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Abstract: Industrial Control System (ICS), which is based on Industrial IoT
(IIoT), has an intelligent mobile environment that supports various mobility,
but there is a limit to relying only on the physical security of the ICS environ-
ment. Due to various threat factors that can disrupt the workflow of the IIoT,
machine learning-based anomaly detection technologies are being presented;
it is also essential to study for increasing detection performance to minimize
model errors for promoting stable ICS operation. In this paper, we established
the requirements for improving the anomaly detection performance in the
IIoT-based ICS environment by analyzing the related cases. After that, we
presented an improving method of the performance of a machine learning
model specialized for IIoT-based ICS, which increases the detection rate by
applying correlation coefficients and clustering; it provides a mechanism to
predict thresholds on a per-sequence. Likewise, we adopted the HAI dataset
environment that actively reflected the characteristics of IIoT-based ICS
and demonstrated that performance could be improved through comparative
experiments with the traditional method and our proposed method. The
presented method can further improve the performance of commonly applied
error-based detection techniques and includes a primary method that can be
enhanced over existing detection techniques by analyzing correlation coeffi-
cients between features to consider feedback between ICS components. Those
can contribute to improving the performance of several detection models
applied in ICS and other areas.

Keywords: Industrial IoT; industrial control system; anomaly detection; clus-
tering algorithm; correlation coefficient

1 Introduction

Modern IIoT Environment is based on ICS; as IT technology convergence, services become more
affluent and provide more advanced innovative mobility services [1]. On the other hand, various
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IT technologies based on IIoT stand out contrasting characteristics by exposing different attack
points that weaken the physical security of the existing ICS. For example, malware such as Stuxnet
and BlackEnergy conducted advanced persistent attacks (APT), causing accidents that exceeded the
security level of the isolated network environment of ICS, which was previously recognized as safe
[2,3], and such Accidents are significant events that have changed public perception. In particular,
the primary contact point of the attack exploited by each malware was industrial software grafted
with IT technology, which is a new attack point that cannot be seen in existing ICS [3]. Due to these
environmental changes, there is a positive meaning that a lot of research money and time is invested
in researching intelligent security technologies such as key management and threat identification as
well as platform security for IIoT [1,4,5], for ICS based on such mobility environment, relevant
security research is now unavoidable for proper computing. Among such studies, technologies for
detecting anomalies in ICS are advanced security technologies that IT technologies have combined
with the development of computing technologies, but the ICS environment faces another problem
that requires continuous availability [6]. Each device forms one process in the ICS environment by
creating a feedback relationship by various commands that can maintain the process. Still, if the
wrong command is injected, both availability and function can be seriously violated [7]. Essentially, to
minimize infringement, it is essential to study technical performance to prevent accidents by reducing
false positives and false positives by using technical methods that can increase the performance of
anomaly detection models. Therefore, in this paper, to consider the operational and environmental
characteristics of IIoT-based ICS, the HAI dataset that captures time-series data and driving data
through sophisticated and complex actions between 4 testbeds was utilized [8]. To improve the
performance of the detection model specialized for IIoT-based ICS, we propose a method to improve
the detection rate by applying the correlation coefficient between clustering and feature to the error
value predicted by the model.

The presented method is expected to contribute as follows:

• To consider the feedback behavior between ICS components, it includes a primary method
that can be improved over existing detection techniques by analyzing correlation coefficients
between features.

• By learning the Long Short-Term Memory (LSTM) neural network by reflecting the charac-
teristics of the time-series data, applying the clustering technique to the value predicted by the
model, which can detect the error by amplifying the error value and improve the performance.

• By combining methods, to generate expected thresholds for each sequence, the performance of
commonly applied error-based detection techniques can be further enhanced.

