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Abstract: With the continuous expansion of software applications, people’s
requirements for software quality are increasing. Software defect prediction
is an important technology to improve software quality. It often encodes the
software into several features and applies the machine learning method to
build defect prediction classifiers, which can estimate the software areas is
clean or buggy. However, the current encoding methods are mainly based on
the traditional manual features or the AST of source code. Traditional manual
features are difficult to reflect the deep semantics of programs, and there is
a lot of noise information in AST, which affects the expression of semantic
features. To overcome the above deficiencies, we combined with the Convolu-
tional Neural Networks (CNN) and proposed a novel compiler Intermediate
Representation (IR) based program encoding method for software defect
prediction (CIR-CNN). Specifically, our program encoding method is based
on the compiler IR, which can eliminate a large amount of noise information
in the syntax structure of the source code and facilitate the acquisition of more
accurate semantic information. Secondly, with the help of data flow analysis,
a Data Dependency Graph (DDG) is constructed on the compiler IR, which
helps to capture the deeper semantic information of the program. Finally,
we use the widely used CNN model to build a software defect prediction
model, which can increase the adaptive ability of the method. To evaluate the
performance of the CIR-CNN, we use seven projects from PROMISE datasets
to set up comparative experiments. The experiments results show that, in
WPDP, with our CIR-CNN method, the prediction accuracy was improved by
12% for the AST-encoded CNN-based model and by 20.9% for the traditional
features-based LR model, respectively. And in CPDP, the AST-encoded DBN-
based model was improved by 9.1% and the traditional features-based TCA+
model by 19.2%, respectively.
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1 Introduction

With the continuous expansion of software applications, people’s requirements for software
quality are increasing. People hope to eliminate software defects as much as possible before software
release. Nevertheless, the software is larger and complexity, it is difficult to accurately locate the defects
of a program at the semantic level. Software defect prediction is a helpful technology for detecting
semantic defects. It often encodes the source code into several software features and applies the
machine learning method to build defect prediction classifiers, which can estimate the software areas
is clean or buggy [1–5]. However, in the modeling process of defect prediction, there are some common
challenges: such as how to encode the program, how to extract features from the high dimensionality
of defect datasets, how to select the suitable defect training models, and so on. In the paper, we are
focused on how to encode the program to extract features for defect prediction.

Software features are the basis of defect prediction. Researchers design various defect features
from different dimensions by the analysis of software defect-related factors. Such as the code size,
code complexity (e.g., Halstead features based on the number of operators and operands, McCabe
features based on dependencies, CK features for object-oriented programs), code churn features, et al.
However, those features are traditionally handcrafted with the shallow representation of the programs’
source code or development processing, not for the deep semantic information of the program, which
is an important factor for software defect prediction.

To mine the semantic information of the program for building accurate software defect prediction
models, some approaches propose to leverage a powerful representation learning algorithm, namely
deep learning, to capture the semantic representation of programs, automatically. They often use
the Abstract Syntax Trees (AST) of the source code as basis and transform the ASTs’ nodes of the
program into tokens vectors. Then the word embedding techniques [6] are applied to encode the
tokens vectors as numerical vectors, which are served as inputs to the deep learning models (i.e.,
Deep Belief Network(DBN) [7], Convolutional Neural Networks(CNN) [8], and Recurrent Neural
Networks(RNN) [9], et al.), to automatically extract the semantic features of the program. Programs
have well-defined syntax and rich semantics hidden in the ASTs, which can assist to build a more
accurate software defect prediction model. However, there are still some deficiencies in capturing
program semantics, based on ASTs.

Firstly, Phan et al. [10] shows that the code with the same semantic, such as File1.c and File2.c
in Fig. 1, will suffer from varying structures of ASTs, which will affect the performance of defect
prediction because of the weight matrices for each node, being determined based on the position
in AST.

Secondly, ASTs are not suitable for deep semantic analysis such as data flow analysis, which
affects the prominence of software defect features. Figs. 2a and 2b show two code snippets, which were
extracted from the commit information of the Redis project in GitHub. The only difference between
buggy code and clean code is in line 11 of different flag constants. The AST structure of the two code
snippets will be the same, and the only different node is the constant node with a different value, which
is ignored by the current ASTs-based method for limiting the number of tokens. Therefore, the current
AST-based methods will be failed to capture the defect features in Fig. 2a.

Furthermore, most of the currently AST-based deep learning defect prediction model seldom
considers the type information of variables, which is also an important expression to the semantic
of the program. Figs. 3a and 3b show two code snippets. Both define the function of delay10 that
takes up ten integers adds time, which is often used in embedded systems to satisfy the precedence
constraints. However, Fig. 3a has a defect: because the variable i is used in the function delay10 and
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has no side-effect, the code of delay10 will be optimized to empty which should break precedence
constraints in the calling points. Since the only difference between the two code snippets is the types
of i, the ASTs of both will be almost the same. The AST-based defect prediction methods are difficult
to capture the defect in Fig. 3a.

