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Abstract: Cyber-attacks on cyber-physical systems (CPSs) resulted to sensing
and actuation misbehavior, severe damage to physical object, and safety risk.
Machine learning (ML) models have been presented to hinder cyberattacks on
the CPS environment; however, the non-existence of labelled data from new
attacks makes their detection quite interesting. Intrusion Detection System
(IDS) is a commonly utilized to detect and classify the existence of intrusions
in the CPS environment, which acts as an important part in secure CPS envi-
ronment. Latest developments in deep learning (DL) and explainable artificial
intelligence (XAI) stimulate new IDSs to manage cyberattacks with minimum
complexity and high sophistication. In this aspect, this paper presents an XAI
based IDS using feature selection with Dirichlet Variational Autoencoder
(XAIIDS-FSDVAE) model for CPS. The proposed model encompasses the
design of coyote optimization algorithm (COA) based feature selection (FS)
model is derived to select an optimal subset of features. Next, an intelligent
Dirichlet Variational Autoencoder (DVAE) technique is employed for the
anomaly detection process in the CPS environment. Finally, the parameter
optimization of the DVAE takes place using a manta ray foraging optimization
(MRFO) model to tune the parameter of the DVAE. In order to determine
the enhanced intrusion detection efficiency of the XAIIDS-FSDVAE tech-
nique, a wide range of simulations take place using the benchmark datasets.
The experimental results reported the better performance of the XAIIDS-
FSDVAE technique over the recent methods in terms of several evaluation
parameters.
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1 Introduction

Cyber-physical systems (CPS) being a strongly coupled combination of physical systems, comput-
ing systems, and communication devices, have proved to pose many security problems because of their
basic complex design [1]. The CPS has wide-ranging applications includes transport industry, aviation,
chemical and consumer appliances, civil, and also in the fields of healthcare and manufacturing. The
attack on a CPS might cause a failure of the system and lose sensitive data to the attackers [2]. This
could result in multiple losses. For preventing damages to systems and users, it is necessary to deploy
and design secure CPS. It could assist in maintaining privacy and security for CPS and also improve
the quality of applications [3]. The security of CPS is an extension of traditional cybersecurity, wherein
the process of the physical model is further taken into account. One of the most significant privacy
problems in the traditional cybersecurity fields because of the risks of private data leaks are password
cracking, which is password recovery method for the systems [4]. In CPS security, simple data leaks
by the password cracking could not damage the CPSs; but, the operation of the physical process by
illegal access with a password could affect the dynamics of the physical system.

Hence, different CPS security researches have been carried out by modelling physical dynamics
with control theory [5]. But CPS is impacted by several factors, namely unexpected events, quick
environment changes, and physical system-based CPS security suffers from false alarm that degrades
recognition accuracy against cyber-physical attacks. Furthermore, the CPS becomes larger and the
relationship of all the CPS components becomes difficult, the accuracy levels exhibited by a real CPS
and the traditional CPS reduces which creates further attack vectors [6]. From a control theoretical
perspective, complex and massive models could be characterized as higher-order differential equations,
in which arithmetical models with higher-order terms are susceptible to noise on the state variable.
Hence, it is hard to attain accurate arithmetical models of complicated physical systems, as well
as unconsidered arithmetical terms of the incorrect dynamic models, which turn out to be the
vulnerability of the system-based attack detectors, which leads to incorrect recognition [7].

In order to conquer the limitation of legacy method-based CPS security, the data-driven anomaly
recognition method (wherein abnormal information is attained from many controlled experiments and
simulations) is adapted in CPS security [8]. Especially, machine learning (ML) that shows correlation
among input and output using large number of information without modelling based physical laws, is
adapted in CPS security for satisfying reliability concerns and higher-level security [9]. Moreover, ML
technique enables a method to be made for the complex and massive relations of all the components
of the CPS, involving several physical models in the real-time, complex application software, and
heterogeneous network protocol in the cyberworld, the generated method could improve the safety
levels of the CPSs. Fig. 1 illustrates the process of explainable artificial intelligence (XAI) technique
[10].