2 Related Works and Establishment Requirements for Performance Improvement
2.1 Related Cases Analysis

As parallel computing power has rapidly increased, anomaly detection technology that requires
many resources has begun to attract attention. The ICT field is used to identify cases different
from typical situations, such as malware behavior and fault behavior [9,10]. There are supervised,
unsupervised, and semi-supervised mechanisms in machine learning methods that are widely known
so far. In particular, the supervised learning method provides a separate label, so it is easy to build
the requirements for the model to discriminate effectively, and it has been adopted in many studies
[10–12]. However, it maintains a long cycle and operates for an extended period without interruption in
actual ICS; the training data ratio is unbalanced due to the low frequency of abnormal data occurring
during operation [13,14]. There are clear limitations that increase the risk of overfitting and reduce the
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detection performance of the model [14]. Ultimately, to improve the model’s performance in the ICS
environment, it is necessary to set the prerequisites for performing unsupervised or semi-supervised
learning. In addition, anomaly detection can be approached in various ways depending on the data
type. The anomaly detection data set applied in the existing anomaly detection research case based
on the ICT environment has a sequential form and the test case does not follow the typical behavior
pattern and main goal is to find data that do not exist [14]. However, in the ICS environment, the
physical process has data in which the physical process is complicatedly intertwined according to the
driving cycle or workflow, and the data has a contextual form in which the data changes according
to the relationship between time and the workflow performed in the preceding time [15]. In essence,
the sequential shape-based anomaly detection technique applied in the existing ICT environment has
limitations in detecting contextual anomaly appearing in the ICS environment, and to compensate for
the limitations, temporal characteristics such as workflows can be effectively reflected. It is necessary
to select a model with an existing model to improve detection performance. In this regard, RNNs
are available to model types, but RNNs are effective on short sequences and have limitations in
that gradients are lost when learning long sequences. Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU)s have been proposed. As a related example, Trinh et al. [16] introduced the
concept of reconstruction error in LSTM. They presented a method to identify abnormal events by
learning in a semi-supervised method based on mobile traffic generated in a next-generation cellular
(5G) network environment. LSTM was utilized to effectively identify error values when one or more
point anomalies were included. This allowed us to successfully detect irregular patterns that may
appear in contextual anomalies to mobile traffic.

Moreover, data observed in the ICS environment consists of time-series data according to the
workflow, unlike ICT. This is because, in addition to the contextual types represented by time-series
data, there are also dissimilarity patterns such as data points or sequence points deviating from the
norm and collective anomaly that gradually differs from normal data over time [16,17], so dissimilarity
patterns exist. Technologies with the types that can detect them must go hand in hand. A typical
approach is to cluster predictive data to detect dissimilarity patterns. As a related example, Maamar
et al. [17] presented various power patterns that can occur in the Advanced Metering Infrastructure
(AMI) system. Although the temporal characteristics are not reflected, it is challenging to provide
labeling information because the patterns are flexible according to the usage trend of users. However,
using only normal behavior data, we clustered the power consumption patterns based on the K-means
algorithm and were able to successfully identify the types of abnormal power patterns that deviate from
the standard points [18,19]. A clustering-based anomaly detection method like this example means that
it can detect dissimilarity patterns in a limited environment with very little labeling data, such as an
ICS environment, leading to improved performance.

When considering the operational aspects of ICS, it is complicated to generate an accurate model
because it is not easy to guarantee availability if a process is stopped due to a false positive [1]. To
solve this problem, it is inevitable to increase the detection performance while minimizing the amount
of computation for predicting the model’s results. However, solving the availability problem of ICS
with numerical optimization, the algorithm on which the model is based, is a big challenge. Therefore,
the feature selection technique can be considered a method to minimize the performance calculation.
Feature Selection is a method that individually selects features with high learning efficiency without
adjusting variables such as hyper-parameters and parameters. For example, Cai et al. [19] suggested
feature selection methods based on information measurement considering relevance and redundancy
rather than learning using all features when using the data set trained by the model for detection.
Chandrashekar et al. [20] experimented with anomaly detection using many features through 3
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machine learning algorithms; they derived that it is not always excellent in model performance and not
always good when correlation analysis of features through feature selection and model performance
improvement. These cases prove that the improved performance was measured more than that of the
experimental group that did not.

2.2 Establishment of Requirements for Performance Improvement of ICS Anomaly Detection
Through Session 2.1, we investigated the learning methods, data types and characteristics, and

limitations of detecting dissimilarity patterns from an ICS perspective and explained the need to
supplement the limitations from existing research cases. In addition, the requirements for improving
the performance of the ICS anomaly detection model were established based on previous research
cases related to the requirements. We conducted a performance improvement study that can satisfy the
requirements shown in Tab. 1, and the detailed mechanism of the proposed performance improvement
technique was described in Session 4. The additional description of the requirements for performance
improvement we have established is as follows: First, in IIoT-based ICS environments, it is common to
have little abnormal data; supervised learning is challenging because there is not enough data to label.
To improve functional performance, it must be performed based on unsupervised learning. Second,
because workflow feedback has a constant sequence cycle, detecting only a single point is not effective
in detecting abnormal behaviors that may appear at a future point, so it should reflect Temporal
characteristics. Third, even if the scalar data observed by the ICS component is in the normal range, it
may be abnormal behavior depending on the periodic features. The model must detect similar patterns
that may appear at a specific time. In addition, efforts should be taken to minimize computational
volume, such as algorithm improvement, to minimize availability infringement. These requirements
are like those used in the existing IT field but differ in additional considerations regarding workflow-
based systems and availability in ICS. Time-series characteristics should be considered as in previous
research cases.

