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Abstract: Whole brain functional connectivity (FC) patterns obtained from
resting-state functional magnetic resonance imaging (rs-fMRI) have been
widely used in the diagnosis of brain disorders such as autism spectrum
disorder (ASD). Recently, an increasing number of studies have focused on
employing deep learning techniques to analyze FC patterns for brain disease
classification. However, the high dimensionality of the FC features and the
interpretation of deep learning results are issues that need to be addressed
in the FC-based brain disease classification. In this paper, we proposed
a multi-scale attention-based deep neural network (MSA-DNN) model to
classify FC patterns for the ASD diagnosis. The model was implemented by
adding a flexible multi-scale attention (MSA) module to the auto-encoder
based backbone DNN, which can extract multi-scale features of the FC
patterns and change the level of attention for different FCs by continuous
learning. Our model will reinforce the weights of important FC features
while suppress the unimportant FCs to ensure the sparsity of the model
weights and enhance the model interpretability. We performed systematic
experiments on the large multi-sites ASD dataset with both ten-fold and leave-
one-site-out cross-validations. Results showed that our model outperformed
classical methods in brain disease classification and revealed robust inter-
site prediction performance. We also localized important FC features and
brain regions associated with ASD classification. Overall, our study further
promotes the biomarker detection and computer-aided classification for ASD
diagnosis, and the proposed MSA module is flexible and easy to implement
in other classification networks.
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1 Introduction

Brain disease diagnosis is now becoming a new hotspot issue in the research of artificial
intelligence and brain science. Noninvasive brain imaging technologies have effectively enhanced
the understanding of the neural substrates underlying brain disorders, and may help to reveal the
associated biomarkers that can be used for imaging diagnosis. As a non-invasive brain imaging
technology, resting-state functional magnetic resonance imaging (rs-fMRI) has been widely applied
in brain diseases diagnosis [1,2]. Owing to the expectation of existing interactions between different
brain regions, functional connectivity (FC) analysis, which measures the temporal correlations in the
fMRI activity between spatially distant brain regions, has become the primary method to analyze rs-
fMRI data. Recent studies have shown that many brain diseases, such as autism spectrum disorder
(ASD), schizophrenia, and Alzheimer’s disease, are associated with abnormalities in the brain FC
patterns [3–5].

With the rapid development of artificial intelligence and data mining techniques, machine learning
methods have been employed in recent studies to classify the FC patterns for brain disease diagnosis.
As an important feature extraction technique, deep learning models can automatically learn lower-
dimensional abstract feature representations from the initial input. Recently, more and more works
have applied deep learning methods to the FC-based brain disease classification [6–8]. Among them,
auto-encoder (AE) is currently the most widely used model that construct fully connected deep neural
network (DNN) for the FC pattern classification. These methods reshape the FC patterns in vector
forms as input and commonly need to learn a large number of parameters. Although substantial
achievements have been made in the FC pattern classification, these DNN models can cause problems
such as slow model convergence and overfitting due to the dense model parameters. Moreover, for the
FC pattern, the data at each location represents the strength of functional correlation between different
brain regions, which has obvious biological significance. Therefore, exploring robust classification
model as well as improving the model interpretability will be benefit to promote the computer-aided
brain disease classification and the research of biomarkers for clinical diagnosis.

In this work, we proposed a multi-scale attention-based DNN (MSA-DNN) model to classify the
FC patterns for brain disease diagnosis. The model consisted of a backbone classification network
based on fully connected structure and a multi-scale attention (MSA) module. For the backbone
network, we built a DNN based on AEs to project high-dimensional FC features into a lower-
dimensional feature space. We combined both unsupervised and supervised training processes to
improve the effectiveness of feature learning. Inspired by the attention mechanism [9,10], we proposed
a flexible MSA module that can be embedded between the hidden layers of the backbone network.
The MSA module extracted multi-scale features of the FC patterns and added attention weights to
the FC features at each position. This ensures that more important FC features are continuously
emphasized and less important FC features are continuously suppressed. To verify the effectiveness
of the proposed model, we performed systematic experiments on the Autism Brain Imaging Data
Exchange (ABIDE) dataset, which aggregated large-scale collections of rs-fMRI data for ASD patients
and healthy controls. Ten-fold and leave-one-site-out cross-validations were conducted to examine
the classification performance. Moreover, we conducted saliency map analysis to locate the most
important FC features correlated to the ASD classification [11].

The main contributions of this paper are summarized as follows:

(1) We proposed a novel MSA-DNN model to classify FC patterns for ASD diagnosis. The model
built a DNN with both unsupervised and supervised training steps to improve the effectiveness
of feature learning. A flexible MSA module was added between the hidden layers of the DNN
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model, which can fuse the multi-scale features of the FC patterns to enhance the sparsity of
the model weights and improve the model interpretability.