This paper presents an XAI based intrusion detection system (IDS) using feature selection
with Dirichlet Variational Autoencoder (XAIIDS-FSDVAE) model for CPS. The presented strategy
encompasses the design of coyote optimization algorithm (COA) based FS model is derived to elect an
optimal subset of features. Next, an intelligent DVAE technique is employed for the anomaly detection
process in the CPS environment. Finally, the parameter optimization of the DVAE takes place using a
manta ray foraging optimization (MRFO) algorithm to tune the parameters of the DVAE. In order to
determine the enhanced intrusion detection efficacy of the XAIIDS-FSDVAE technique, a wide range
of simulations take place using the benchmark datasets.
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Figure 1: Process of XAI

2 Related Works

Aljehane [11] presented a parameter-tuning deep-stacked autoencoder (PT-DSAE) based deep
learning (DL) method for the IDS in CPS. The presented method comprises feature extraction,
preprocessing, classification, and parameter tuning. Firstly, preprocessing is performed for eliminating
the noise existing in the information. Followed by, a DL-based DSAE method is exploited for finding
anomalies in the CPS. Furthermore, hyperparameter tuning of the DSAE performs by a search-and-
rescue optimization model for parameter tuning the DSAEs, namely the learning rate, epoch count,
batch size, and the number of hidden layers.

Hariri et al. [12] introduced customized malware scripts to manipulate and sniff data and
demonstrate the capacity of the malware for triggering false positives in the neural network response.
The malware is proposed to be a vaccine to reinforce the IDS against data processing attacks by
improving the capacity of the neural network to adapt and learn those threats. Li et al. [13] presented
a federated DL method, termed DeepFed, to identify cyberattacks against industrial CPS. Especially,
developed a new DL-based IDS for industrial CPSs, by using a gated recurrent unit (GRU) and
convolutional neural network (CNN). Later, designed a federated learning architecture, which allows
various industrial CPS models to jointly construct a wide-ranging IDS in a privacy-preserving method.

Gifty et al. [14] aimed at the privacy and security factors in handling big data for CPS and review
current challenges in data integrity. As well, introduce a security architecture for IDS recognition and
investigate the failure rate, performance parameter, and reliability in a malicious big data context.
Belenko et al. [15] examined generative adversarial artificial neural network (ANN) for detecting
security intrusion in largescale network of cyber devices. As per the outcomes of the experiment, a
calculation is composed of applicability of generative adversarial ANN to identify privacy anomalies,
and real-world recommendation is deliberated for using interconnected CPS.

Khan et al. [16] presented an architecture named Intrusion detection through electromagnetic-
signal analysis (IDEA) which exploits electromagnetic (EM) side-channel signals for detecting malev-
olent activities on embedded and CPSs. First, IDEA records EM emanation from uncompromised
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reference devices to determine a starting point of reference EM pattern. Then, IDEA monitors the
targeted device’s EM emanation. Filho et al. [17] designed an fog based intrusion detection using
generative adversarial network (FID-GAN). The IDS is presented for a fog framework that brings
computational resources nearer to the end node and consequently contributes to meeting lower-latency
requirements. To accomplish high detection rate, the presented framework computes a reconstruction
loss-based reconstruction of data sample mapped to the latent space.

3 The Proposed Model

In this study, a novel XAIIDS-FSDVAE technique has been presented for the detection and classi-
fication of intrusion in the CPS environment. The XAIIDS-FSDVAE technique encompasses different
subprocesses namely pre-processing, COA based election of features, DVAE based classification, and
MRFO based parameter tuning. The COA application reduces the computational complexity and
MRFO algorithm helps to accomplish maximum intrusion detection performance. Fig. 2 illustrates
the overall process of proposed XAIIDS-FSDVAE technique.

Figure 2: Overall process of XAIIDS-FSDVAE technique

3.1 Data Pre-Processing

Primarily, the pre-processing of data is carried out to transform the actual data into a useful
format and thereby improve the performance of the applied model. To accomplish this, a min-max
normalization technique is performed, which rescales the output or features from a range of values
into new ones (0 to 1 or −1 to +1). The rescaling process is performed by the utilization of linear
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interpolation process, as given below.

y′ = (ymax − ymin) × (xi − xmin)

(xmax − xmin)
+ xmin (1)

where (ymax − ymin) = 0; when (xmax − xmin) = 0 for a feature, it defines a continuous value for the
feature.

