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Abstract: In this study, a hyper-redundant manipulator was designed for
detection and searching in narrow spaces for aerospace and earthquake rescue
applications. A forward kinematics equation for the hyper-redundant manipu-
lator was derived using the homogeneous coordinate transformation method.
Based on the modal function backbone curve method and the known path,
an improved modal method for the backbone curves was proposed. First, the
configuration of the backbone curve for the hyper-redundant manipulator
was divided into two parts: a mode function curve segment of the mode
function and a known path segment. By changing the discrete points along
the known path, the backbone curve for the manipulator when it reached a
specified path point was dynamically obtained, and then the joint positions of
the manipulator were fitted to the main curve by dichotomy. Combined with
engineering examples, simulation experiments were performed using the new
algorithm to extract mathematical models for external narrow space environ-
ments. The experimental results showed that when using the new algorithm,
the hyper-redundant manipulator could complete the tasks of passing through
curved pipes and moving into narrow workspaces. The effectiveness of the
algorithm was also proven by these experiments.

Keywords: Hyper-redundant manipulator; backbone curve; narrow workspace;
motion-planning

1 Introduction

Hyper-redundant manipulators have tremendous application potential for complex working envi-
ronments and narrow spaces, and currently play important roles in aerospace engineering [1,2], nuclear
power engineering [3–5], and clinical medicine [6–9]. To maintain high flexibility and portability, hyper-
redundant manipulators often adopt rope drives [10]. Owing to the many degrees of freedom in hyper-
redundant manipulators, solving their inverse kinematics equations is usually more complicated. There

http://dx.doi.org/10.32604/cmc.2022.026845
mailto:lzhang@zstu.edu.cn


4818 CMC, 2022, vol.72, no.3

are three primary method types commonly used for solving inverse kinematics [11]. One method is to
solve the differential kinematics equations numerically using a pseudo-inverse solution of the Jacobian
matrix [12,13]. This method involves a large number of calculations and has a slow calculation speed.
Another method is to solve the inverse kinematics of a manipulator using an artificial neural network
[14,15]; however, the training set for the neural network must be very large, and it is difficult to
achieve instantaneous kinematics planning for the manipulator. The geometric method, based on the
backbone curve proposed by Chirikjian et al. [16,17], is also useful for solving manipulator inverse
kinematics. This method requires a small number of calculations and can be used for instantaneous
control and online path planning.

Path-following motion [18] refers to motion where the end of a hyper-redundant manipulator
follows a specified path, reproducing the path curve as closely as possible during the motion. During
motion planning for a hyper-redundant manipulator with a mobile base platform, path-following
motion is more aligned with its motion characteristics and can achieve the necessary flexibility
and freedom. Fuzzy control methods can be used to achieve this kind of motion planning [19,20].
Additionally, for complex three-dimensional models, principal component analysis (PCA) can be used
to reduce the dimensionality of the model, project the data into a low-dimensional subspace, and
reduce the data processing complexity [21].

In this study, a hyper-redundant manipulator was designed, and its positive kinematics equation
was derived by a homogeneous matrix coordinate transformation. Focusing on the problems that
path-following motion is only suitable for a hyper-redundant manipulator with a moving base and
that the mode function backbone curve is not suitable for moving along the tangent direction of a
known path, a cost-effective method is proposed to achieve motion planning for a hyper-redundant
manipulator based on a combination of the backbone curve and the path-following concept. The
algorithm caused the position of the end effector to move along the tangent direction of a known
path, and the joint position of the entering path was always close to the known path. This algorithm
allows hyper-redundant manipulators to complete the motion in pipelines or other narrow workspaces.

2 Positive Kinematics of a Hyper-Redundant Manipulator

A hyper-redundant manipulator is shown in Fig. 1. This manipulator was composed of 12 links
and an end effector. The links were connected by 12 universal joints, the hyper-redundant manipulator
was driven by ropes, and driving motors were located in the manipulator box.