Table 1: Established requirements for improving model performance

Requirement Description

Unsupervised learning In an environment with a few abnormal data, supervised learning is
impossible because there is not enough data to label, so it should
be conducted based on unsupervised learning

Temporal characteristic
detection

When based on data that reflects temporal characteristics, a model
in which past data can effectively reflect the influence
characteristics of current data should be utilized

Detect dissimilarity
patterns

To identify dissimilarity features in time series data, techniques for
identifying patterns in data, such as clustering, should be used
parallel

Gain of computation To secure availability, it should be possible to increase the detection
performance while minimizing the amount of computation

3 Dataset Selection Considering the ICS Environment

We selected the HAI dataset reflecting the environmental and temporal characteristics of ICS
[8,21]. The HAI dataset is a dataset captured in a complex process system environment that combines
three testbed systems: a turbine testbed from GE, a boiler testbed from Emerson, a modular
production system (MPS) from FESTO, and a water treatment testbed; the dataset provided the
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features of characteristics of testbed operation that configured a boiler process (P1), turbine process
(P2), water treatment process (P3), and HIL simulation (P4) [8]. The HAI dataset was first released
in February 2020; it has been officially distributed up to version 21.03 through ongoing updates and
includes ICS operation data under normal and abnormal conditions. In South Korea, HAICon 2021
event was held to compete for ICS anomaly detection performance [8]. In this event, individual and
public scores will be ranked using an evaluation formula called Time-Series Precision and Recall
(TaPR) [22]. This evaluation formula is a technology that can evaluate how well the anomalies are
judged in sequence data and can be effectively evaluated in sequence data environments such as
HAI datasets. This competition was 0.68455 based on the individual’s highest score, which required a
significant level of detection of anomalies that could occur in ICS. The datasets used in the event are
more anomalous than the HAI 21.03 version, and event participants also scored less F1-score than
0.8, and the main function of the baseline code provided in the event is to detect anomalies by setting
thresholds, a traditional method used in the ICS field. This dataset has not been officially distributed,
and we named it “HAI 21.04”, which was revealed to a limited extent at the competition. This
dataset consists of 86 functions for work data monitored by each device constituting the processing
system. The other consists of timestamp values observed in the SCADA process system, including
scalar values. Especially, timestamp data has elements that indicate that it is time-series data and can
ultimately be utilized to reflect temporal characteristics, contains training data, and validation data.
Training data was constantly captured in 1-second increments from 2021-07-11 10:00:00 to 2021-08-09
09:00:00, with a total of 1,004,402 pieces. The training data does not provide a separate label to indicate
an attack point. This reflects the operational characteristics of the control system, the frequency of
abnormal symptoms occurring in the existing control system is very low [11]. This reflects the inherent
limitations in the control system environment, so the attack point label is not provided in the training
data but the validation data used for hyper-parameter tuning of the model. The validation data consists
of 86,400 pieces and has the same features as the training data. This data can be used to validate and
tune the model’s performance. We created a time window to perform data training on the model and
performed the process of creating train and label data, respectively. For time-series data such as HAI
data to create a time window, each sequence is divided by second intervals, the second is train data to
predict the next time, and the second is the data that appears after a certain second and label data is
given as shown in Fig. 1.

Figure 1: Sequence data generation process using N-gram technique

For example, the training data for 1-89, 2-90, 3-91, . . . seconds (X) label the data for the following
points 90 seconds, 91 seconds, 92 seconds, . . . , respectively (y). This process can give label data to data
that have not previously been given a different correct answer and can implement semi-supervised
learning that can predict data for the next time window. This technique is often applied when
processing natural language and is called the N-gram technique [23]. Here, when natural language



5382 CMC, 2022, vol.72, no.3

data is decomposed into word units, the shape of the sequence equals the time series data. It is a
representative technology that can be converted into learnable data and is necessary to detect content-
based attacks such as malformed data injection attacks, but the identification of sequence-based
attacks has wide applications when monitoring packet sequences [23]. An example of using the train
and label data generated based on the above method is covered in Session 5.

4 The Proposed Methodology to Improve the Performance of the Detection Model

This session covered the basic concepts of correlation coefficient and clustering techniques used
to improve performance in an IIoT-based ICS environment. In addition, the feature selection method
based on the correlation coefficient was explained, and the optimal feature set was presented by
applying it to the HAI dataset described in Session 3. It also describes the clustering technique due to
the predicted values of the trained model.