3.2 Process Involved in COA Based Feature Selection Approach

At this stage, the preprocessed data is applied as input into the COA model to choose a useful
set of features. COA is a recently established meta-heuristic technique which is presented by Pierezan
et al. [18]. This technique was dependent upon the alteration performance of coyotes by the environ-
ment and also the coyote experiences replacing. COA is a stimulating approach for obtaining a balance
amongst exploration as well as exploitation. This technique begins with NP amount of populations and
Nc count of coyotes as candidate solution:

SOCp,t
c = x = [x1, x2, . . . , xD] (2)

where c represents the number and p refers to the group and t indicates the time of inspiration to the
design variable. Primary, a few arbitrary coyotes are created as candidate solution from the search
space. The subsequent formula demonstrated this procedure modeling:

SOCp,t
c,j = LBj + η × (

Urj − Lrj

)
(3)

where η ∈ [0, 1] refers to an arbitrary value and Lrj and Urj signifies the lower as well as upper ranges
of jth variable from the search space:

objp,t
c = f

(
SOCp,t

c,j

)
(4)

This technique upgrades the group’s place arbitrarily. In addition, the candidate upgrades its place
by leaving its groups to another one. The subsequent formula defines the leaving procedure dependent
upon the probability design:

P1 = 0.05 × N2
c (5)

An optimum solution of all iterations is regarded as the alpha coyote and attained by the
subsequent formula:

αp,t = socp,t
c for min objp,t

c (6)

The general property of coyotes to the culture alteration is as follows:

culp,t
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rp,t
NC + 1

2
,j

, Nc is odd number

1
2

⎛
⎜⎝Rp,t

Nc
2

,j

+ Rp,t

NC

2
+1,j

⎞
⎟⎠ 0.W .

(7)
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where, Rp,t indicates the coyotes, social state ranking to group number p at time t to the variable j:

Blep,t
j =

⎧⎨
⎩

socp,t
r1,j, rj < prs or j = j1

socp,t
r2,j, rj ≥ prs + pra or j = j2

σj, O.W .
(8)

where, rj ∈ [0, 1] implies the arbitrary value and r2 defines an arbitrary coyote from the groups p, σj

signifies the arbitrary value from the design variable limit [19], j1 and j2 represents the arbitrary design
variables, and pra and prs demonstrates the connection and scatter probability correspondingly that
announce the coyote cultural diversity in the group. The arithmetical process to pra and prs is as follows:

prs = 1
d

(9)

Pra = 1
2

(1 − pr) (10)

where d stands for the dimensional to variables. The cultural transitions amongst the group were
determined by 2 features containing δ1 and δ2 as:

δ1 = αp,t − socp,t
cr1 (11)

δ2 = culp,t − socp,t
cr2 (12)

where δ1 stands for the culture variances amongst the leader (alpha) and chosen coyote (cr1) and δ2

implies the culture variance amongst group culture trending and the chosen coyote (cr2):

nsocp,t
c = socp,t

c + r1 × δ1 + r2 × δ2 (13)

where r1 and r2 represents the arbitrary numbers amongst zero and one. With assuming the upgrade
formulas, a novel cost was lastly attained by the subsequent formula:

nobjp,t
c = f

(
nsocp,t

c

)
(14)

socp,t+1
c =

{
nsocp,t

c , nobjp,t
c < objp,t

c

socp,t
c , O.W . (15)

An essential part of these approaches is their ability to escape at the local optimal point.

The feature selection using the FS approach can be denoted as a N sized vector where N indicates
the feature count [20]. Here, every location of the vectors can consider the values as 0 or 1 in which 0
signifies the features which are unselected and 1 denotes the chosen features. The transfer function
approach signifies the possibility of varying a position vector component from 0 to 1 and vice
versa more easily and effectively. A transfer function considerably influences the outcome of the FS
technique at the time of searching the optimal set of features related to avoiding local optimal problems
and maintaining the tradeoff among exploration as well as exploitation processes:

V
(
new−socp,t

c

) =
∣∣∣∣∣∣

new
S0C

p,l
c√

1 + (new−socp,t
c )

2

∣∣∣∣∣∣
where new−socp,t

c indicates the upgraded social condition vector by considering the constant values [21].
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3.3 Intrusion Detection Using DVAE Model