(2) Systematic experiments were conducted on the large-scale multi-sites ABIDE dataset. Results
of ten-fold and leave-one-site-out cross-validation experiments indicate the robust classifi-
cation performance of our MSA-DNN model. We also identified important FC features as
biomarkers associated with ASD classification.

(3) This study further extends previous studies on FC-based brain disease classification. The
proposed MSA module is flexible and easy to implement, and can be embedded into other
classification networks.

2 Related Works

The use of non-invasive rs-fMRI has greatly promoted the neuroscience studies, which helps to
investigate the pathological mechanism underlying the brain disease as well as to detect the potential
diagnostic biomarkers [1,12]. Rs-fMRI can measure blood oxygen level-dependent (BOLD) signal
fluctuations to reflect the functional activities of neurons or brain regions, thus can be used to
quantify the functional interactions between brain regions. Neuroscience studies have shown that the
human brain is a highly interactive system which can perform complex cognition tasks through the
interconnections of multiple brain regions. An increasing number of studies have indicated that many
brain diseases are associated with interruptions or abnormalities in the FC patterns [13–15].

Machine learning techniques have been widely used in recent rs-fMRI studies to identify the FC
pattern differences associated with brain diseases [16–19]. Classical machine-learning methods such
as the support vector machine (SVM), logistic regression (LR), and random forest (RF) have been
found effective in analyzing the fMRI data. Due to their simple and easy to implement properties,
these methods, especially the SVM, have been widely employed as classifiers for the FC pattern
classification. For instance, Rosa et al. [18] built a sparse framework with graphical LASSO and
L1-norm regularization linear SVM for discriminating the major depressive disorder (MDD). Chen
et al. [19] applied SVM to classify the FC patterns constructed from different frequency bands for
ASD diagnosis. However, these methods may not able to effectively learn high-level abstract feature
representations for the complex FC patterns thus limit the further improvement of their performance.
As a promising alternative, deep learning methods can automatically learn multi-level low-dimensional
abstract feature representations from the initial input, and have achieved outstanding performance in
computer vision, communications, and fog computing [20–24]. Recently, deep learning methods have
attracted an increasing attention in computer-aided medical diagnosis [25–27]. Accordingly, adopting
DNN to analyze the FC patterns for brain disease classification has become the new trends [6–8].
Among the deep learning methods, AE is commonly employed model that construct fully connected
DNN for FC pattern classification. Kim et al. [28] adopted AE with L-1 regularization as pre-training
model to initial DNN for the classification of schizophrenia, and obtained lower error rate than SVM.
Heinsfeld et al. [8] built a stack AE (SAE) model with two denoising AEs to distinguish the ASD
group from the healthy controls, and achieved robust classification performance on the large-scale
ASD dataset. In general, these DNNs can extract more informative abstract features to analyze the
FC patterns and achieve better classification performance than traditional machine learning methods.
However, these DNN models commonly need to train a large amount of model parameters from high-
dimensional input FC pattern, which may lead to slow model convergence and overfitting problems.
Therefore, study of robust classification model while enhance the sparsity of the model weights may
further promote the computer-aided brain disease classification.
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In this study, we proposed a novel MSA-DNN model to classify FC patterns for ASD diagnosis.
A flexible MSA module was introduced to fuse the multi-scale FC features and enhance the sparsity
of model weights. Detailed implementations of our model are described in the following sections.

3 Materials and Methods
3.1 Data Acquisition and Preprocessing

In this study, rs-fMRI data were obtained from the large-scale ASD dataset ABIDE (http://
fcon_1000.projects.nitrc.org/indi/abide/). ABIDE aggregates previously collected rs-fMRI data with
corresponding anatomical and phenotypic information from 17 international sites to make available
for data sharing with the broader scientific community. The rs-fMRI data in ABIDE have been widely
used in recent research to explore the pathological basis of ASD and potential diagnostic biomarkers.
Data preprocessing was performed by the Configurable Pipeline for the Analysis of Connectomes
(CPAC) [29], which mainly included slice-time correction, motion correction, spatial registration and
normalization, nuisance signal regression, and band-pass filtering (0.01–0.1 Hz). After data check and
collation, a total of 989 subjects were included in the subsequent analysis. The phenotypic information
of the subjects in this study is summarized in Tab. 1.

Table 1: Phenotypic information of subjects in ABIDE dataset

Type Number Avg age (±SD) Gender(M/F)

ASD 480 16.6 (±8.2) 422/58
HC 509 16.6 (±7.3) 418/91
Note: ASD: Autism Spectrum Disorder, HC: Healthy Control, Age Avg: Average Age, SD: Standard Deviation, M: Male, F: Female.

3.2 Overview of the Proposed Classification Framework
In this study, we proposed a MSA-DNN model to classify the FC patterns for ASD diagnosis.