4.1 The Correlation Coefficient-Based Feature Selection Technique for Optimal Learning
The correlation coefficient is a statistical value that can quantitatively express how well a linear

relationship between discrete values of data is formed. The most generalized way to calculate the
correlation coefficient is the Pearson Correlation Coefficient (PCC) [20]. The Pearson correlation
coefficient is calculated as a value from +1 to −1 according to the Cauchy-Schwarz inequality when
there are two variables, X and Y. In general, closer to +1 means a perfect positive linear correlation,
meaning that each variable has the same linear direction. Conversely, closer to −1 means a perfect
negative linear correlation, meaning that the two variables have opposite linear directions. On the
other hand, if it has 0, there is no correlation, meaning no relationship between the two variables.

If PCC is calculated, the linear relationship between features can be quantitatively estimated
according to the correlation coefficient, and the PCC coefficient is determined by the following Eq. (1):

rxy =

n∑
i

(
Xi − X

) (
Yi − Y

)
√

n∑
i

(
Xi − X

)2

√
n∑
i

(
Yi − Y

)2

(1)

Previously, Shin et al. [21] suggested improving the model’s performance compared to the previous
one by removing unnecessary features that do not have a linear relationship in the learning process
based on PCC. Accordingly, we measured how the 86 features excluding timestamps have a linear
relationship from the training data of the HAI 21.04 dataset using PCC. The measurement result is as
shown in Fig. 2. The lighter the color, the stronger the positive linear relationship of features, and the
darker the color, the stronger the negative linear relationship between the feature and feature.

Among them, we focused on features with relatively strong correlations. From a statistical point
of view, the relative criterion of having a relatively strong correlation in PCC theory is not individually
defined. However, according to Bruce (2009), for a correlation coefficient with PCC between 0.7–1.0
or –0.7–1.0, a general guideline for interpreting the existence of a relatively strong linear or linear
relationship between two variables is presented [24]. Therefore, we measured the feature relationship
that exceeds the absolute value of 0.7, assuming that the PCC coefficient between feature fn and other
feature fm is rmn when there is a complete feature set f = [f1, f2, . . . , fn]. As a result, 68 features had at
least one pair of each pair with a PCC coefficient of over 0.7, such as Tab. 2, and the model is trained
to have a high correlation due to the feature set. The results of evaluating the performance level of the
model based on the high-related features are described in Session 5.
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Figure 2: PCC result of HAI 21.04 dataset

Table 2: Feature result divided by correlation coefficient range in HAI 21.04 dataset

Category Features

High-related features
(|rmn| ≥ 0.7)

‘C01’, ‘C03’, ‘C04’, ‘C05’, ‘C06’, ‘C07’, ‘C08’, ‘C11’, ‘C12’, ‘C13’, ‘C14’,
‘C15’, ‘C16’, ‘C17’, ‘C20’, ‘C21’, ‘C23’, ‘C24’, ‘C25’, ‘C27’, ‘C28’, ‘C30’,
‘C31’, ‘C32’, ‘C33’, ‘C34’, ‘C35’, ‘C37’, ‘C40’, ‘C41’, ‘C42’, ‘C43’, ‘C44’,
‘C45’, ‘C46’, ‘C47’, ‘C48’, ‘C50’, ‘C51’, ‘C53’, ‘C54’, ‘C56’, ‘C57’, ‘C58’,
‘C59’, ‘C60’, ‘C61’, ‘C62’, ‘C64’, ‘C65’, ‘C66’, ‘C67’, ‘C68’, ‘C70’, ‘C71’,
‘C72’, ‘C73’, ‘C74’, ‘C75’, ‘C76’, ‘C77’, ‘C78’, ‘C79’, ‘C80’, ‘C81’, ‘C83’,
‘C84’, ‘C86’

Low-related features
(|rmn| < 0.7)

‘C02’, ‘C09’, ‘C10’, ‘C18’, ‘C19’, ‘C22’, ‘C26’, ‘C29’, ‘C36’, ‘C38’, ‘C39’,
‘C49’, ‘C52’, ‘C55’, ‘C63’, ‘C69’, ‘C82’, ‘C85’

