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Abstract: Recent convolutional neural networks (CNNs) based deep learning
has significantly promoted fire detection. Existing fire detection methods can
efficiently recognize and locate the fire. However, the accurate flame boundary
and shape information is hard to obtain by them, which makes it difficult
to conduct automated fire region analysis, prediction, and early warning.
To this end, we propose a fire semantic segmentation method based on
Global Position Guidance (GPG) and Multi-path explicit Edge information
Interaction (MEI). Specifically, to solve the problem of local segmentation
errors in low-level feature space, a top-down global position guidance module
is used to restrain the offset of low-level features. Besides, an MEI module
is proposed to explicitly extract and utilize the edge information to refine the
coarse fire segmentation results. We compare the proposed method with exist-
ing advanced semantic segmentation and salient object detection methods.
Experimental results demonstrate that the proposed method achieves 94.1%,
93.6%, 94.6%, 95.3%, and 95.9% Intersection over Union (IoU) on five test
sets respectively which outperforms the suboptimal method by a large margin.
In addition, in terms of accuracy, our approach also achieves the best score.

Keywords: Fire semantic segmentation; local segmentation errors; global posi-
tion guidance; multi-path explicit edge information interaction; feature fusion

1 Introduction

Vision-based fire detection is a difficult but particularly important task for public safety. From
existing literature, vision-based fire detection methods can be divided into two types. One is to judge
whether there is a flame in an image [1–5]. The other regards the flame as an object and uses the
object detection based method to detect fire [6–8]. Compared with the first type, the object detection
based fire detection method can not only recognize the existence of fire but also locate the fire.
However, it lacks accurate flame edge and shape information which makes it hard to accurately and
automatically estimate the fire area. In general, due to the lack of precise area, shape, and location
of flame, automated fire intensity analysis, prediction, and early warning are difficult to carry out.
Therefore, it is necessary to realize the fire semantic segmentation in an image.
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The goal of fire semantic segmentation is to recognize whether the pixel belongs to fire (shown in
Fig. 1, which is similar to image segmentation tasks. Recently, advances in image processing techniques
[9,10] have boosted the state-of-the-art to a new level for many tasks, such as semantic segmentation
and salient object detection. However, it is still difficult to accurately resolve flames from a single
image. The main reason may be the different backgrounds, multiple scales of fire at different evolving
stages, and disturbance by fire-like objects. In this paper, we propose a fire semantic segmentation
method based on global position guidance and multi-path explicit edge information interaction.
Specifically, to alleviate the problem of local segmentation errors in low-level feature space caused
by the disturbance of fire-like objects and background noise, a global position guidance mechanism
is proposed. This module uses the accurate top-level position information of top-level features to
reconstruct spatial detailed information in a top-down manner. Besides, we employ a multipath
explicit edge information interaction module to organically aggregate coarse segmentation results
and edge information to refine the fire boundary. In this module, we first explicitly construct edge
information extraction through strong supervised learning, and then realize the interaction between
edge information and coarse segmentation results through a convolutional layer.

Figure 1: The goal of fire semantic segmentation is to recognize whether the pixel belongs to fire. Each
column represents an original image and the corresponding fire semantic segmentation map. The pixels
belonging to fire are marked as white, and the others are marked as black

The main contributions of this paper can be summarized as follows:

1) We propose a novel fire semantic segmentation method based on global position guidance
and multi-path explicit edge information interaction. The experimental results show that our
method achieves 94.7% average IoU on five test sets which outperforms the best semantic
segmentation method and salient object detection method by 15.9% and 0.8%, respectively.
It demonstrates that our method has better performance on fire segmentation than previous
state-of-the-art semantic segmentation and salient object detection methods.

2) In this paper, a global position guidance module is proposed to solve the problem of local
segmentation errors in low-level feature space. Besides, a multi-path explicit edge information
interaction module based on edge guidance is utilized to organically aggregate coarse segmen-
tation results and edge information to refine the fire boundary.