Figure 1: Coordinate system and structure of a hyper-redundant manipulator

The structural and joint angle parameters of the hyper-redundant manipulator are shown in
Tab. 1. The joints in the manipulator are characterized by θ i and αi, where θi, αi ∈ (−60◦, 60◦) and
i = 1, . . . , 12 Oi represents the position of the center of each universal joint and the origin of each
coordinate system. All the coordinate systems are shown in Fig. 1. The x0 direction in the coordinate
system of the base was defined as the direction from the center of the first universal joint to the position
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of the end effector when all the joints had angles of 0o. The z0 direction in the coordinate system of the
base was defined as the vertical upward direction, and the y0 direction in the coordinate system of the
base was determined by the right-hand rule. A homogeneous coordinate transformation was used to
obtain the positive kinematics model [22], and an Oixiyizi coordinate system was established at each
universal joint. The origin of the O1x1y1z1 coordinate system coincided with the origin of the O0x0y0z0

coordinate system. The positive direction of each zi axis pointed to the center of the next universal
joint. The direction of the yawing motion for each universal joint was selected as the xi axis and the
direction of the pitching motion was chosen as the yi axis for each joint. The upward direction of each
xi axis was positive, and the yi axis was determined by the right-hand rule, as shown in Fig. 2a. The
conversion relationship between two adjacent coordinate systems is shown in Figs. 2b and 2c. First,
the Oi−1xi−1yi−1zi−1 coordinate system is translated along the zi−1 axis by the link length, li−1, to obtain
the Oix′

i−1y
′
i−1z

′
i−1 coordinate system. Then the Oix′

i−1y
′
i−1z

′
i−1 coordinate system is rotated around the y′

i−1

axis by θi−1 to obtain the Oix′′
i−1y

′′
i−1z

′′
i−1 coordinate system. Finally, the Oix′′

i−1y′′
i−1z

′′
i−1 coordinate system

is rotated around the x′′
i−1 axis by the angle αi to obtain the Oixiyizi coordinate system.

Table 1: Motion parameters and structural parameters of the hyper-redundant manipulator

Joint number (i) Yaw Pitch li(mm)

1 α1 θ 1 179
2 α2 θ 2 179
3 α3 θ 3 179
4 α4 θ 4 179
5 α5 θ 5 179
6 α6 θ 6 179
7 α7 θ 7 179
8 α8 θ 8 179
9 α9 θ 9 179
10 α10 θ 10 130
11 α11 θ 11 130
12 α12 θ 12 136

Figure 2: Universal joint coordinate systems and conversion rules between adjacent coordinate systems



4820 CMC, 2022, vol.72, no.3

The homogeneous transformation matrix used during this study is presented as

Ti
i−1 = Trans (0, 0, li−1) Rot

(
y′

i−1, θi

)
Rot (x′′

i−1, αi) =

⎡
⎢⎢⎣

cαi sαisθi sαicθi 0
0 cθi −sθi 0
−sαi cαi sθi cαicθi Li−1

0 0 0 1

⎤
⎥⎥⎦ (i = 2, 3, . . . , 12),

(1)

where c and s represent cos and sin, respectively.

The coordinate transformation process from the basic O0x0y0z0 coordinate system to the O0x1y1z1

coordinate system is to rotate the O0x0y0z0 coordinate system by −90◦ around the y0 axis to obtain the
O0x′

0y
′
0z

′
0 coordinate system, then the O0x′

0y
′
0z

′
0 coordinate system must rotate 180◦ around the x′

0 axis to
obtain the O0x′′

0y
′′
0z

′′
0 coordinate system. Then the O0x′′

0y
′′
0z

′′
0 coordinate system must be rotated around

the y′′
0 axis by α1 to obtain the O0x′′′

0 y′′′
0 z′′′

0 coordinate system. Finally, the O0x′′′
0 y′′′

0 z′′′
0 coordinate system

is rotated around the x′′′
0 axis by θ1 to obtain the O0x1y1z1 coordinate system, as shown in Fig. 3.
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Figure 3: Coordinate transformation for the coordinate system of the first joint