(a)

(b)

(c)

Figure 1: Same semantic with different loop statements example [10]

As we all know, the compiler is an essential tool for program transformation, and the AST is
also the presentation form of the compiler front end. For better program analysis and optimization,
compilers usually design a well-structured internal representation, called Intermediate Representation
(IR). Peng et al. [11] shows that the IR is more applicable for learning code representation rather
than high-level program language. Motivated by the powerful representation and widely applied
in the program analysis, we propose a novel Compiler IR-based program encoding method for
defect prediction with CNN model (CIR-CNN) aim to increase the performance in software defect
prediction on seven PROMISE datasets. The main contributions of the paper can be summarized as
follows:

• Being different from the AST-based program feature extracting methods, this paper encodes
the program semantic defect features based on compiler IR, which is expected to obtain more
accurate program semantic features for software defect prediction.
• Based on LLVM IR, we designed the token representation, which retains the type information
for acquiring the type-related defects features.
• Combined with the data dependency, DDG was built as the basis of program analysis, which
is helpful to extract more accurate data dependency features.
• To preserve the semantic and structure information of the graph, we redesigned the weighted
adjacency matrix to represent the DDG of the program and used two-dimensional CNN to
train and build the defect prediction model.
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(a) (b)

(c) (d)

Figure 2: A buggy example from Redis

(a)

(b)

(c)
(d)

Figure 3: Type-based buggy motivation example

The outline of this paper is as follows. In the next section, we briefly introduce the related work
and background materials used in our work. Section 3 describes our proposed CIR-CNN approach,
and the experiments are setup and evaluated in Section 4. Section 5 identifies some limitations of this
research work. We conclude the paper and highlights future directions in the last section.
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2 Related Work and Background
2.1 Software Defect Prediction

Software Defect Prediction (SDP) technology has always been a research hotspot in the field of
software engineering, and researchers have carried out extensive research in this field [12–14]. Many
machine learning methods have been designed for building defect prediction models [15,16]. Ji et al.
[17] proposed an improved Naive Bayes (NB) approach by using kernel density estimation. They
compared their methods against four well-known classification algorithms on 34 software releases
obtained from 10 open-source projects provided by the PROMISE repository. Li et al. [18] examined
C4.5 in defect prediction, which is a kind of Decision Tree (DT) algorithm. Nam et al. [19] proposed
TCA+, which adopted a state-of-the-art technique called Transfer Component Analysis (TCA) and
the optimized TCA’s normalization process to improve cross-project defect prediction. Xia et al. [20]
proposed HYDRA, which leverages a genetic algorithm and ensemble learning (EL) to improve cross-
project defect prediction. But HYDRA requires massive training data to build and train the prediction
models. Tabassum et al. [21] investigated when and to what extent cross-project data are useful for Just-
In-Time Software Defect Prediction in a realistic online learning scenario. Zain et al. [22] proposed
the 1D-CNN, a deep learning architecture to extract useful knowledge, for identifying and modelling
the knowledge in the data sequence, reducing overfitting, and finally, predicting whether the units of
code are defects prone. However, these methods are based on traditionally handcrafted features, which
are the shallow representation of the programs’ source code or development processing, not for the
deep semantic information of the program. They will be affected by people’s experience and have weak
adaptive ability.

Recently, with the rapid development of deep learning technology and the increasing demand for
semantic-based software defect prediction, many researchers explore the application of deep learning
methods in software defect prediction. They use deep learning technology to automatically extract
the semantic features of programs for building the defect prediction model. Wang et al. [7] leveraged
DBN for software defect prediction. They used selected AST sequences taken from source code as
input to the DBN model, which generate new expressive features, and used machine learning models
for classification. Li et al. [8] proposed a CNN-based defect prediction model, which leveraged word
embedding and a CNN model for defect prediction. Their experimental results show that the defect
prediction performance of the CNN model is better than Wang’s DBN [7]. Pan et al. [23] improved
the Li’s CNN for within-project defect prediction (WPDP). The experimental results show that their
CNN model was comparable to Li’s CNN model, and outperformed the state-of-the-art machine
learning models significantly. Hoa et al. [9] leveraged tree-based LSTM models to predict defects.
However, their results were not as good as the results of Li’s CNN model [8]. Sun et al. [24] proposed
an unsupervised domain adaptation based on the discriminative subspace learning (DSL) approach
for CPDP. However, these methods are based on the AST of source code, which may be affected by
the implementations of program. At the same time, they are not suitable for deep semantic analysis
and insensitive to type related defects, which shown in Figs. 1–3

There was also research on deep defect prediction targeting assembly code [10], which leveraged a
CNN model to learn from assembly instructions. However, the assembler is architecture related, and
it is difficult to transplant to other platforms.

2.2 Compiler IR
Intermediate Representation (IR) is the foundation for a compiler to realize cross-language

analysis and optimization. Based on the IR, the compiler analyzes the semantics of the source code and
executes a variety of optimization passes to eliminates the useless code of the source program, which
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usually contains noisy semantic information. Therefore, the normalized and meaningful semantic
information is preserved in the final IR by compiler optimization, and we can get the outstanding
semantic features by IR. Different compilers have their own IRs, and in this paper, we use the IR of
the LLVM compiler called LLVM IR for the following reasons.