3) A fire semantic segmentation dataset of 30000 images is established, which is currently the first
fire semantic segmentation dataset in this area. This dataset is created by synthesizing the real
flame region with normal images. We randomly select 1100 images from [5] and label them to
obtain the real flame region.
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2 Related Work and Scope

In this section, we give a summary of related works in Tab. 1. Traditional fire detection methods
[11–15] mainly focus on handcraft features, such as color, shape, texture, motion, etc. They have
some defects, such as lacking robustness, failing to detect fire at a long distance or in a challenging
environment, etc. Recent date-driven based deep learning promoted the progress of fire detection.
Fire detection methods based on deep learning can be divided into two categories: classification-
based methods [1–5] and object detection-based methods [6–8]. Classification-based approaches treat
fire detection as an image classification task. These methods can judge whether there is fire in an
image, but cannot locate the fire. The object detection-based fire detection methods can not only
recognize the existence of fire but also locate the fire. However, the fire position is marked with
rectangular boxes. It is unable to provide flame edge and shape information. The goal of fire semantic
segmentation is to recognize whether the pixel belongs to fire, which is similar to image segmentation
tasks. However, it is difficult to obtain good results by directly applying the existing deep learning
based segmentation methods [16–24] to fire detection. These methods are not specially designed for
fire semantic segmentation, so the discrimination ability of fire-like objects is relatively weak, and
it is difficult to accurately parse the fire boundary. In addition, they have poor performance on
local small-scale fires. To this end, we propose a fire semantic segmentation method based on global
position guidance and multi-path explicit edge information interaction. The global position guidance
mechanism is proposed to alleviate the problem of local segmentation errors in low-level feature
space caused by the disturbance of flame-like objects and background noise. It uses the accurate top-
level position information of top-level features to reconstruct spatial detailed information in a top-
down manner. Besides, the multipath explicit edge information interaction mechanism is proposed to
organically aggregate coarse segmentation results and edge information to refine the fire boundary.

Table 1: Summary of related works

Method Type Features Limitations

[11] Handcrafted fire
detection

Combine fuzzy inference with a color
statistical mathematical model to
detect fire

These methods focus on
handcraft features, and exist
some defects such as lacking
robustness, failing to detect fire
at a long distance or in a
challenging environment, etc.

[12] Handcrafted fire
detection

Use YCbCr colors statistical
information

[13] Handcrafted fire
detection

Employed temporal and spatial
wavelet transform to compute flame
regions

[14] Handcrafted fire
detection

Combine color, shape variation and
motion analysis

[15] Handcrafted fire
detection

Use spatio-temporal flame model and
dynamic texture analysis

(Continued)
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Table 1: Continued
Method Type Features Limitations

[1] Fire detection based on
classification

Use LeNet-5 to detect fire These methods can judge
whether there is fire in an
image, but cannot locate the fire[2] Fire detection based on

classification
Use AlexNet to detect fire

[3] Fire detection based on
classification

Use MobileNet to detect fire

[4] Fire detection based on
classification

Use ResNet50 to detect fire

[5] Fire detection based on
classification

Introduce three mechanisms to prove
the performance

[6] Fire detection based on
object detection

Use tiny-yolo-voc to locate fire The fire position is marked with
rectangular boxes. Unable to
provide flame edge and shape
information

[7] Fire detection based on
object detection

Use Faster R-CNN to locate fire

[8] Fire detection based on
object detection

Use YOLO v3 to locate fire

[16] Semantic segmentation
method

Use spatial pyramid pooling module
to capture rich global contextual
information

These methods are not specially
designed for fire semantic
segmentation, so the
discrimination ability of
fire-like objects is relatively
weak, and it is difficult to
accurately parse the fire
boundary. In addition, they
have poor performance on local
small-scale fires