The homogeneous transformation matrix from the basic O0x0y0z0 coordinate system to the
O0x1y1z1 coordinate system can be expressed by

T 1
0 = Rot(y0, −π/2)Rot(x′

0, π)Rot(y′′
0, θ1)Rot(x′′′

0 , α1) =

⎡
⎢⎢⎣

−sα1 cα1sθ1 cα1cθ1 0
0 −cθ1 sθ1 0
cα1 sα1sθ1 sα1cθ1 0
0 0 0 1

⎤
⎥⎥⎦ . (2)

The transformation matrix of the ith joint is expressed by

Ti
0 = T 1

0 T 2
1 T 3

2 . . . Ti−1
i−2 Ti

i−1(i ≤ 12). (3)

The kinematics equation for the hyper-redundant manipulator can then be expressed by⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ = 12

0 T

⎡
⎢⎢⎣

0
0
l12

1

⎤
⎥⎥⎦ . (4)

When the joint angles are inserted into Eqs. (1)–(4), the position of the manipulator’s end effector
can be obtained.
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3 Motion-Planning Algorithm Based on the Backbone Curve and Path-Following

The geometric method, based on the backbone curve, was used to solve the inverse kinematics
of the hyper-redundant manipulator in this study. The backbone curve of the hyper-redundant
manipulator had to be determined first. Then the positions of the hyper-redundant manipulator joints
must be fitted to the backbone curve. Finally, the geometric method was used to solve for the joint
angles.

3.1 Backbone Curve Based on the Mode Function
The modal method uses differential geometry to solve the inverse kinematics of hyper-redundant

manipulators. The backbone curve of the mode function is shown in Fig. 4.
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Figure 4: Mode function backbone curve

The mode function of the backbone curve [23] is expressed by

X(s, t) =
∫ s

0

lu(σ , t)dσ=
⎡
⎣x(s, t)

y(s, t)
z(s, t)

⎤
⎦ , (5)

where s represents the normalized length parameter of the backbone curve and l represents the length
of the backbone curve. The coordinates of each point in the backbone curve in the O0x0y0z0 coordinate
system are represented by x (s, t), y (s, t), and z (s, t). u(σ , t) represents the unit tangent vector of the
backbone curve at σ , and can be expressed by

u(s, t) =
⎡
⎣sin K(s, t) · cos T(s, t)

cos K(s, t) · cos T(s, t)
sin T(s, t)

⎤
⎦ . (6)

In Eq. (6), K(s, t) and T(s, t) determine the pose of the backbone curve and are expressed by

K(s, t) = a1 sin(2πs) + a2(1 − cos(2πs)) + b1k

(
1 − sin

(π

2
s
))

+ b2k sin
(π

2
s
)

T(s, t) = a3(1 − cos(2πs)) + b1t

(
1 − sin

(π

2
s
))

+ b2t sin
(π

2
s
)

.
(7)

In Eq. (7), a1, a2, and a3 are modal participation factors. b1k and b1t are the two angles of the initial
position of the main curve corresponding to K(0, t) and T(0, t), respectively. b2k and b2t are the two
angles of the end position of the main curve corresponding to K(1, t) and T(1, t), respectively. b1k, b1t,
b2k, and b2t were determined by the desired angles at the beginning and end of the backbone curve.
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When solving for the direction vector, u(s, t), the Newton iteration method was used to obtain the
modal participation factors, a1, a2, and a3:

am+1 = am + ωJ−1
a (am, 1)[XD − Xm]. (8)