During the intrusion detection process, the DVAE model can be employed for the detection and
classification of intrusions in the CPS environment. The major difference of the generative approaches
is the preceding distribution supposition on the latent parameter z. Rather than the utilization of the
uniform Gaussian distribution, the Dirichlet distribution can be employed, representing a conjugate
prior distribution of the multi-nomial distribution [22].

z ∼ p (z) = Dirichlet (α) , x ∼ pθ (x|z) (17)

The probabilistic encoding unit with an approximation of the posterior distribution q∅(z|x) can
be defined as Dirichlet

(
α̂
)
. The approximation of the posterior variable α̂ can be defined using the

multilayer perceptron (MLP) from the observation x in data set D with positive outcome functions like
softplus function, therefore, the outcome could be positive value limited by the Dirichlet distribution.
Initially, it is considered that v ∼ MultiGamma (α, β 1K). Afterward, v is normalized to the summation∑

vi. The objective function aims in the optimization of the model variables θ and ∅. The loss function
used for the optimization next to the composition is presented in Eq. (18). The inverse Gamma
cumulative distribution function (CDF) approach allows the flow of backpropagation into the input
with stochastic gradient descent (SGD). Then, the Dirichlet distribution with inverse Gamma CDF
approximation and softmax Gaussian approach can be compared, assume αk = 1 − 1/K when μk = 0
and �k = 1; and β = 1.

L (x) = Eq∅(z|x)
[ log pθ (x|z)]

−
∑

k

(
log 	 (αk) − log 	

(
α̂k

) + (
α̂k − αk

)
ψ

(
α̂k

))
(18)

The approximation with inverse Gamma CDF . When if ∼ Gamma (α, β), and if F (x; α, β) is
a CDF of the arbitrary variable X [23], the inverse CDF undergo approximation by F−1 (u; α, β) ≈
β−1(uα	 (α))1/α. Therefore, the secondary parameter u ∼ Uniform (0, 1) for considering the arbitrari-
ness of X , and the Gamma undergoes sampling X as a deterministic value for α and β.

3.4 Parameter Optimization Using MRFO Algorithm

Finally, the parameter tuning of the DVAE model takes place using the MRFO algorithm such
that the recognition rate could be improvised. Zhao et al. [24] projected a state-of-the-art meta-
heuristic optimized manner called MRFO simulated in the foraging approach then manta ray from
catch its prey. In 3 foraging functions like somersault, chain, and cyclone foraging. The chain foraging
procedure is written as:

x(t+1)

i =
{

x(t)
i + r · (

x(t)
best − x(t)

i

) + α
(
x(t)

best − x(t)
i

)
i = 1

x(t)
i + r · (

x(t)
i−1 − x(t)

i

) + α
(
x(t)

best − x(t)
i

)
i = 2, . . . , N

(19)

where x(t)
i refers the ith individuals place at iterations t, r implies the arbitrary vector from range; x(t)

best

indicates the optimum solution at iterations t, N characterizes the amount of manta rays and α means
the weighting coefficient as:

α = 2 × r × √| log (r)| (20)

Mentioning to Eq. (7), the place of ith individual excepts a primary one is based on the place of
(i − 1)th individuals

(
x(t)

i−1

)
and optimum one

(
x(t)

best

)
. Once the place of the plankton patch was detected

by manta ray, it is join creating chain, and afterward swim near the prey from spiral shapes. Also,
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the spiral swimming, all individuals swim near the manta ray in front, it can be monitored in cyclone
foraging [25]. This effort was expressed as:{

X (t+1)

i = Xbest + r · (
X (t)

i−1 − X (t)
i

) + ebω · cos (2πω) · (
Xbest − X (t)

i

)
Y (t+1)

i = Ybest + r · (
Y (t)

i−1 − Y (t)
i

) + ebω · sin (2πω) · (
Ybest − Y (t)

i

) (21)

where ω stands for an arbitrary number from range, the cyclone foraging stage is demonstrated as:

x(t+1)

i =
{

xbest + r.
(
x(t)

best − x(t)
i

) + β
(
x(t)

best − x(t)
i

)
i = 1

xbest + r.
(
x(t)

i−1 − x(t)
i

) + β
(
x(t)

best − x(t)
i

)
i = 2, . . . , N

(22)

where β implies the weighting factors determined as:

β = 2e
r1( T−t+1

T )
sin (2πr1) (23)

where t refers to the present iterations, T stands for the maximal count of iterations and r1 indicates
the arbitrary number from range. The cyclone foraging is an optimum use to better solutions region
as every manta ray do exploring method to the food-dependent upon its reference places. Also, this
procedure improves the exploration procedure using the strength of individuals for searching novel
places that are far from the present optimum. This performance is carried out by allocating an arbitrary
place from the search space as:

χrand = Lb + r. (Ub − Lb) (24)

x(t+1)

i =
{

xrand + r.
(
xrand − x(t)

i

) + β
(
xrand − x(t)

i

)
i = 1

xrand + r.
(
x(t)

i−1 − x(t)
i

) + β
(
xrand − x(t)

i

)
i = 2, . . . , N

(25)

where Lb and Ub defines the lower as well as upper limits of problem variable, χrand refers to the
arbitrary place allocated to the search spaces. The last stage monitored in MRFO was somersault
foraging whereas the food was detected as hinge. During this phase, all manta rays prefer swim back
and forth about the hinge as well as tumble to novel place. It could be mathematically written as:

x(t+1)

i = x(t)
i + S.

(
r2. xbest − r3. x(t)

i

)
i = 1, 2, . . . N (26)

where S implies the factor of somersault utilized from determining the manta ray somersault range, r2

and r3 represents the arbitrary numbers from the range. As regards Eq. (20), all individuals are moved
to someplace from the search space amongst their present place and symmetrical one around the
hinge. In this stage, the distances amongst the manta rays places an optimum one decreases that means
converging to optimum solutions. Therefore, the somersault foraging range was adaptably decreased
with iteration.

The MRFO approach develops a fitness function (FF) for attaining enhanced classification
efficiency. It defines a positive integer for representing the optimum efficiency of the candidate
solution. During this analysis, the minimized classifier error rate was assumed as FF, as provided
in Eq. (27). The optimum solutions have a lesser error rate and the worst solution gains a higher error
rate.
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fitness (xi) = Classifier Error Rate (xi) = numerb of misclassified instances
Total number of instances

∗ 100 (27)

4 Results and Discussion

The experimental validation of the XAIIDS-FSDVAE technique takes place using the CICIDS-
2017 [26] and NSL-KDD-2015 [27] datasets. The first NSL-KDD 2015 data set has 125973 instances
with two classes, 41 features, and five kinds of attacks. Secondly, the CICIDS-2017 data set includes
2830743 samples with two classes and 80 features. The best cost (BC) analysis of the COA-FS model
with other FS models takes place in Tab. 1 and Fig. 3. The results show that the COA-FS technique has
chosen a set of 16 and 42 features on the test NSL-KDD-2015 and CICIDS-2017 datasets. On the test
NSL-KDD-2015 dataset, the COA-FS technique has depicted minimum BC of 0.05321 while the grey
wolf optimization (GWO)-FS, ant colony optimization (ACO)-FS, and particle swarm optimization
(PSO)-FS models have attained maximum BC of 0.06495, 0.10646, and 0.12680 respectively. Likewise,
on the test CICIDS-2017 datasets, the COA-FS procedure has offered lower BC of 0.05341 while the
GWO-FS, ACO-FS, and PSO-FS systems have resulted in higher BC of 0.09486, 0.12543, and 0.13557
respectively.

Table 1: Results of existing methods with proposed COA-FS method on applied dataset

Methods Best cost No. of selected features

NSL-KDD-2015 dataset

COA-FS 0.05321 16
GWO-FS 0.06495 18
ACO-FS 0.10646 23
PSO-FS 0.12680 26

CICIDS-2017 dataset

COA-FS 0.05341 42
GWO-FS 0.09486 59
ACO-FS 0.12543 62
PSO-FS 0.13557 66

Tab. 2 offers a detailed intrusion detection result analysis of the XAIIDS-FSDVAE technique on
the test NSL-KDD-2015 dataset. Fig. 4 illustrates the brief result analysis of the XAIIDS-FSDVAE
technique under BS of 64 on the test NSL-KDD-2015 datasets. The figure displayed that the XAIIDS-
FSDVAE technique has gained improved performance under all epochs. For instance, with 100 epochs,
the XAIIDS-FSDVAE technique has provided en, recl, Fmeasure, and accy of 99.21%, 99.38%, 99.32%,
99.54%, and 99.42% respectively. Similarly, with 500 epochs, the XAIIDS-FSDVAE technique has
resulted to en, recl, Fmeasure, and accy of 99.34%, 99.18%, 99.52%, 99.34%, and 99.28% respectively.
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Figure 3: BC analysis of COA-FS technique