4.2 Clustering Algorithm for Relative Threshold Implementation and Error Value Amplification
Since the anomaly detection model used in the fish system environment is based on unsupervised

learning, only data in a normal state can be learned. The most used method for these models to detect
anomalies is to set an optimal threshold by calculating the error between the predicted value of the
training data to be predicted and the validation data value based on the previously learned normal
data. There is a way. As shown in Fig. 3, statistical aspects of operation with operation cycle can be
observed from each feature data kept in the control system environment, and the process characteristics
of the control system are actively reflected. Suppose this is predicted from the model point of view
when arbitrary driving data is input. In that case, the prediction value will be predicted considering
the driving cycle of the control system learned by the model in advance. Then, when there is a predicted
value that the Prediction value deviates from a certain standard, it is out of the normal driving cycle.
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It can be determined that such data is an anomaly. In this case, to set a predetermined criterion,
an optimal threshold with the highest performance may be searched for and used. However, the
conventionally applied threshold setting method uses a method in which a single threshold is applied
and used for all periods. Since the functional data changes according to the sequence and cycle in
the control system environment, when a single threshold is used, there is a limit to encompassing all
the ranges for discriminating abnormalities concerning the changing operational data. Therefore, we
presented the concept of a “relative threshold” in which the criterion for judging anomalies considering
the driving cycle for the value predicted by the model can be changed according to the process. Also,
by amplifying the error for the result predicted by the detection model, the error range between the
abnormal data and the normal data is widened, and a method to improve the prediction performance
is proposed. A clustering algorithm was used to suggest two methods.

Figure 3: Visualization result of observation data of HAI 21.04 dataset

Clustering refers to the process of dividing objects into groups given arbitrary data, a data group
can be defined considering the characteristics of the data, and the data is clustered based on the central
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point of each data. Clustering can be a group of data with similar characteristics, called a cluster. If
the characteristics of some data are different from the cluster, it will belong to another cluster, and
the most representative clustering method is the point assignment clustering process, which selects a
central point for each cluster and selects the points closest to the center. The procedure of moving
the average point of the selected central point and moving the central point to the average point is
repeated.

while selecting a point close to the central moving point again. That is, if a point that minimizes
the maximum value of distances from each point in the cluster or a point that reduces the average of
distances from each point is selected, the group belonging to each data is updated for data having a
similar value, the same cluster index can be assigned. The K-means algorithm, which can effectively
perform clustering, aims to minimize the cost function when the sum of the squares of the distance
between the center of each group and the data in the group is the cost function [17,18]. If not, it equals
the optimal number of clustering, the point at which the slope of the tangent line becomes decrease is
the most optimal number of clustering and is commonly referred to as the Elbow technique.

Next, we focused on the purpose for which the validation data set is utilized; the validation
dataset is required for administrators to improve the performance of their models. At this time, the
verification dataset refers to a data sample used when fine-tuning the hyper-parameter of the model
and provides an evaluation index. If the model detects anomalies based on the error value, the error
value is calculated using the verification data, and the process of finding the optimal threshold for
detecting the anomaly is performed. The error between the value predicted by the model and the
label data is calculated through the validation data, the process of turning to the best threshold can
be performed using the data sample that provides the evaluation index. Let E the set of error values
based on the predicted values equal to Eq. (2), where i is the total index of the predicted values.

E =
[(

|Y0 − Ŷ0|
)

,
(
|Y1 − Ŷ1|

)
, . . . ,

(
|Yi − Ŷi|

)
,
]

(2)

After that, for each element of the set of error values, one cluster label X from 0 to n can be
assigned to the error values based on the clustering algorithm such as K-means. To calculate each
weight of each cluster label k0, k1, . . . , km, let’s assume that the number of elements in a data set L, the
set Ekm of error values belonging to km, the specific weight wkm of each cluster label is equal to Eq. (3):

wkm = L
(
Ekm

)
L (E)

(3)

For the previously calculated error value Ekm , it goes through the process of tuning according to
the specific weight rate occupied by cluster labels. Here, the particular weight value amplifies the error
value and the specific weight value to observe each sequence appearing in the ICS when there is a set
of amplified error values Ëkm = Ekm + wkmEkm . This is the sum of the existing error values multiplied
by the weight value, and the existing error value changes relative to the weight value for each clustered
index.

A method of calculating a threshold set for each clustered index is proposed to generate a relative
threshold. Previously, an abnormality was determined by setting a single threshold; we describe the
process of creating a relative threshold in which the threshold changes by adding the relative ratio
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for each clustered index to the single threshold. Let Rkm be the ratio of how much difference occurs
concerning the overall mean value of errors, Rkm is equals to Eq. (4):

Rkm =
(

1 − |
(

M̂
Mkm

)
|
)

(4)

If the average value of a clustered index has a value smaller than M̂, it means that the distribution
of the clustered index does not reach the overall average level on average, it is calculated as a low ratio
to the average. If the value is larger than the overall average value, it means that the distribution of
the clustered index exceeds the overall average level on average, and in this case, it is calculated as a
high ratio value to the average. This process is like amplifying the error value, and it can be said that
it is a variable that can change the existing single threshold. Assume that Ṫk is the relative threshold
for the k-th cluster index; it equals Eq. (5). Here, α(alpha) can tune the detection performance by
amplifying or canceling the relative threshold. A constant value can adjust the amplification value for
each clustered index when the threshold is set. The detection performance results according to the α

value were covered in Session 5.