In Eq. (8), ω is a constant that controls the convergence speed, m is the number of iterations, and
XD is the target end position point. Xm is the end point vector of the mode function backbone curve
obtained by substituting am into Eq. (7) after the mth iteration, and J−1

a (am, 1) is the inverse matrix of
the 3 × 3 modal Jacobian matrix when the ridge arc length, s, is equal to 1. The element relationship
in Ja(a, 1) is presented as

Ja(a, 1) =

⎡
⎢⎢⎢⎢⎢⎣

∂x(1, t)
∂a1

∂x(1, t)
∂a2

∂x(1, t)
∂a3

∂y(1, t)
∂a1

∂y(1, t)
∂a2

∂y(1, t)
∂a3

∂z(1, t)
∂a1

∂z(1, t)
∂a2

∂z(1, t)
∂a3

⎤
⎥⎥⎥⎥⎥⎦ , (9)

where x(1, t), y(1, t), and z(1, t) are the expressions concerning the modal participation factors a1, a2,
and a3, respectively, obtained when s = 1 in Eq. (5). Ja(am, 1) is the 3 × 3 matrix obtained by substituting
am obtained after the mth iteration into Eq. (8). When solving for the backbone curve, the backbone
curve length, l, the backbone curve end point, XD, the initial point position, X0, b1k, b1t, b2k, and b2t

must all be selected first. The backbone curve must be divided into Q equal parts, and the normalized
coordinates of each division point are S = [0, 1/Q, 2/Q, . . . , (1 − 1/Q) , 1]. The modal participation
factors, a1, a2, and a3, must be determined from Eq. (8), then they must be substituted into Eq. (5) with
S as the upper limit of integration to obtain a set of mode function curves composed of Q + 1 points.

3.2 New Algorithm
The motion-planning algorithm for the hyper-redundant manipulator based on path-following

and the backbone curve is primarily useful for passing the end effector through curved pipes and
narrow spaces.

As shown in Fig. 5, the backbone curve was divided into a mode function curve segment and a
known path curve segment. Point O represents the center of the first universal joint and the ÃB curve
is a path through a narrow space. The curve in the narrow space is defined as a known path segment
(curves ĀE ′ and ĀE ′′) and the curve from the base of the manipulator to the initial point of the known
path segment is defined as the mode function curve segment (curves ŎSA, ŎTA, and ȮUA). The
known path length was obtained by the trapezoidal integration method, expressed by

Lpath =
∫ s

0

√
(
dxpath

dt
)

2

+ (
dypath

dt
)

2

+ (
dzpath

dt
)

2

dt. (10)

In Eq. (10), the integral’s upper limit is s = 1. xpath, ypath, and zpath are the coordinate values of the
discrete points in the path and M represents the total number of discrete points in the path. t is the
normalized main curve coordinate, equal to t = [1/M, 2/M, . . . , (M − 1)/M, 1].

Five primary steps were used to solve for the set of backbone curves in the motion process.

Step 1: The total length of the initial mode function curve, ŎSA, was defined as the total length
of the hyper-redundant manipulator, Lsum. The starting point of the mode function curve was set as
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the center of the first universal joint, and end point coincided with the initial point of the known path.
The angles b1k and b1t at the starting point of the mode function curve were determined by the initial
orientation of the manipulator. The two end angles, b2k and b2t, remained tangent to the known path,
ÃB, so that the improved backbone curve was always smooth. The backbone curve was obtained using
the method described in Section 3.1. The step length and step number were set as λ and N, respectively.

O

x

y

z

S

A

B

T

EÛ
E

(EÙ)

U

C

D

EÛ

Figure 5: The motion process of the backbone curve when the new algorithm was used

Step 2: At the ith step, the backbone curve was composed of the new mode function curve segment,
ŎTA, and the known path curve segment, ĀE ′, that had been traversed. The length of the known path
curve segment that had been traversed was iλ. The new mode function curve segment length, Lm, can
be expressed by

Lm = Lsum − iλαstep(0 ≤ αstep ≤ 1). (11)

In Eq. (11), αstep is generally 1, but when the curvature is large it is equal to 0.98.