Table 2: Intrusion detection results of XAIIDS-FSDVAE technique on NSL-KDD-2015 dataset

Batch size = 32

No. of epochs Precision Recall Accuracy F-score MCC

100 99.49 99.20 99.12 99.17 99.54
200 99.14 99.54 99.22 99.29 99.05
300 99.20 99.07 99.27 99.37 99.48
400 99.03 99.14 99.45 99.52 99.32
500 99.15 99.22 99.30 99.02 99.45

Average 99.20 99.23 99.27 99.27 99.37

Batch size = 64

100 99.21 99.38 99.32 99.54 99.42
200 99.15 99.35 99.04 99.04 99.50
300 99.05 99.08 99.09 99.23 99.03
400 99.18 99.11 99.41 99.02 99.47
500 99.34 99.18 99.52 99.34 99.28

Average 99.19 99.22 99.28 99.23 99.34

Fig. 5 demonstrates the overall intrusion detection result analysis of the XAIIDS-FSDVAE
technique under BS of 32 on the test NSL-KDD-2015 datasets. The figure shows that the XAIIDS-
FSDVAE technique has obtained effective outcomes under all epochs. For instance, with 100 epochs,
the XAIIDS-FSDVAE technique has provided en, recl, Fmeasure, and accy of 99.49%, 99.20%, 99.12%,
99.17%, and 99.54% respectively. Likewise, with 500 epochs, the XAIIDS-FSDVAE technique has
attained en, recl, Fmeasure, and accy of 99.15%, 99.22%, 99.30%, 99.02%, and 99.45% respectively.
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Figure 4: Result analysis of XAIIDS-FSDVAE technique under BS of 32 on NSL-KDD-2015 dataset

Figure 5: Result analysis of XAIIDS-FSDVAE technique under BS of 64 on NSL-KDD-2015 dataset

Fig. 6 depicts the receiver operating characteristic (ROC) analysis of the XAIIDS-FSDVAE
approach on NSL-KDD-2015 dataset. The figure clear that the XAIIDS-FSDVAE process has
reached increased outcome with the minimal ROC of 99.8110.

Tab. 3 illustrates a comprehensive intrusion detection result analysis of the XAIIDS-FSDVAE
technique on the test CICIDS-2017 dataset.

Fig. 7 exhibits the overall intrusion detection result analysis of the XAIIDS-FSDVAE technique
under BS of 32 on the test CICIDS-2017 dataset. The figure revealed that the XAIIDS-FSDVAE
technique has obtained operational outcomes under all epochs. For instance, with 100 epochs, the
XAIIDS-FSDVAE technique has provided en, recl, Fmeasure, and accy of 99.27%, 99.36%, 99.35%,
98.90%, and 99.11% respectively. Simultaneously, with 500 epochs, the XAIIDS-FSDVAE technique
has attained en, recl, Fmeasure, and accy of 99.16%, 99.20%, 99.19%, 99.31%, and 99.21% respectively.
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Figure 6: ROC analysis of XAIIDS-FSDVAE technique on NSL-KDD-2015 dataset

Table 3: Intrusion detection results of XAIIDS-FSDVAE technique on CICIDS-2017 dataset

Batch size = 32
No. of epochs Precision Recall Accuracy F-score MCC

100 99.27 99.36 99.35 98.90 99.11
200 99.07 98.92 98.90 99.04 99.10
300 99.20 99.31 99.28 99.28 99.26
400 99.19 99.11 98.95 99.36 99.18
500 99.16 99.20 99.19 99.31 99.21

Average 99.18 99.18 99.13 99.18 99.17

Batch size = 64

100 99.18 99.01 98.91 99.10 99.02
200 98.91 99.08 99.07 98.94 99.09
300 99.22 99.32 98.91 99.20 99.23
400 99.08 99.19 99.35 99.04 99.31
500 99.35 99.22 99.23 99.10 99.15