• Unlike the IR of GCC, which has multiple IR such as GENERIC, GIMPLE, RTL, and so on,
the IR of LLVM is unique. It is well defined and more suitable for processing and transforming.
• The LLVM IR representation aims to be lightweight and low-level while being expressive,
typed, and extensible at the same time. It is convenient to extract type information for helping
defect prediction.
• There are many program conversion and analysis tools for LLVM IR, such as JLang, RetDec,
etc. We can transform different high-level programming source code and even binary code to
LLVM IR easily.

From the perspective of LLVM IR, the semantic information of the program is more prominent.
For example, in Fig. 1, although File1.c and File2.c have different loop structures, their LLVM IRs are
the same, shown in Fig. 1c.

And in Fig. 2, the rioGetWriteError and rioGetReadError are inline functions. The buggy code
shown in Fig. 2a defines the two methods the same. The condition code in line 15 and 17 will be
considered the same, and lines 17 and 18 will be removed safely during the optimization of the compiler.
Therefore, the final LLVM IRs of buggy code and clean code are differently shown in Figs. 2c and 2d.
For the two code snippets in Figs. 3a and 3b, the LLVM IRs are shown in Figs. 3c and 3d, respectively.
From these two IR snippets, the differences are outstanding. For the code in Fig. 3a, all of the codes
are optimized and deleted, and the function becomes empty (see as Fig. 3c). We can easily distinguish
the semantic features from these IR differences.

At the same time, compiler IR is easy for control flow analysis and data flow analysis to represent
the relationship between instructions and data, which is helpful for the semantic features extracting.
Therefore, we suspect that if the deep-learning-based feature extraction method was applied to the
compiler IR, we could get more exactly the programs’ semantic features. It should be noted that,
although ASTs are also one former of compiler IR, the compiler IR mentioned in this paper is the
IR that after compilation optimization and directly used as the input of the code generation of the
compiler.

2.3 CFG and DDG
A CFG is a directed graph, G = (V , E) where V is the set of vertices {v1, v2, . . . , vn} and E is the

set of directed edges {<vi , vj>, <vk, vl>, . . . }. In the CFG, each vertex represents a basic block that
is a linear sequence of IRs with one entry point (the first IR executed) and one exit point (the last
IR executed). And the directed edges show the control flow paths. CFG can display the relationship
between basic blocks, dynamic execution status, and statement table corresponding to each basic block
in a process. However, it cannot deal with well the relationship between instructions in basic blocks.
For example, in Fig. 4, Fig. 4b is the LLVM IR for Fig. 4a. We can see that the CFG has only one node
because there is no branch in the source code. If we analyze the semantics of the source code based on
this CFG, we can form the order dependency shown in Fig. 4c. These will lead to the segmentation of
the most critical defect features between the instruction 2 and instruction 7. Therefore, we will further
be able to construct the DDG based on the CFG.
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(a)

(c)

(b)

(d)

Figure 4: The motivation example for DDG

A DDG is also a directed graph, G = (V , E) where V is the set of vertices {v1, v2, . . . , vn} and E
is the set of directed edges {<vi , vj>, <vk, vl>, . . . }. However, in the DDG, each vertex represents
an IR, and the directed edges show the data dependencies. We use the IRi represents the ith IR in the
program. If IRi must execute before IRj, there is one directed edge from IRi to IRj. For example, the
DDG of Fig. 4b is Fig. 4d. Instruction 7 and instruction 2 are adjacent to use the same storage space
“%3”, and instruction 2 is a function call that may have the side effect. Therefore, instruction 2 must
execute before instruction 7, and the directed edge from instruction 2 to instruction 7 is added, which
will make the defect features more prominent.

2.4 CNN
Convolutional Neural Networks (CNN) is a feedforward neural network with a structure to

convolution calculation [25]. It has been successfully applied in many practical fields, including image
classification, speech recognition, and natural language processing [26–35].

CNN includes a feature extractor composed of convolution layers and pooling layers. A con-
volution layer of CNN usually contains several feature maps. Each feature map is composed of some
rectangular neurons. Neurons in the same feature plane are only connected with some adjacent neurons
and share weights. These shared weights are convolution kernels. The convolution kernel is generally
initialized in the form of a random decimal matrix. In the process of network training, the convolution
kernel will learn to obtain reasonable weights. The direct benefit of convolution kernel is to reduce the
connection between network layers and reduce the risk of overfitting. The pooling layer follows the
convolution layer and is also composed of multiple feature maps. Each feature map of the pooling layer
uniquely corresponds to one feature surface of the upper layer, and the max-pooling is often used.
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In recent years, some researchers [7–9] have explored the effect of CNN in building software defect
prediction models and reached positive conclusions. However, at present, software defect prediction
mainly focuses on one-dimensional CNN, the scene where CNN performs better is two-dimensional
CNN, such as image recognition. Therefore, in our work, we leverage two-dimensional CNN which is
trained by the adjacency matrix of the program for effective feature generation from LLVM IR.

3 CIR-CNN
3.1 Overall Framework

Fig. 5 shows the steps of our compiler IR-based program embedding method for defect prediction
over CNN: a) Transform the Program to Compiler IR; b) Generate DDG from IR; c) Extracting and
Encoding tokens for the DDG Nodes; d) Program encoded by the weighted adjacency matrix. e) Then,
the weighted adjacency matrix will be used as inputs to train and build the CNN model for software
defect prediction. f) When a program needs to predict defects, we first obtain the weighted adjacency
matrix of the program and then input it into the built model, which will give the prediction results of
clean or buggy.