Step 3: If the end-actuator position, E ′, fell between two adjacent given points, C (xC, yC, zC) and
D (xD, yD, zD), in the known path, ÃB, then linear interpolation was used to determine the position of
the landing point, E ′ (xE′ , yE′ , zE′). If the Euclidean distance between points C and D was |CD|, then
Eq. (10) was used to find the length, LÙAC, of curve |AC|, and E ′ (xE′ , yE′ , zE′) could be obtained from
Eq. (12). If E ′ fell on a given point of the known path, then this point was point E ′. Then the mode
function curve, ŎTA, and curve ĀE ′ were connected to obtain the backbone curve, ˚�OTAE ′, at the ith

step.⎡
⎣xE′

yE′
zE′

⎤
⎦ =

⎡
⎣xC

yC

zC

⎤
⎦ + iλ

|CD|

⎡
⎣xD − xC

yD − yC

zD − zC

⎤
⎦ (12)

Step 4: i = i + 1 was applied, and the process was repeated, beginning with Step 2, to find the
backbone curve for each step. The loop was terminated when i = N − 1.

Step 5: When i = N, the step length was changed so that the position, E ′′, of the manipulator’s
end actuator fell on the end point, B, of the known curve. Then the backbone curve could be obtained.

3.3 Fitting of the Hyper-Redundant Manipulator and the Backbone Curve
As shown in Fig. 6, a dichotomy was used to fit the end point of the manipulator and the center

of each universal joint to the backbone curve in turn, in the direction from the end point to the origin.
The fitting process followed four primary steps.
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Figure 6: The relationship between the manipulator and the backbone curve during motion

Step 1: The initial mode function curve from the base coordinate origin of the manipulator to the
starting point of the known path was composed of Q + 1 known discrete points. The initial point of
the backbone curve was defined as the left end point of the dichotomy iteration, and the end of the
backbone curve as the right end point. The coordinates of the mth point were found, and this point was
defined as point W (m = [Q/2]). When the distance from point W to the right end of the backbone
curve was greater than the length of the end linkage, the right endpoint remained unchanged, and
point W was taken as the left endpoint. When the distance from point W to the right end of the
backbone curve was less than l12, the left endpoint remained unchanged, and point W was taken as
the right endpoint. Then iterations continued with the new left and right endpoints. The iterations
stopped when the distance from point W to the end point of the backbone curve was equal to the
length of the end linkage within the accuracy range. If point W coincided with a known point, then
this point was taken as the center point of universal joint O12. Otherwise, the two known points, Pj−1

and Pj, that were adjacent to the target point, were found.

Step 2: Pj−1 and Pj were connected to place the end point of the backbone curve at the center of a
circle with l12 as the arc radius. The intersection of the arc and line Pj−1Pj was taken as O12, as shown
in Fig. 7.

Oi

Pj-1

Pj

Xi+1Xi+2

Xe

Figure 7: Selection of the center position of a universal joint
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Step 3: Similarly, Steps 1 and 2 were repeated to fit all but the first two universal joints to the
backbone curve in turn.

Step 4: When determining the position of the second universal joint, the middle vertical plane of
vector

−−→
O1O3 was used to draw a sphere with O1 as the center and l1 as the radius. Circle T resulted from

the intersection of the sphere and the plane. Any point on the circle was selected as O2. The fitting of
the manipulator and the backbone curve is shown in Fig. 8.

Figure 8: Selection of the center position of the second universal joint

When a hyper-redundant manipulator is fitted, the length of the backbone curve must be
appropriately greater than the length of the manipulator if the backbone curvature is large.

3.4 Solving for the Joint Angles
The universal joint angles for the hyper-redundant manipulator were solved using the closed vector

method. In Fig. 9, On+1 represents the endpoint of the end effector. L1, L2, . . . , Ln denote the linkage
vectors in the base coordinate system, O0x0y0z0. X2, X3, . . . , Xn represent the joint center vectors in the
base coordinate system, O0x0y0z0, expressed as Xi = [xiyizi1] T , and Xn+1 represents the endpoint vector.