Average 99.15 99.16 99.09 99.08 99.16
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Figure 7: Result analysis of XAIIDS-FSDVAE technique under BS of 32 on CICIDS-2017 dataset

Fig. 8 validates the brief result analysis of the XAIIDS-FSDVAE technique under BS of 64 on
the test CICIDS-2017 dataset. The figure exhibits that the XAIIDS-FSDVAE algorithm has extended
better performance under all epochs. For instance, with 100 epochs, the XAIIDS-FSDVAE technique
has provided en, recl, Fmeasure, and accy of 99.21%, 99.38%, 99.32%, 99.54%, and 99.42% respectively. In
the same way, with 500 epochs, the XAIIDS-FSDVAE technique has led to en, recl, Fmeasure, and accy of
99.35%, 99.22%, 99.23%, 99.10%, and 99.15% respectively.

Figure 8: Result analysis of XAIIDS-FSDVAE technique under BS of 64 on CICIDS-2017 dataset

Fig. 9 demonstrates the ROC analysis of the XAIIDS-FSDVAE technique on CICIDS-2017
dataset. The figure exposed that the XAIIDS-FSDVAE technique has reached enhanced outcome
with the minimum ROC of 99.6543.
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Figure 9: ROC analysis of XAIIDS-FSDVAE technique on CICIDS-2017 dataset

Tab. 4 and Fig. 10 provide a brief result analysis of the XAIIDS-FSDVAE technique with recent
methods. The figure reported that the decision tree (DT), random forest (RF), and Adversarially
Learned Anomaly Detection (ALAD) techniques have showcased poor performance with least values
of en, recl, and Fmeasure. Followed by, the FID-GAN and Multivariate Anomaly Detection with GAN
(MAD-GAN) techniques have resulted in slightly improved values of en, recl, and Fmeasure. Along with
that, the DVAE and PT-DSAE techniques have reached moderately closer values of en, recl, and Fmeasure.
But the XAIIDS-FSDVAE technique has outperformed the other methods with the en, recl, and Fmeasure

of 99.20%, 99.23%, and 99.27% respectively.

Table 4: Result analysis of existing with proposed model in terms of different measures

Methods Precision Recall F-measure Accuracy

XAIIDS-FSDVAE 99.20 99.23 99.27 99.27
DVAE 98.75 99.01 98.61 99.02
PT-DSAE 97.91 98.65 98.60 98.49
Decision tree 96.59 92.84 95.42 93.65
Random forest 97.56 93.84 95.92 95.98
FID-GAN 97.72 97.80 98.44 96.07
MAD-GAN 96.98 98.11 96.25 96.80
ALAD 97.12 98.84 95.89 94.10
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Figure 10: Comparative analysis of XAIIDS-FSDVAE technique

A comparative accy analysis of the XAIIDS-FSDVAE system with existing methodologies are
shown in Fig. 11. The figure reported that the DT and ALAD techniques have obtained lower
accy values of 93.65% and 94.10% respectively. In line with, the MAD-GAN, FID-GAN, and RF
techniques have attained moderately closer accy values of 96.80%, 96.07%, and 95.98% respectively.
Moreover, the DVAE and PT-DSAE technique has resulted in reasonable accy of 99.02% and 98.49%
respectively. However, the XAIIDS-FSDVAE methodology has outperformed the existing systems
with the highest accy of 99.27%.

Figure 11: Accuracy analysis of XAIIDS-FSDVAE technique

5 Conclusion

In this study, a novel XAIIDS-FSDVAE approach has been presented for the detection and
classification of intrusion in the CPS environments. The XAIIDS-FSDVAE technique encompasses
different subprocesses namely pre-processing, COA based election of features, DVAE based classifiers,
and MRFO based parameter tuning. The COA application reduces the computational complexity and
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MRFO algorithm helps to accomplish maximum intrusion detection performance. For demonstrating
the enhanced intrusion detection efficiency of the XAIIDS-FSDVAE technique, a wide range of
simulations take place using the benchmark datasets. The experimental results reported the better
performance of the XAIIDS-FSDVAE technique over the recent methods in terms of several evalua-
tion parameters. As a part of future extension, outlier detection and cluster-based approaches can be
designed to boost the detection rate of the XAIIDS-FSDVAE technique.
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