(a)

(b)

(c)

(d)
(e) (f)

Figure 5: The framework of the CIR-CNN

3.2 Transform the Program to Compiler IR
The compiler IR is a kind of normalized representation of the program, which preserves the

semantics of the program. The first step of our method is to transform the program to the LLVM
IR. Specifically, the transformation to LLVM IR can be categorized into two cases.

• Input is the source code. We will use the corresponding compilers to complete the transform.
For example, we can use Clang to transform the C and C++ source code to LLVM IR and use
the JLang to transform the Java source code to LLVM IR.
• Input is the binary code. We will use the RetDec tool to decompile it to LLVM IR.
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3.3 Generate the DDG from IR
In order to obtain more accurate program semantic information to assist software defect predic-

tion, we first extract the CFG from IR, then construct the DDG of the program by CFG.

Fig. 6 shows an example of transforming a piece of IRs (Fig. 6a) to CFG (Fig. 6b) and then
generating DDG (Fig. 6c). In Fig. 6a, the first line is the definition of the function with the following
IRs included.

(a) (b) (c)

Figure 6: The example of IR to DDG transformation

For the CFG construction, the primary work is to analyze the branch IRs. In Fig. 6a, the first
seven IRs are the load/storage and comparison instructions, and they are sequences executed without
branch. Until the eighth “br” instruction, the program will jump to different positions according to the
comparison result of “%7”. Therefore, the first eight statements are in the same basic block and can
be organized as a node in CFG, called B0 in Fig. 6b. Similarly, IRs in lines 9–14, 15–19 and 20–23 are
also basic blocks, which are corresponding to the nodes B1, B2 and B3 in Fig. 6b, respectively. Then,
we analyze the last IR of each node in CFG and extract the control flow information to form the edges
of CFG. For example, in the last IR of B0, we can see that the execution after B0 is the IR at “label 8”
or “label 12”. And “label 8” corresponds to the entry of the B1 node, and “label 12” corresponds to
the entry of the B2 node. Hence, the converted CFG has an edge from B0 to B1 and an edge from B0
to B2. Similarly, we can also get the edges from B1 to B3 and B2 to B3, and form the CFG shown in
Fig. 6b.

When we get the CFG of the program, DDG can be generated by Algorithm 1, where we give the
symbol definition in Tab. 1.
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Table 1: The description of the symbols in Algorithm 1

symbols description

V the nodes set in CFG
E the edges set in CFG
V’ the nodes set in DDG
E’ the edges set in DDG
R the mapping from the symbol to its defined DDG node. We can use R(s)

to get the DDG node that defines the symbol s.
H the mapping from the IR to the corresponding DDG node. We can use

H(i) to get the DDG node that corresponding the IRi

trans(IRi) the function that transform IRi to the DDG node, which adds attributes
related to graph nodes over IR

blocki the basic block that IRi belonged to
defs the IR that defines the symbol s
ops(IRi) the symbols that IRi used or defined
superb all parent blocks pb of b that have an edge from pb to b in CFG
IRb

exit the exit IR of the block b

In the algorithm, for each node in CFG, each IR is traversed in turn, encapsulated as a DDG node
by trans function. And the relationship between IR and DDG node is saved in H (lines 2–8). Then we
traverse every node of CFG again, and analyze the attribute of each symbols s that of IRi defined or
used. If the attribute of s is defining, we will establish the mapping between s and H(IRi) and save it in
R (lines 22–24). For example, for the first IR in Fig. 6, the operand “%3” indicates that a 32-bit space
is defined, and the mapping relationship from “%3” to H(IR1) will be established and saved to R. If
the symbol s is used in the IRi, we will search the defs in R. If s and defs are in the same basic block (line
14), an edge from H(defs) to H(IRi) will be added to E ′. For example, in the basic block B0, the IR3

uses the “%3” space defined by the IR1, so an edge from H(IR1) to H(IR3) is added to E ′. If defs does
not exist or defs and IRi belong to the different basic blocks, we will get all parent block pb of blockIRi ,
and add the edges from each H(IRexit

pb ) to H(IRi) (lines 12–21). For example, the IR9 belongs to B1 and
uses the data “%4” that defined in IR2 of B0. Therefore, we get the parent blocks of B1, which is the
only B0, and add an edge from the exit IR H(IR8) of B0 to H(IR9). When all nodes are analyzed, we
create an empty root node vroot. And for all nodes in V’ that have no incoming edge, we add an edge
from vroot to them (lines 29–33). Finally, we add vroot to V’ and return the DDG (lines 34–35). The DDG
of the example in Fig. 6b is shown in Fig. 6c.

3.4 Extracting and Encoding Tokens for the DDG Nodes
To make the CNN-based deep learning technology automatically extract software features from

DDG for defect prediction, we encode each node of DDG into numerical vectors. Similar to the
existing mainstream methods, the encoding process includes two stages: a) Extracting the tokens from
the nodes; b) Transforming the tokens into numerical vectors.