L1

L2

Ln-1

L3

Ln

X3

X4

Xn-1Xn

Xn+1

O2
X2

O3

O4

On-1
On

On+1

O1O0

y0

x0

z0

Figure 9: Closed vector model for the hyper-redundant manipulator

The process of solving for the manipulator’s joint angles was divided into three primary steps [23].
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Step 1: For the first universal joint, the known vector, X 2, could be expressed by

X2=

⎡
⎢⎢⎣

x2

y2

z2

1

⎤
⎥⎥⎦ = T 1

0

⎡
⎢⎢⎣

0
0
l1

1

⎤
⎥⎥⎦ . (13)

In Eq. (13), x2, y2, and z2 are the coordinates of the center position of the second universal joint
in the base coordinate system, O0x0y0z0, and T 1

0 is the homogeneous transformation matrix shown in
Eq. (2). By solving T 1

0 , the rotation angles for the first universal joint, α1 and θ1, were obtained.

Step 2: For the second universal joint, α2 and θ2 in T 2
1 were obtained by solving

(T 1
0 )

−1

⎡
⎢⎢⎣

x3

y3

z3

1

⎤
⎥⎥⎦ = T 2

1

⎡
⎢⎢⎣

0
0
l2

1

⎤
⎥⎥⎦ . (14)

Step 3: Similarly, αi and θi (i = 2, 3, . . . , 12) were obtained by solving

(Ti−1
0 )−1

⎡
⎢⎢⎣

xi+1

yi+1

zi+1

1

⎤
⎥⎥⎦ = Ti

i−1

⎡
⎢⎢⎣

0
0
li

1

⎤
⎥⎥⎦ . (15)

4 Engineering Experiments
4.1 Motion Through a Bent Pipe

As shown in Fig. 10, during the exploration of a certain piece of aviation equipment, the base
of a hyper-redundant manipulator was at O0 (0, 0, 0), and A (1, 200, 100, 300 mm) was the starting
point of the central axis of the bent pipe. The diameter of the pipe was 70 mm, the turning radius was
100 mm, and the end point of the central axis of the pipe was located at B (1, 800, 100, 100 mm). The
red line between A and B represents the known path segment. The hyper-redundant manipulator was
required to pass through the bent pipe. The inverse solution for the hyper-redundant manipulator was
solved using the proposed algorithm.

Figure 10: Bent pipe model and path selection
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The origin of the mode function curve was at O0 and the end point of the mode function curve was
at A. Using the algorithm described in Section 3.1, the four angles, b1k, b1t, b2k, and b2t, were set as 0, 0,
π/2, and 0, and Lsum was set as 2,007 mm. The mode function curve segment is shown in Fig. 11a. Also,
the end effector of the hyper-redundant manipulator was made to move forward along the curved path
with a 5-mm step length. The orientation of the backbone curve at the 60th step is shown in Fig. 11b.
The end point of the backbone curve had traveled 300 mm along the known path. The starting point,
the end point, and the four angle parameters, b1k, b1t, b2k, and b2t, of the mode function curve were the
same as in Fig. 11a. In Fig. 11c, the end point of the backbone curve moved to the target position.

Figure 11: Orientation of the backbone curve during the motion through the bent pipe

When solving for the backbone curve at each step, the hyper-redundant manipulator and the
backbone curve were fitted by the algorithm described in Section 3.3, and the results are shown
in Fig. 12. The three hyper-redundant manipulator orientations in Fig. 12 correspond to the three
backbone curves in Fig. 11, and the manipulator orientations were consistent with the backbone
curves. In Fig. 12a, the manipulator was in the initial motion state. In Fig. 12b, the end effector and the
11th and 12th universal joints were located on the known path and moved along the direction tangent
to the path. Fig. 12c shows that the end effector coincided with the end point B, and that the 9th–12th

universal joints were close to the known path to achieve the expected motion. The inverse solutions
are shown in Fig. 13.