[17] Semantic segmentation
method

Use spatial pyramid pooling module
to capture rich global contextual
information

[18] Semantic segmentation
method

Describe the attention mechanism as
expectation maximization

[19] Semantic segmentation
method

Propose two attention mechanisms

[20] Semantic segmentation
method

Propose a strip pooling and a mixed
pooling module to predict the shape
of the target

[21] Salient object detection
method

Proposed a pixel-wise contextual
attention network

[22] Salient object detection
method

Propose a boundary-ware network

[23] Salient object detection
method

Concentrate the differences among
feature maps when fusing features

[24] Salient object detection
method

Propose a multi-scale interactive
network

Ours Fire semantic
segmentation method

Propose a novel fire semantic
segmentation method based on global
position guidance and multi-path
explicit edge information interaction

None of the above problems
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3 Global Position Guidance Mechanism

The encoder based on CNN can extract different feature representations. Top-level semantic
features preserve precise fire position information. Low-level spatial detail features contain rich
fire boundary information. Both of them are vital to fire segmentation. The progressive fusion
of different levels of features has a very significant effect on fire segmentation tasks. However,
attacked by background noise and flame-like objects, the low-level fire spatial features may arise
local segmentation errors. Consequently, the key to improving the performance of fire semantic
segmentation is to restrain the offset of low-level spatial features.

As mentioned above, the receptive field of the top-level features is the largest among these encoded
features and the fire position information of them is the most accurate. Besides, when the information
progressively flows from the top-level to the low level, the accurate position information contained
in top-level features is gradually diluted. Thus a top-down global position guidance mechanism
to directly deliver top-level position information to low-level feature space to restrain the local
segmentation errors is designed.

In this module, the top-level features F (t)
e are outputted from the last layer of the encoder. Besides,

we define the encoded features from ith layer as F (i)
e , i ∈ (1, t − 1). First, two pointwise convolution

layers with batch normalization (BN) and ReLU activation function are performed to change the
number of channels of F (t)

e and F (i)
e to M. Then, a bilinear interpolation function to up-sample F (t)

e to
the same size as F (i)

e . The fused features F̂ (i)
e could be denoted as:

F̂ (i)
e = [

F
(
F (i)

e ; ωi, bi

)
, Up

(
F

(
F (t)

e ; ωt, bt

))]
(1)

F (F; ω, b) = ReLU (BN (F ⊗ ω + b)) (2)

where (ωi, bi) and (ωt, bt) are the kernel weight and bias of F (i)
e and F (t)

e respectively, Up stands for
up-sample, ⊗ means convolution operation and [ . . . ] means concatenation. Next, a same pointwise
convolution layer is used to squeeze the channel of F (i)

e into M. So far, we obtain the relative position
attention map F̂ (i)

e−M which has accurate position information.

To further enhance the representation capability of F̂ (i)
e−M , we introduce efficient channel attention.

The map F̂ (i)
e−M is first compressed by a global pooling operation G to obtain the vector Y which has

global contextual information.

Y = G
(

F̂ (i)
e−M

)
= 1

WH

W ,H∑
i=1,j=1

(
F̂ (i)

e−M

)
ij

(3)

where W , H denotes the width and height of the input respectively. Then, an efficient fully connected
layer is utilized to transform the vector Y into a reconstruction coefficient ω.

ωm = σ

(
k∑

j=1

αjY j
m

)
,Y j

m ∈ �j
m, m ∈ [1, C] (4)

where αj represents the weight parameters, σ is the sigmoid activation function, �j
m represents the set

of k adjacent channels of Ym, and C is the number of channels. Next, a channel-wise multiplication
operation is employed to reconstruct the F̂(i)

e−M,

F̂ (i)
e−M−r = ω ∗ F̂ (i)

e−M (5)
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At last, we multiply F̂ (i)
e−M−r with F (i)

e to restrain the local segmentation errors in low-level feature
space.

O = F̂ (i)
e−M−r · F (i)

e (6)

As shown in Fig. 2, the baseline without the GPG module has some wrong segmentation. With
the GPG module applied, the local segmentation errors are restrained.