For the first step, the nodes of DDG are encapsulated by the compiler IR that is commonly divided
into operator and operands, so we designed the tokens of DDG nodes also containing two parts:
operator string and operands string. For the operator string, if it is the “call” instruction, we will set
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the token string by the specific calling method. When the calling method is a system library method
such as “printf ”, the calling method name will be used as the operator string token. Otherwise, the
string “call” will be used as the operator string token. For example, the operator string of “%3 = call
i8∗ @malloc(i64 512)” is “malloc”, and the operator string of “%3 = tail call i8∗ @calScore(i64 512)”
is “call”, where “calScore” is a user-defined method. For the operator that is not the “call”, the string
of operator name in LLVM IR is used as its operator string token. For example, the operator string
of “store i32%0, i32∗ %3” is “store”. The operands string is represented by the type of operands in IR,
which has the following three situations.

• If the type of the operand is the basic system type in LLVM, such as “int32”, “int8”, et al.,
we will use the corresponding string in LLVM to represent them, such as “i32”, “i8”, et al.;
• If the type of the operand is defined by ourselves, we will use “mytype” to represent it.
• If the type is a pointer type, we will leave “∗” after the type.

After getting the operator string and operands string, we use “_” to connect them as the token of
the DDG node. For example, the token of node “storei32%0, i32 ∗ %3” is “store_i32_i32∗”, and the
token of node “%3 = call i8∗ @malloc(i64 512)” is “malloc_i8∗”.

When the DDG nodes are converted into tokens, a method similar to Wang’s DBN [7] is applied.
We first build a mapping between integers and tokens, and each token is associated with a unique
integer identifier which ranges from 1 to the total number of tokens. Then, the word embedding
technique is used to further map each DDG token into a numerical vector, which is trained regarding
the context of each token. However, being different from one-dimensional word embedding in NLP
[6], we extract the association information of tokens based on graph structure. Although we can obtain
one-dimensional tokens through graph traversal, it will destroy the graph structure, affecting the word
embedding and in turn defect prediction. In order to maintain the information on the graph structure,
we design a graph-based word embedding method based on CBOW [6]. We select the parent node and
child nodes of the central DDG node as the context for training the distributed representation of the
DDG node to preserve the graph structure to the greatest extent. For example, to evaluate the node 7
in Fig. 6, we will use its parents of nodes 5 and 6, and its child of node 8 as its context. Eq. (1) describes
our way to capture context for the central word n and calculate the projection value (P is the parent
of the word n and C is all the children of the word n). After the CBOW based graph word embedding
transformation, tokens appearing in similar context tend to have similar vector representations that
are close in the feature space, which can benefit CNN in learning the program semantics in certain
contexts.

wn =
∑
p∈P

wp +
∑
c∈C

wc (1)

3.5 Program Encoded by Weighted Adjacency Matrix
At present, the most successful application of CNN is mainly in the field of image recognition, of

which the input is two-dimensional. We thought that if the DDG is transformed into two-dimensional
expression, it will be conducive to CNN model to obtain better classification effect. Since the adjacency
matrix is the widely used two-dimensional graph representation, we also use it for our purposes. When
DDG nodes are transformed into tokens and encoded into numerical vectors, the program can be
expressed as a weighted adjacency matrix M by N × N, where N is the number of tokens. In order
to meet the constraints of CNN model on the fixed input shape, we arrange the nodes in DDG in
descending order of occurrence frequency, and then take the first N nodes as the observation nodes
construct the adjacency matrix. We use mij to represent the weight in the row i and column j of the
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adjacency matrix M, which can be calculated by Eq. (2). In Eq. (2), nij denotes the number of edges
from tokeni to tokenj in DDG, tix denotes the ith value in the numerical vector of tokeni, k is the length
of the numerical vector, and ε is an infinitesimal number to prevent the denominator from being zero.

mij = nij/(ε +
√√√√ k∑

x=0

(tix − tjx)
2
/k) (2)

The weight calculation is critical to the prediction model. The basic principle of software defect
prediction is to detect whether the program has the defects characteristics in the semantic level. In our
method, we have normalized the semantics of the program into the DDG. The weight should reflect
the characteristics of the DDG. Since DDG is a graph, its characteristics can be measured by the
structural information of the graph, which can be expressed by node and edges. So we calculate the
weight from two dimensions. The first is for the nodes. The more similar the two nodes are, the greater
the value will be. Here, we calculate the Euclidean distance between nodes and find the reciprocal,
which is the denominator of Eq. (2). The second is the dependency strength between nodes, which is
expressed by the number of edges, i.e., the molecular of Eq. (2).