Figure 12: Orientations of the hyper-redundant manipulator during motion

The red and blue curves in Fig. 13 represent the changes in α and θ , respectively. The trends were
relatively smooth. These solutions were substituted into the positive kinematics equation in Section 3.1
to drive the robot’s motion. The hyper-redundant manipulator passed through the bent pipe, verifying
the effectiveness of the algorithm.
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Figure 13: Inverse solutions of the hyper-redundant manipulator as it traveled through the bent pipe

4.2 Motion When Entering Narrow Cabins
As shown in Fig. 14, during the process of exploring a piece of an aviation equipment, the center

of the first universal joint in the hyper-redundant manipulator was at O0 (0, 0, 0), and it had to enter
the cabins sequentially for cleaning or searching. The manipulator was directed to move along the red
path to point C (1,470, −50, 200 mm), and the coordinates of A and B were (1,200, 100, 300 mm) and
(1,470, 190, 300 mm), respectively.

Figure 14: Path selection and location of key points
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Using the new method proposed in this study, a series of results were generated. A backbone curve
was obtained and is shown in Fig. 15a. The orientation of the backbone curve at the 60th step is shown
in Fig. 15b. The length of the mode function curve segment was 1,707 mm. The modal participation
factors of the mode function curve were regenerated using Equation (9), and the other parameters
remained unchanged. In Fig. 15c, the manipulator had reached the target point. Fig. 15d and Fig. 15e
represents the backbone curve during the return motion and the backbone curve when the manipulator
had returned to the starting point, respectively. The hyper-redundant manipulator and the backbone
curve were fitted by the algorithm from Section 3.3, and the results are shown in Fig. 16. The five
orientations of the hyper-redundant manipulator in Fig. 16 correspond to the five backbone curves in
Fig. 15, and the manipulator orientations were consistent with the backbone curves. The orientations
at the initial position and when the manipulator had entered the cabin along the known path are shown
in Fig. 16a and Fig. 16b, respectively. At this time, the end effector and the 11th and 12th universal
joints had entered the cabin.

Figure 15: Backbone curve orientations when entering the narrow cabins

Figure 16: (Continued)
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Figure 16: Manipulator orientations when entering the narrow cabins

Fig. 16c shows the orientation when the end effector had reached the end point, C. The end
effector and the 11th and 12th universal joints were located in one cabin, and the 9th and 10th universal
joints were located in another cabin. Fig. 16d shows that the end effector returned along the known
path. Fig. 16e shows the end effector and the universal joints when the hyper-redundant manipulator
had completely exited the cabins. These inverse solutions are shown in Fig. 17. Simulation experiments
based on these inverse solutions verified the correctness and effectiveness of the new algorithm.

Figure 17: The angles of the universal joints and the manipulator motion when entering the narrow
cabins
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5 Conclusions

Using the homogeneous coordinate transformation method to derive the positive kinematics
equation for a hyper-redundant manipulator can reduce the number of coordinate systems, simplify
the derivation process for the transformation matrix, and save calculation time. An improved modal
backbone curve method was proposed in this study. First, with changes in the discrete points along the
known path, the backbone curves that the hyper-redundant manipulator used to reach these points
were dynamically obtained. Then, the joints of the hyper-redundant manipulator were fitted to the
modal backbone curves. Finally, the inverse kinematics of the hyper-redundant manipulator were
solved based on the spatial geometry method. This method solved the motion-planning problem of an
industrial hyper-redundant manipulator entering a known narrow environment.

Engineering application experiments verified the hyper-redundant manipulator’s ability to move
through curved pipes and narrow workspace areas. The effectiveness of the new algorithm was also
proven by these experiments.
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