Ṫk = (1.0 + α)
(

RkmMkm + M̂
)

(5)

On the other hand, outliers that deviate from the normal value could be included when calculating
the error value, significantly affecting the cluster label’s average value. There are dissimilarity patterns,
such as sequence points that differ from the normal, which prevent the model from learning the data
effectively. To minimize the disturbance factors, a rolling technique based on a moving average such
as a Simple Moving Average (SMA) can be additionally applied; these techniques help close the data
gap [11].

To summarize, the improvement method presented in this session is characteristic that a threshold
can be assigned to each section based on the average value. Compared to using the existing single
threshold, the model can flexibly place a reference point for detecting anomalies by giving multiple
thresholds instead of using a single threshold for each section. In addition, a method for amplifying the
error value by assigning weights to each cluster label is also proposed to improve the environment in
which a relative threshold can be assigned. Based on the proposed performance improvement method,
we tested whether the performance of the detection model was improved, and the results are described
in Session 6.

4.3 Establishment of Performance Improvement Method by Combining Correlation Coefficient and
Clustering Method
we described how the performance improvement techniques presented in Sessions 4.1 and 4.2

could be combined to improve the performance of models in detecting anomalies, and the summarized
process is shown in Fig. 4.

We hypothesized a requirement to improve performance through Session 2, and we first consid-
ered the progression through which the model learns data and improves its performance. In general,
there is a preprocessing process that creates data for learning the model, a training process that trains
the data into the model, and a validation process that adjusts the hyper-parameter values of the model.
In preprocessing, the data required for learning is selected and converted into a scalar value to make
a learnable form. At this time, like the methodology proposed in Session 4.1, we measure the feature
correlation coefficient and prepare a way to improve performance in the preprocessing process by
using the method to generate a set between highly correlated features. Next, hyper-parameter tuning
is performed in the validation process based on the model predicted results, this induces the model
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to operate correctly by adjusting the scope for detecting anomaly data. Here, we used the K-means
algorithm that can cluster the driving characteristics appearing from the validation data together
with a method to actively adjust the hyper-parameter called threshold using the method proposed
in Session 4.2 and the error predicted by the model. By relatively amplifying the values by clustering
index, the amplification value is reflected in the error value to help improve the detection rate. The
performance improvement experiments and results analysis are discussed in Session 5.

Figure 4: Methods for improving detection rates based on correlation coefficients and clustering

5 Performance Improvement Experiment and Result Analysis

To test the performance of the model, we benchmarked it in the following experimental envi-
ronment: CPU - Intel Xeon Silver 4216 2.10 GHz two slots, RAM - 64 GB, GPU - Tesla V100S
32 GB. Also, according to the data generation method mentioned in Session 3 for the HAI 21.04
dataset, train data and label data were generated based on the time window. In addition, based on the
train data, an Exponential Weighted Moving Average (EWMA) for noise attenuation was substituted,
and data normalization was performed. We constructed three experimental conditions to effectively
compare the performance improvement, which is as follows: The common experimental condition was
to calculate the error value between the model predicted value and the validation value and applied a
simple moving average (SMA) through rolling. In addition, we utilized the N-gram technique that
generates data based on the time window at 1-second intervals. Since it is designed with data for
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predicting the next point, we built an LSTM neural network with three bidirectional cells to reflect
the temporal characteristics effectively. The detailed structure of the network architecture is shown in
Fig. 5

Figure 5: Architectural details of the model adopted in the experiment

We adopted the TaPR metric to evaluate the performance of the LSTM model more effectively
[23]. TaPR can measure time series recognition precision and recall, suitable for evaluating anomaly
detection methods in time series data. In time-series data, anomalies correspond to a series of instances,
so traditional metrics overlook these characteristics and give high marks to methods that only detect
long anomalies. Traditional evaluation indicators evaluate detection rates based on single data, not one
instance. However, there is a limit to reflecting all these characteristics because the ICS environment
has a constant sequence cycle, and its condition changes continuously. To overcome this problem, we
consider the variability of anomalies detected through detection scores TaP (how many abnormalities
were detected and sub-scoring), TaR (how accurately each anomaly was detected), considering the
variability of the detected anomalies, and evaluating existing metrics using multiple examples, it also
proved that the metric is more suitable for time series data compared to Performance was evaluated
relative to the average (F1-Score) value [8,23].