3.6 Generate the CNN Model
In this step, we take advantage of CNN’s powerful capability of feature generation, and capture

semantic and local structural information of the weighted adjacency matrix represented program.
Because we focus on the impact of IR-based encoding method on the defect prediction, and engage
CNN only as an application, we adopt a similar architecture and parameters of Li’s CNN [8]. In
particular, our CIR-CNN consists of one two-dimensional convolutional layers and max-pooling
layers to extract global patterns, a flattening layer, one dense layer, and finally, a logistic regression
classifier to predict whether a LLVM IR file was buggy. Our CIR-CNN framework is built with Keras
tools, using TensorFlow as the backend. We take minibatch Stochastic Gradient Descent (SGD) as an
optimization strategy and use the Adam algorithm as the optimizer to adjust the learning rate. The
detail information of our CNN model is shown in Tab. 2. Here, because the two-dimensional CNN
is used in our method, the kernel size of the convolution layer and the pool size of the pooling layer
cannot be obtained from Li’s CNN [8]. Therefore, we determine their values through experiments. See
the Section 4 for details.
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Table 2: The parameters of CNN model

Layers Parameters Values

dimension 2
the number of filters 10

Convolutional Layers kernel size 4×4
padding Same
activation function ReLU

Pooling layers pool size 4×4
Dense layers the number of nodes 100

activation function ReLU

3.7 Defect Prediction
Logistic Regression as the final classifier. We process each file in both training set and test set

following the above steps, and obtain the weighted adjacency matrix of each source file. After we train
our model using the training files with their corresponding labels, both the weights and the biases in
our CNN and Logistic Regression are fixed. Then for each file in the test set, we feed it into our defect
prediction model and the final classifier will give us a value, indicating the probability of this file being
buggy.

4 Experimental Setup and Analysis

In this section, we compare our proposed method with the performance of existing methods. In
particular, our experiments were based on the following questions:

•RQ1: How to set the hyperparameters in two-dimensional CNN?
•RQ2: Does our proposed CIR-CNN method improve the performance of within-project
defect prediction (WPDP)?
•RQ3: Does our proposed CIR-CNN method improve the performance of cross-project defect
prediction (CPDP)?

All of our experiments were run on a Linux server with one Intel(R) Xeon(R) Gold 5218 CPU
and one GeForce RTX 2080 Ti GPU.

4.1 Dataset
To facilitate the replication and verification of our experiments, we collected Java projects from

the PROMISE data repository, where the version numbers, the class name of each file, and most
importantly, the defect labels for each source file are provided. In total, 7 Java projects are collected,
and we select two versions of each project as our dataset. Tab. 3 shows the details of these projects,
including project description, versions, the total number of files, the buggy number of files, the buggy
rate, and the buggy rate reduce percentage caused by file delete of our data preprocessing.
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Table 3: Evaluated projects for defect prediction

Project Description Releases Total
files

buggy
files

Buggy(%) Buggy
reduced(%)

ant Java based build tool 1.5 276 29 10.51 0.393
1.6 345 91 26.38 −0.18

log4j Logging library for Java 1 115 34 29.57 −4.17
1.1 103 37 35.92 −1.92

lucene Text search engine library 2 186 91 48.92 −2.32
2.2 234 143 61.11 −2.81

xalan A library for transforming
XML files

2.4 751 377 50.2 −2
2.5 872 409 46.9 −0.4

xerces XML parser 1.2 433 70 16.17 0.034
1.3 443 67 15.12 0.076

ivy Dependency management
library

1.4 235 16 6.81 −0.21
2 314 33 10.51 0.89

poi Java library to access
Microsoft format files

2.5 377 247 65.52 −1.02
3 436 280 64.22 −0.62

Average 365.7 137.4 34.8 −1.02

Since our CIR-CNN method based on the LLVM IR, we downloaded the corresponding versions
of the projects from open source repositories rather than using the existing traditional features. To
parse source files into LLVM IR, we utilized a tool called JLang. It enables translating Java 7 source
code into LLVM IR, except for some advanced reflection features, primarily related to generic types.
Hence, due to the limited functionality of JLang, several Java source files could not be parsed correctly,
which may have hampered data preprocessing. We adopted the following four strategies to solve the
problem.

• Correct the source file grammar so that JLang could parse, such as replace the variable symbol
“enum” with “enum1”.
• Delete part of the source code that could not parse.
• Delete the file directly and add the corresponding classes files to JLang’s dependency library.
• Delete the project if most of the files in the project fail to parse.

4.2 Evaluation Metrics
To measure the performance of the defect prediction, we computed the F1 score which is

composed of Precision and Recall and widely used for evaluating the performance of software defect
prediction [7,8]. We estimated the values of Precision, Recall, and F1 score based on four statistics:
True Positives (TP), False Positives (FP), False Negatives (FN), True Negatives (TN). Their definitions
are as follows: if a file is classified as defective when it is truly defective, the classification is TP. If the
file is classified as defective when it is clean, then the classification is FP. If the file is classified as clean
when it is defective, then the classification is FN. Finally, if the issue is classified as clean but in fact is
clean, then the classification is TN. We use the above statistics to estimate Precision, Recall, and F1
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score by Eqs. (3)–(5), respectively.

Precsion = TP/(TP + FP) (3)

Recall = TP/(TP + FN) (4)

F1 = 2 × Precision × Recall/(Precision + Recall) (5)

Both Precision and Recall reflect the effectiveness of our prediction model. According to the above
formulas, Precision is the ratio between the number of true positives over the number of link candidates
that are predicted as true links by our model. On the other hand, Recall is the percentage of the number
of true positives over the total amount of true links. Importantly, between Precision and Recall, there
is usually an inverse relationship where higher Precision might come with lower Recall and vice versa.
Thus, the F1 score, which is the harmonic mean of Precision and Recall, is used to synthesize the two
metrics into a summary measure.

