 1. To analyze our proposed model,
we used ten statistical approaches. The analysis table also demonstrates the proposed model’s superi-
ority. As we can see most of the values in the statistical analysis table are positive, which means that
the hypothesis we selected is clear. The range of analysis is 0 and −1, which means if a value is more
than −1 is considered as a correct hypothesis and if less than 0 considered as a false hypothesis.

Table 1: Statistical analysis result values

Techniques Pearsons Spearmans Kendallas Chi-
Squared

Studentas Paired
Students

ANOVA Mann-
Whitney

Kruskal

DenseNet-
AO

F-stat 0.95 0.93 0.8 3932 0.22 0.98 0.05 37020 0.08

P-Val 0 0 0 0 0.82 0.33 0.82 0.39 0.78

SVM-AO F-stat 0.86 0.84 0.67 13547 0.48 1.26 0.23 37447 0
P-Val 0 0 0 0.18 0.63 0.21 0.63 0.48 0.96

UnTuned
SVM

F-stat 0.87 0.86 0.79 107.54 −0.22 −0.98 0.05 39227 0.08

P-Val 0 0 0 0.04 0.82 0.33 0.82 0.79 0.78

CNN-GRU F-stat 1 1 1 73432 0 1 0 37538 0
P-Val 0 0 0 0 1 1 1 0.5 1

LDA F-stat 0.9 0.87 0.8 109.44 0.01 0.44 0 41232 0
P-Val 0 0 0 0.05 0.99 0.66 0.99 0.81 0.98

LinReg F-stat 1 1 1 73432 0 1 0 37538 0
P-Val 0 0 0 0 1 1 1 0.5 1

6 Conclusion and Future Work

The proposed model is validated in this article using a dataset from ISONE which is freely
publicly available. In contrast, two models are presented for residential electric cost and energy
demand forecasting. The goal of this article is to reduce computational complexity, processing time
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and the problem of overfitting, as well as improve classifier performance and accuracy. Missing
values, redundant features and irrelevant attributes exist in the input data. Feature engineering, which
comprises selection and extraction, is used to preliminary processing the input provided data. The
feature engineering process, which involves choosing the most relevant features, is carried out using
XGBoost, RF and RFE. The AO optimizer additionally provides optimal values for the classifier
parameters, which improves the performance of the proposed classifiers, which including DenseNet
and SVM. After extensive simulations, the results of our proposed model are; require very little
computing time, improved preprocessing by selecting the best features, increased training accuracy,
reduced model loss, high-performance accuracy and lower performance error values. A stabilization
study is also performed with varied data sizes to ensure that the recommended models are stable.
In load forecasting, our suggested models SVM-AO and DenseNet-AO obtained 92 percent and 95
percent accuracy, respectively, while pricing forecasting reached 89 percent and 92 percent accuracy.

To handle enormous volumes of data in a short time with maximum accuracy, we hope to integrate
the new optimizers with an enhanced version of DL and machine learning methodologies in the
future. We will use improved methods to analyze commercial and industrial data. We will also consider
medium- and long-term load and price forecasts, respectively.
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