Figure 2: The heat map visualization results of baseline and global position guidance module. They
demonstrate that the GPG module can effectively restrain the local segmentation errors

4 Multi-Path Explicit Edge Information Interaction Mechanism

Another challenge of fire semantic segmentation is edge prediction. Different from central pixels
that have higher prediction accuracy due to the internal consistency of the fire, pixels near the
boundary are more prone to be misdetected. The main reasons are as follows. Compared with central
pixels, the edge of fire contains less information. Besides, diverse and complex backgrounds will
suppress edge information. Therefore, to solve the problem of edge segmentation error caused by lack
of flame edge information. we need to explicitly utilize flame edge information.

To achieve this, the edge information of the flame needs to be extracted explicitly. A sim-
ple approach is to construct an edge information extraction branch and train it through strong
supervised learning. First, we apply the edge extraction algorithm (e.g., Canny, Sobel, and Laplace
operator, etc.) to label image Ylabel to obtain the corresponding edge annotation Yedge. To explicitly
extract the edge information, the output features F(l)

d of the last layer of the decoder are inputted into
the edge information extraction branch. This branch consists of a 3 × 3 convolution layer, a batch
normalization, and an activation function. The edge information Iedge could be denoted as:

Iedge = ∅ (
BN

(
Conv

(
F (l)

d ; ωe, be

)))
(7)

where ωe and be represent the kernel parameters and bias respectively. ∅ means activation function.
Then, we use three loss functions to train them,

Lbce = −
∑

r,c

[
Gr,c log

(
Ir,c

) + (
1 − Gr,clog

(
1 − Ir,c

))]
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Lssim = 1 −
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

)
Liou = 1 −

∑H

r=1

∑W

c=1 Ir,cGr,c∑H,W

r,c=1 [Ir,c + Gr,c − Sr,cGr,c]

Ltotal = Lbce + Lssim + Liou (8)

where Gr,c and Ir,c mean the fire edge confidence of the ground truth and prediction map respectively, μx

and μy represent the average value of prediction and ground truth respectively, σ∗ means the variance.
C1 and C2 are two small constants.

After the complementary fire edge information is obtained, we aim to aggregate flame edge
information and flame object features to achieve information interaction. It is useful for obtaining
better flame semantic segmentation results. The decoded features (flame object features) are defined
as F (i)

d , i ∈ (1, l). Then, the information interaction can be denoted as:

O(i)
d = F

[(
Up

(
F (i)

d

))
, Up

(
Iedge

)]
(9)

where O(i)
d stands for refined results.

Algorithm 1: Multi-path Explicit Edge Information Interaction
Input: coarse results F (i)

d , i ∈ (1, l); edge information Iedge

Output: refined fire prediction map Oi
d

1: if explicit edge extraction then
2: Iedge ← F(Fl

d)
3: return Iedge

4: if edge information interaction then
5: while i = 1; i ≤ l; i ← i + 1 do
6: Fi

d, Iedge ← Up

(
F (i)

d

)
, Up(Iedge)

7: Oi
d ← Conv

([
Fi

d, Iedge

])
8: return {Oi

d|i = 1, . . . . . . , l}

5 Overview of Global Position Guidance and Multi-Path Explicit Edge Information Interaction
Networks

Based on the above ideas, we design a fire semantic segmentation network based on global position
guidance and multi-path explicit edge information interaction. The overview of the proposed model
is illustrated in Fig. 3. It consists of a deep encoder, four global position guidance modules with
feature fusion operation, an explicit edge information extraction module, and a multi-path explicit
edge information interaction module. The input image X is fed into the encoder [5] to obtain encoded
features Fi

e,

Fi
e = Encoder (X) , i ∈ (1, t) (10)
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Figure 3: The overview architecture of the global position guidance and multi-path explicit edge
information interaction based fire semantic segmentation networks

It is worth noting that the encoder includes three main parts, namely multi-scale feature extraction,
implicit deep supervision, and channel attention mechanism. First, to establish a good feature
foundation for the high-level semantic feature and global position information extraction, a multi-
scale feature extraction module is used.