4.3 Baseline Methods
To evaluate the performance of our proposed CIR-CNN method, we conducted a comparative

experiment from two aspects: WPDP and CPDP.

In WPDP, we compare CIR-CNN with the Traditional LR, DBN, and CNN. The Traditional LR
is a Logistic Regression classifier. It is based on 20 traditional code features [36] to build a logistic
regression model for defect prediction. These features have been widely used in previous work to build
effective defect prediction models [19]. The DBN is a state-of-the-art method that leverages a deep
belief network (DBN) to automatically learn semantic features using token vectors extracted from the
programs’ ASTs. For the defect prediction performance of the traditional LR and DBN, we directly
cite the experimental results in [7]. The CNN method is a variant of DP-CNN that directly feeds the
CNN-learned features to the final classifier without combining traditional features. It is also based
on the ASTs but utilizes CNN for automated feature generation from source code. We implement the
CNN method by Keras with the same network architecture and parameter settings as Li’s CNN [8].

In the aspect of CPDP, we take DBN-CP and TCA+ [19] as our comparisons baseline methods
which are also evaluated in Wang’s paper [7]. And the same as WPDP, we use the performance results
from the Wang’s paper [7] for easy comparison.

4.4 Performance of CIR-CNN under Different Hyperparameters (RQ1)
As a two-dimensional CNN model, its hyperparameters of kernel size and pool size will also be

two-dimensional, for which the parameters in Li’s CNN [8] cannot be used. Therefore, we use lunce,
poi, xalan and xerces from PROMISE as the dataset by WPDP evaluation to tune the hyperparameters.
The WPDP evaluation method is shown in the next section. The kernel size and pool size are varied
within the range of {2 × 2, 3 × 3, 4 × 4, 5 × 5}, and the remaining parameters are set according to
Tab. 2. Fig. 7 shows the performance and average performance of the four projects in WPDP under
different kernel size and pool size. Where, the x-axis is the value of two super parameters, and the y-axis
is the F1 score and average F1 score of each project under the hyperparameters setting corresponding
to x-axis.
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Figure 7: The performance of different hyperparameters

From the Fig. 7, we can see that different hyperparameters settings have different effects on
the prediction performance of different projects. For example, for xalan and xerces, their F1 scores
fluctuate greatly by the hyperparameters, while for lunce and poi, their F1 scores fluctuate less. These
may be due to different defect characteristics. Therefore, in order to maximize the performance of
software defect prediction, we use the point with the largest mean value as the selected value for the
two hyperparameters, that is, the kernel size and pool size are set to 4 × 4.

4.5 Performance of CIR-CNN in WPDP (RQ2)
To evaluate the performance of CIR-CNN in WPDP, we carried out comparative experiments on

the seven projects listed in Tab. 3. We use the older version to train prediction models and the newer
version as the test set to evaluate the trained models. The F1 score on each project by applying the four
competing methods is shown in Tab. 4. The highest F1 score of them is shown in bold. For example,
in the xalan project, we use xalan 2.4 as the training set and xalan 2.5 as the test set, and we get the F1
score of defect prediction is 0.627, 0.681, 0.678, and 0.782 for Traditional LR, DBN, CNN, and CIR-
CNN, respectively. And the best result is 0.782 for CIR-CNN. From the experimental results, we can
see that the CIR-CNN method is better than the Traditional LR method in all cases. On average, the
F1 score of CIR-CNN is 0.105 higher than the traditional LR method, which improves 20.9%. These
indicate that the features obtained by compiler IR have a better prospect than traditional features in
defect prediction. By comparing the F1 score of CIR-CNN with DBN and CNN, we can find that for
most cases, the F1 score of CIR-CNN is competitive with these of DBN. Although DBN is 0.038 higher
than CIR-CNN on average, it is mainly contributed by the ant project. If the ant project is excluded,
the F1 score of CIR-CNN is 0.017 higher than DBN on average. More significantly, CNN whose
network structure and parameters are the same as CIR-CNN, gets a lower F1 score than CIR-CNN
for most cases. On average, the F1 score of CIR-CNN is 0.065 higher than CNN, which improves 12%.
These show that the compiler IR-based feature can get better performance than AST-based features
in WPDP.
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Table 4: Performance comparison of different defect prediction methods in WPDP

Project Traditional LR DBN CNN CIR-CNN

xalan 0.627 0.681 0.678 0.782
ant 0.506 0.916 0.483 0.546
log4j 0.535 0.682 0.538 0.6227
Lucene 0.598 0.63 0.755 0.741
xerces 0.266 0.475 0.327 0.384
ivy 0.24 0.348 0.251 0.387
poi 0.745 0.783 0.762 0.788

average 0.502 0.645 0.542 0.607

average except ant 0.502 0.6 0.552 0.617

4.6 Performance of CIR-CNN in CPDP (RQ3)
To evaluate the performance of CIR-CNN in CPDP, we collect a set of 10 cross-project test pairs.