The three experimental conditions for measuring performance are as follows. The first experiment
is anomaly detection performance based on a single threshold, a traditional method used in ICS.
The second experiment is the same as the first experimental environment, but anomaly detection
performance measures when PCC-based characteristic selection is reflected. The third experiment
measures anomaly detection performance when the K-means-based relative threshold is applied to the
second condition. All experimental conditions aim to measure the highest performance while changing
the threshold and derive the highest performance based on TaPR.

In the first experiment (experimental group), the model was trained using all the features of HAI
21.04, and the result with the highest F1-Score was measured using a single threshold based on the
method mentioned in [17]. As shown in Fig. 6, the error value (blue), attack point (orange), and
threshold (red) are shown. If the error value is greater than the threshold, it is the most common
method of judging an abnormality. As a result of the experiment, it measured the best performance
when the threshold was set to 0.015, and F1-Score 0.354 was recorded, see Tab. 3. This shows that
the performance figure is low and needs improvement. The 7 attack points shown in the HAI 21.04
verification data have variable error values because the processing system contains complexly linked
anomalous data. Low scores are obtained even in the actual performance evaluation. In addition,
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when using the single threshold used in the existing traditional method, many attack points that can
cover a specific sequence point are missed.

Figure 6: The error graph in the first experimental environment and the threshold results in the best
performance

Table 3: Benchmarked results in the first experimental environment

Threshold F1-Score TaP TaR

0.0001 0.0564 0.0295 0.6267
0.0002 0.1394 0.0778 0.6741
0.0003 0.1349 0.0758 0.6157
0.0004 0.1506 0.0869 0.5644
0.0005 0.0989 0.0556 0.4498
0.0006 0.2262 0.1548 0.4194
0.0007 0.3540 0.3215 0.3937
0.0008 0.3245 0.6899 0.2121
0.0009 0.3154 0.7389 0.2005
0.0010 0.3113 0.7337 0.1975
0.0011 0.3067 0.8184 0.1887
0.0012 0.2967 0.7862 0.1828
0.0013 0.2938 0.8368 0.1782
0.0014 0.2841 1.0000 0.1656

In the second experiment (control group 1), based on the method proposed in Session 4.1, we
experimented with improving model performance by applying correlation coefficient-based feature
selection. Unlike the first experimental condition, we evaluated whether the performance improvement
of the model was effective by adopting only the features corresponding to the high-related feature set
in Tab. 2 without using all the features. As a result of the experiment, it measured the best performance
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when the threshold was set to 0.018, and F1-Score 0.548 was recorded, see Tab. 4. It shows that
compared to the experimental group, there is a performance improvement of about 54% compared
to the existing one. As shown in Fig. 7, unlike the first experiment, the error value at about 27,000–
30,000 points was significantly improved, and thus the TaP level was improved. However, a number
still needs performance improvement, many areas need to be improved, and the attack point is missing.

Table 4: Benchmarked results in the second experimental environment

Threshold F1-score TaP TaR

0.008 0.0320 0.0165 0.5671
0.009 0.0301 0.0154 0.6753
0.010 0.0392 0.0202 0.6661
0.011 0.0584 0.0308 0.5587
0.012 0.0862 0.0464 0.6023
0.013 0.1493 0.0843 0.6556
0.014 0.0767 0.0409 0.6151
0.015 0.1112 0.0616 0.5755
0.016 0.1896 0.1148 0.5431
0.017 0.3550 0.2921 0.4525
0.018 0.5480 0.7413 0.4346
0.019 0.5403 0.8285 0.4008
0.020 0.3445 0.7912 0.2202
0.021 0.3246 0.7973 0.2038
0.022 0.3180 0.7953 0.1987
0.023 0.3134 0.7949 0.1951

Figure 7: The error graph in the second experimental environment and the threshold results in the best
performance
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The third experiment (control group 2) conducted correlation coefficient and clustering-based
model performance improvement experiments. The feature selection technique proposed in Session 4.1
and the technique presented in Session 4.2 were used in this experiment. Also, unlike the experimental
group, a relative threshold was applied by dividing the error mean by clustering label. As shown in
Eq. (5), the relative threshold can be adjusted by the α value. The best performance was measured while
changing the rate of change by adjusting the α value as a result of the experiment when α = 1.37 the
F1-Score was benchmarked at about 0.6366, which shows that there is a performance improvement of
about 75% compared to the experimental group and about 15% better compared to the control group
1. This can identify missed attack points and significantly improve the error value performed in the
second experiment, See Tab. 5. As shown in Fig. 8, the first experimental result shows a performance
improvement of about two times when compared, and the final performance improvement result is
still average compared to the traditional evaluation level. Still, it is not consistent with the time series
data environment.