B = M (A) = [
h1×1 (A) , h3×3 (A) , h5×5 (A) , hpooling (A)

]
(11)

where A ∈ RC×H×W is the input feature, hk×k means the convolution operation with a kernel size of
k × k, and B is the output. Then, three densely connected structures [25] which permit the gradient to
flow directly to earlier layers are employed to enhance the feature representation capability. At last, the
channel attention widely used in computer vision tasks is utilized. The process of it can be described
as:

X̃ = GP
(
x̃
) = 1

H × W

H−1,W−1∑
i,j=0

x (i, j)

xlb = ∅
(
ω2 ⊗ ∅

(
ω1 ⊗ X̃

))
o = xlb ∗ x (12)

where o is the final output, x̃ means the input, X̃ is a vector that includes the global information. ω2

and ω1 are the corresponding weight matrixes. xlb is a reconstruction vector.
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When the encoded feature Fi
e is captured, we use a convolution layer to squeeze the channel of

top-level feature Ft
e into 256. Then, the feature Ft

e−256 is fed into the GPG module to restrain the local
segmentation errors of low-level feature space. Besides, we aggregate the information progressively
from the top level to the low level like the U-Net architecture [26] through a simple feature fusion
operation. At last, as mentioned in Section 4, an MEI module is used to refine the coarse segmentation
results. The cross-entropy loss based supervision is applied to train the whole network. It can be
represented as:

L(i)
(
Oi

d; G
) = Ltotal

L = αL
(
Yedge; Iedge

) + θ

4∑
i=1

L(i)
(
Oi

d; G
)

(13)

where L represents the total loss, Oi
d is the fire prediction map, and j is the number of categories. G

stands for the ground truth, α and θ are the weight coefficient.

6 Experiments and Analysis

In this section, we first introduce the dataset and evaluation metrics. Then we present the imple-
mentation details. Next, a series of ablation studies are conducted to verify the effect of each module.
Finally, we carry out reasonable experiments on our created dataset to evaluate the performance of the
proposed method. Experimental results demonstrate that our method achieves the best performance
compared with the existing semantic segmentation and salient object detection methods.

6.1 Dataset and Evaluation Metrics
In this paper, we create a fire semantic segmentation dataset (FSSD) which consists of 30000

synthetic images and 1100 real fire images. The generation of the dataset is described as follows. First,
we randomly select 1100 images from datasets [5] and label them carefully. Then, we extract the real
flame region and synthesize them with normal images to create the dataset. Finally, 1000 images are
used to generate training datasets, and 100 images are used to generate testing datasets. Some real fire
images and synthetic images are shown in Fig. 4. In this paper, 26000 images are used for training
(25000 synthetic images and 1000 real images). Besides, we divide the test images into five test sets
(each includes 1000 images). To improve the performance of fire semantic segmentation, we use the
dataset [5] (except for the 1000 images used to extract the real flame region) to pre-train the encoders
of all comparison methods.

Figure 4: Some visual examples of our created fire semantic segmentation dataset. Each column
represents an original image and the corresponding annotation
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We use three measurements to evaluate all methods. Mean Absolute Error (MAE) is described as
the average pixel-wise absolute difference between the prediction map and the ground truth. Therefore,
the mathematical formula of the MAE can be expressed as:

mae = 1
H × W

H−1∑
x=0

W−1∑
y=0

∣∣Px,y − Gx,y

∣∣ (14)

where P denotes the fire semantic segmentation map, G is the corresponding ground truth. Interaction
over Union (IoU) is widely used in semantic segmentation [27] to evaluate the performance of the
algorithm. It represents the degree of overlap between the prediction map and the ground truth. The
IoU can be computed by

IoU =
∑H−1,W−1

x=0,y=0

{
Px,y == Gx,y

}
N

N =
H−1,W−1∑
x=0,y=0

Px,y + Gx,y, P, G �= 0 (15)

The third evaluation metric is accuracy, which is defined as the ratio of the number of correctly
predicted images (The IoU threshold is set to 0.4) to the total images. The accuracy can be illustrated
as:

accuracy = M
N

(16)

where M indicates the images correctly predicted, N is the total images.