Each experiment takes two versions separately from two different projects, the one used as the training
set and the other used as the test set. The F1 score on each pair projects by applying the three competing
methods is shown in Tab. 5. The highest F1 score of them is shown in bold. From the experimental
results, we can see that the CIR-CNN is still competitive in CPDP. For half of the cases, CIR-CNN can
get the highest F1 score. On average, the F1 score of CIR-CNN is 0.095 higher than TCA+ and 0.049
higher than DBN, which is 19.2% and 9.1% improvements respectively. These indicate that compiler
IR-based features are a better choice for CPDP.

Table 5: Performance comparison of different defect prediction methods in CPDP

Training project Test project DBN TCA+ CIR-CNN

xalan2.5 lucene2.2 0.594 0.561 0.736
lucene2.2 xalan2.5 0.55 0.53 0.64
lucene2.2 log4j1.1 0.618 0.571 0.593
xalan2.5 xerces1.3 0.386 0.394 0.377
ivy2.0 xerces1.3 0.426 0.398 0.351
xerces1.3 xalan2.5 0.572 0.581 0.643
log4j1.1 lucene2.2 0.692 0.524 0.648
poi3.0 ant1.6 0.478 0.598 0.529
ant1.6 poi3.0 0.619 0.343 0.729
ant1.6 poi2.5 0.475 0.447 0.658

average 0.541 0.495 0.59
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4.7 Discussion
From the above experimental results, we can see that our method can get better performance

than above references methods in many projects, and we think the main reasons are as follows.
Firstly, the LR and TCA+ are based on the traditional features. These features are designed by the
people’s experience, and may not be able to adapt to different programming modes [7,8]. Li’s CNN
and Wang’s DBN are based on the AST of the source program. Due to the same semantics may
implement with different grammatical structure, the extracted features are not obvious, as described
in Section 1. However, our method is based on the compiler IR. It eliminates the syntax differences
at the source program, which can obtain more accurate semantic features, shown in Section 2.2. And
furthermore, we combined with the type information to extract more type-related features. Therefore,
our method can use more and accurate information to train the defect prediction model and get better
performance.

5 Limitations
5.1 Implementation of CNN

For the comparative analysis, we compare our CIR-CNN method with CNN, which is the state-
of-the-art within project defect prediction technique. Since the original implementation of CNN is
not released, we have reimplemented our version of CNN by Keras. Although we strictly followed the
procedures described in their work, our new implementation may not reflect all the implementation
details of the original CNN. However, we test our implemented one with the data provided by their
work. The results show that our version can achieve very similar results to the original one. Hence, we
are confident that our implementation reflects the performance of the original CNN.

5.2 Dataset Selection
We conducted our experiments using seven open-source projects in the PROMISE dataset, and

they might not be representative of all software projects. Besides, we only evaluated CIR-CNN on
projects written in Java language. Given projects that are not included in the seven projects or written
in other programming languages (e.g., C++ or Python), our proposed method might generate better
or worse results. To make CIR-CNN more generalizable, in the future, we will conduct experiments
on a variety of projects including open-source and closed-source projects, and extend our method to
other programming languages.

5.3 Dataset Preprocess
When we convert the dataset source program to compiler IR, we delete a few source files due

to JLang’s limited syntax support of the Java programming language. However, from the statistical
results, the deleted files did not make the buggy rate of the dataset change significantly. On average,
the buggy rate only increased by 1.02% as compared with the original PROMISE repository. Therefore,
we claim that deletion of files would not influence the validity of our results that much.

6 Conclusion and Future Work

To improve the ability of software defect prediction at the semantic level, we propose a novel
compiler IR-based program encoding method for defect prediction with the CNN model (CIR-CNN).
Specifically, we first transform the source code and binary code into the compiler IR by compiler and
decompiler tools, respectively. Then, the data dependency graph (DDG) is constructed over CFG by
data flow analysis. Next, we encode the DDG to the weighted adjacency matrix by word embedding
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technology combined. Finally, we use the weighted adjacency matrix as the input and the existing
mature CNN network structure to train and build the defect prediction model.

Based on the compiler IR, our method eliminates the noise information at the syntax level of
the source program and obtains more essential program semantic information for software defect
prediction. Therefore, the extracted defect features will be more accurate. At the same time, through
the token representation with types, the detection ability of type-related defects is improved. Therefore,
our method can achieve good results in both WPDP and CPDP. We examined the performance of
features automatically extracted by the compiler IR-based program encoding method on two file-
level defect prediction tasks, i.e., within-project defect prediction (WPDP) and cross-project defect
prediction (CPDP). In WPDP, our experiments on seven open-source projects show that averagely,
CIR-CNN improves the AST-based CNN and traditional feature-based methods by 20.9% and 12%,
respectively, in terms of F1 score in defect prediction. And CIR-CNN is competitive with the state-of-
the-art DBN-based method. In CPDP, our experiments on ten pairs of open source projects show that
averagely, CIR-CNN improves the AST-based DBN and traditional features-based TCA+ methods
by 19.2% and 9.1%, respectively.

The novelty of this paper is that we combined with the two-dimensional CNN and proposed
a compiler IR based program encoding method for software defect prediction, which can get the
performance increase in seven projects of PROMISE dataset.

As the future works, we are planning to make our method more generalizable and effective.
Specifically, we will conduct experiments on more projects and more deep learning models, combine
CIR-based features with other features, extend our method to both other programming languages and
binary code, and also integrate different programming languages for coordinated prediction.
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