Table 5: Benchmarked results in the third experimental environment

α(alpha) F1-Score TaP TaR

1 0.0266 0.0135 0.7796
1.01 0.0279 0.0142 0.8415
1.02 0.0284 0.0144 0.8174
1.03 0.0291 0.0148 0.7822
1.04 0.0298 0.0152 0.7782

1.33 0.5500 0.4587 0.6868
1.34 0.5646 0.4805 0.6847
1.35 0.5820 0.5088 0.6801
1.36 0.6083 0.5536 0.6752
1.37 0.6366 0.6064 0.6702
1.38 0.5841 0.5747 0.594
1.39 0.5971 0.6072 0.5874
1.4 0.6072 0.6357 0.5812
1.41 0.6107 0.6532 0.5736
1.42 0.6082 0.653 0.5693
1.43 0.6075 0.6586 0.5638
1.44 0.611 0.6733 0.5593
1.45 0.6119 0.6820 0.5550

1.9 0.3154 0.7803 0.1976
1.91 0.3136 0.7757 0.1966
1.92 0.3119 0.7701 0.1956
1.93 0.3107 0.768 0.1947
1.94 0.3099 0.7743 0.1938
1.95 0.3083 0.777 0.1924



5392 CMC, 2022, vol.72, no.3

Figure 8: The error graph in the third experimental environment and the threshold results in the best
performance

The results of performing the above experiment and analyzing the observations are as follows:
This experiment was evaluated whether it can meet the requirements for performance improvement
assumed in the related study: First, the first experiment, which is the baseline of the experiment, is
the threshold value The general technical concept of detecting anomalies by setting the A limiting
condition for using the model in ICS was defined in this experiment, and no separate training
process was performed on abnormal data. Therefore, the requirement of “unsupervised learning”
can be satisfied. Second, we adopted an RNN-like neural network called LSTM in the experimental
environment. LSTM compensates for the shortcomings of the existing RNN and has the strength
to preserve the characteristics of data existing in the past. This can efficiently learn time series
characteristics, and the HAI dataset sets the conditions for using data with temporal characteristics
reflected. Thus, it can meet the “Temporal characteristic detection” requirement. In addition, we
proved that the model trained based on the feature set has higher performance when the second
experimental result is compared to the first experimental result. This led to performance improvement
without algorithm improvement and hyper-parameter tuning and could satisfy the requirement of
“Gain of computation.” On the other hand, a performance improvement experiment was performed
under the experimental condition in the third experiment. The second experimental condition and the
K-means-based clustering algorithm were combined, and a procedure for clustering the error values
predicted by the model was added. Giving the first experimental condition a cluster characteristic gives
a threshold for each clustered index based on the error mean value, and a variable threshold can be
built. In addition, error values are amplified to detect outlier data more effectively with ambiguous
boundaries with normal data, and cluster characteristics are assigned to give weight to the amplified
values. Under these experimental conditions, higher performance could be provided compared to the
first and second experimental conditions, which met the “Detect dissimilarity patterns” requirement.

6 Conclusion and Future Works

We demonstrated better performance compared to existing detection methods through the
proposed correlation coefficient clustering-based performance improvement technique. In addition,
we derived experimental results that could satisfy the 4 requirements for improving the performance
of the ICS anomaly detection model derived in Session 2.2. In addition, by adopting an HAI dataset
that does not reflect the attack label separately, very few attack points can occur in the control
system environment to meet the reality of how well the actual model can detect. In a control system
environment, abnormal data can have fatal consequences, so research is inevitable to improve the
performance of models that can detect abnormalities, and a lot of efforts will be needed to continue.
ICS is the foundation of IIoT, is essential to the industry. When there is a specific IIoT system, it is
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expected that if the workflow operates SCADA, it can contribute to the study of anomaly detection
through our proposed method. Essentially, ICS’s top priority is to keep operations unchanged for
a long time with a specific cycle and sequence, and proposed performance improvement measures
to detect anomalies are expected to help minimize errors. In the future, we will study how to detect
anomalies that can predict and consider time relationships and workflow-specific sequences by adding
the performance improvement techniques presented in this paper. The methods proposed in the future
will be continuously studied to effectively improve and reflect various conditions for applying existing
methods.
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