6.2 Implementation Details
In this paper, we adopt EFDNet [5] pre-trained on FSSD (only for encoder) as our backbone. In

the training stage, we resize each image to 320 × 320 with random flipping, then randomly crop a patch
with the size of 288 × 288 for training. We utilize Pytorch to implement our method. The Adaptive
moment estimation is applied to optimize the whole parameters of the network with a batch size of
8. The hyperparameter values are shown in Tab. 2, referring to the settings in [5]. To avoid the model
failing into suboptimal, we adopt the “poly” learning rate policy with the initial learning rate 1e−5
for the backbone and 0.001 for the other parts to train our model. Like [21], the maximum iterative
epoch of all methods is set to 30.

Table 2: Hyperparameter values

Betas Eps Weight decay Learning rate

(0.9, 0.999) 1e−8 5e−4 1e−5 for the backbone, 0.001 for the other parts

6.3 Ablation Study
In this section, to investigate the effect of the proposed GPG and MEI modules, a series of ablation

studies are performed. As illustrated in Tab. 3, the baseline which does not contain any optimization
achieves 0.008% and 88.3% in terms of MAE and IoU, respectively. With the GPG module applied,
both IoU and MAE are improved, where the MAE score is decreased by 50.0% compared with the
baseline. The IoU of GPG is 91.5% which outperforms the baseline by 3.2% demonstrating that the
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idea of using top-level accurate position information to restrain the local fire segmentation errors is
very efficient. Besides, when we aggregate MEI and GPG, the performance of the proposed approach is
enhanced further. In terms of MAE, the final model achieves 0.002 which brings a 50.0% improvement
compared with the baseline. It also outperforms GPG. Furthermore, the final model improves the IoU
from 91.5% to 94.1% based on GPG.

Table 3: The quantitative results of the ablation experiment with different components on the DS01

Baseline GPG MEI MAE IoU
√ 0.008 88.3%√ √ 0.004 91.5%√ √ √ 0.002 94.1%

6.4 Compared with Existing Deep Learning Based Segmentation Methods
In this section, to demonstrate the performance of our method, 9 segmentation methods (5

semantic segmentation methods [16–20] and 4 salient object detection methods [21–24]) are compared.
For a fair comparison, the fire semantic segmentation results of different methods are obtained
by running their released codes under the default parameters. Moreover, we pre-train all encoders
on FSSD.

The quantitative comparison results on our created benchmark are illustrated in Tabs. 4 and 5.
Compared with other methods, our method achieves the best performance. In terms of MAE, the
proposed method achieves a better performance on five test sets which outperforms the other methods
by a large margin. The IoU evaluation metric is widely used in the semantic segmentation task. Our
method improves it from 93.2% to 94.1% on DS01. Besides, we use accuracy as an evaluation metric
for image-level fire detection. From the results, we can see that our method achieves an accuracy of
96.2% which outperforms other methods by a large margin (Threshold T is set to 0.6).

Table 4: The quantitative comparison results with existing semantic segmentation methods on the
FSSD dataset. The best result of each evaluation metric is highlighted in boldface

Methods DS01 DS02 DS03
MAE IoU Accuracy MAE IoU Accuracy MAE IoU Accuracy

[16] 0.015 77.6% 89.4% 0.012 74.8% 86.0% 0.013 80.4% 94.6%
[17] 0.019 73.2% 83.8% 0.018 69.0% 77.1% 0.019 72.9% 85.2%
[18] 0.023 68.4% 77.1% 0.013 68.4% 73.6% 0.018 73.2% 90.4%
[19] 0.019 73.8% 85.1% 0.018 68.8% 75.8% 0.019 73.9% 85.9%
[20] 0.025 65.3% 69.0% 0.028 56.0% 60.6% 0.027 63.5% 51.5%
[21] 0.005 84.9% 95.0% 0.004 83.1% 93.9% 0.005 85.9% 98.6%
[22] 0.004 93.2% 97.4% 0.003 92.8% 97.9% 0.002 94.4% 99.8%
[23] 0.005 86.8% 97.0% 0.004 85.4% 97.0% 0.004 87.8% 99.7%
[24] 0.012 77.2% 87.7% 0.007 77.5% 91.4% 0.009 81.2% 94.4%
Ours 0.002 94.1% 98.5% 0.002 93.6% 98.5% 0.002 94.6% 99.9%
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Table 5: The quantitative comparison results with existing semantic segmentation methods on the
FSSD dataset. The best result of each evaluation metric is highlighted in boldface

Methods DS04 DS05

MAE IoU Accuracy MAE IoU Accuracy

[16] 0.015 80.0% 90.8% 0.018 81.0% 96.6%
[17] 0.016 79.2% 93.4% 0.020 79.7% 96.4%
[18] 0.026 70.7% 78.8% 0.030 72.8% 84.6%
[19] 0.016 78.7% 92.0% 0.020 80.9% 97.3%
[20] 0.020 72.0% 78.4% 0.026 75.2% 94.6%
[21] 0.004 88.3% 99.1% 0.006 88.5% 99.8%
[22] 0.003 94.4% 98.6% 0.006 94.6% 99.7%
[23] 0.004 89.1% 98.7% 0.006 89.1% 99.9%
[24] 0.011 79.1% 89.3% 0.014 81.5% 94.6%
Ours 0.002 95.3% 99.3% 0.002 95.9% 100.0%

To comprehensively compare the performance of different methods, we present some visual results
of different methods. As illustrated in Fig. 5, our method has a better performance than the previous
semantic segmentation methods. Specifically, the proposed method not only highlights the correct
fire regions clearly but also well suppresses the background noises. Besides, it is robust in dealing
with flame-like objects (row 1) and low contrast background (row 4). Moreover, compared with other
methods, the fire boundary generated by the proposed method is more accurate.

Figure 5: Some visual results of different methods. Each row stands for one original image and
corresponding fire semantic segmentation maps. Each column represents the predictions of one
method

6.5 Analysis of Model Parameters
In this subsection, we analyze the parameters of different methods. The results are illustrated

in Tab. 6. We can see that the proposed method has only 6.9 MB parameters which is suitable for
resource-constrained devices. Compared with the suboptimal method, it decreases 72.9%.
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Table 6: The parameter size of different methods

Methods Parameters (MB) Methods Parameters (MB)

[16] 53.6 [21] 67.1
[17] 39.0 [22] 332.4
[18] 34.7 [23] 25.5
[19] 47.4 [24] 162.4
[20] 41.5 Ours 6.9

7 Conclusion

In this paper, a method based on global position guided and multi-path explicit edge information
interaction is proposed for fire semantic segmentation. First, existing literature shows that it is
challenging to accurately separate the fire from diverse backgrounds and flame-like objects. To this
end, considering the accurate position information contained in top-level features, we propose a global
position guidance module to restrain the feature offset in low-level feature space thereby correcting the
local segmentation errors. Besides, to further get more accurate boundary prediction, we first explicitly
extract the edge information through strong supervision. Then, a multi-path information interaction
is designed to refine the coarse segmentation. Experimental results on FSSD datasets show that the
proposed method outperforms previous state-of-the-art methods under three evaluation metrics.

In the future work, we intend to introduce multitask learning to further improve the performance
of the model and multi-scale feature extraction to deal with small flame segmentation. Besides, the
fast and small model which can be easily implemented on resource-limited mobile devices will be also
considered.
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