Fig. 1 shows the overview flowchart of our classification framework. The FC patterns were con-
structed from the pre-processed rs-fMRI data by correlation analysis, and the network nodes were
defined by CC200 brain atlas (Fig. 1a). Considering the high dimensionality of the FC features, we
designed a novel DNN model to learn abstract feature representations from the FC patterns for ASD
classification. The model consisted of a backbone network based on fully connected structure and a
MSA module. For the backbone network, we built a DNN based on AEs to project high-dimensional
FC features into a lower-dimensional feature space (Fig. 1b). In addition to the unsupervised learning
process, a supervised training step was further employed to improve the effectiveness of feature
learning. This was implemented by adding a flexible MSA module between the hidden layers of the
backbone network (Fig. 1c). The MSA module fused multi-scale features of the FC patterns and added
attention weights to the FC features to continuously emphasize the more important FCs and suppress
the less important FCs. Details for each stage are described in the following subsections.

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
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Figure 1: Overview flowchart of the proposed classification framework

3.3 Construction of the FC Patterns
As shown in Fig. 1a, the average time series were extracted from each ROI, and the FC patterns

were constructed by the computation of pairwise correlations between the regional-averaged rs-
fMRI signals for each brain region pair. The correlations were calculated by Pearson’s correlation
coefficients. Assume that xi(t), xj(t) ∈ RM represent the average rs-fMRI signals for the ith and jth ROIs
at the time point t (t = 1, 2, . . . , T). M and T denote the total number of ROIs and total number of
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time points, respectively. The FC strength between these two ROIs rij can be defined as:

rij =

T∑
t=1

(xi(t) − x̄i)(xj(t) − x̄j)√
T∑

t=1

(xi(t) − x̄i)
2

√
T∑

t=1

(xj(t) − x̄j)
2

(1)

where x̄i and x̄j represent the means of xi(t) and xj(t). By calculating the Pearson correlation between
the average rs-fMRI time series for each brain region pair, we generated the classical correlation-
based FC patterns. A Fisher-r-to-z transformation was also performed to force the FC matrices to
be normally distributed. In addition, since the FC matrices are symmetric, the upper triangle values
of each FC matrix were retained and reshaped into an FC feature vector with M(M−1)

2
elements. In this

work, M = 200, the initial FC feature dimension is L = M(M−1)

2
= 19900.

3.4 AE-Based Backbone DNN Construction
For the backbone network, we built a DNN model based on AEs to learn abstract feature

representations from the initial high-dimensional FC patterns. AE is a neural network model that
learns a lower-dimensional feature representation (hidden layer) of the input nodes by encoding and
decoding procedures with unsupervised learning (Fig. 2). The purpose of AE training is to reduce the
differences between the input data xi and the reconstructed data zi by continuously optimizing the loss
function, so that the abstract feature representations can retain maximum useful information.

Figure 2: Two phases of the AE training

The error between the input and the reconstructed features can be measured by the mean square
error (MSE). Due to the characteristics of high-dimensionality and small sample-size of the FC
data, we also used the Kullback-Leibler (KL) divergence to constrain the sparsity of the hidden-layer
activation neurons of AE and added the L-2 regularization term to further avoid overfitting. The total
loss function in the unsupervised training process can be defined as,

loss(W , b) = JMSE + β

m∑
j=1

KL(ρ||ρ̂j) + λ

2
JL−2 (2)

where JMSE represents the MSE for total C samples, the second and third terms represent the KL
divergence and L-2 regularization terms, respectively; β and λ are hyperparameters.
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In the network training, we firstly used greedy algorithm for unsupervised training of AEs. As
shown in Fig. 1b, we trained 4 AEs, each of which was trained independently, with the hidden layer of
the current AE became the input in the next AE training. The back-propagation algorithm was used
to minimize the loss function in Eq. (2) to obtain the optimal AE parameters, so that the network
continuously learned a more generalized abstract feature representation for the FC patterns.

To further enhance the learning and classification performance and improve the model inter-
pretability, we conducted supervised learning to fine-tune the overall network in addition to the
unsupervised training process. As shown in Fig. 1c, the pre-trained AEs were stacked to generate the
initial DNN and a MSA module was introduced between the hidden layers of the backbone network.
More details about the MSA module will be described in the next section. In the supervised training
step, an additional layer (labels) was added on the top of the DNN model, and the cross-entropy loss
function was used for the supervised fine-tuning of the overall network:

Closs = − 1
C

C∑
i=1

2∑
j=1

1 {yi = j} log p(yi = j|xi; θ) (3)

where p(yi = j|xi; θ) represents the probability that sample xi is classified in class j with the model
parameter θ . This probability can be derived by:

p(yi = j|xi; θ) = eθT
j xi

2∑
l=1

eθT
l xi

(4)

In this study, in order to reduce the information loss due to the sharp dimensional reduction
between layers, we used denoising AE with sparse penalty in the first AE, and used denoising AE in
the other three AEs to increase the robustness of our model. In the supervised training process, we
used the Adam optimization algorithm to update the model parameters and employed the learning
rate decay strategy in the optimization. The configuration of the backbone DNN is summarized in
Tab. 2.

Table 2: Relevant configurations of the backbone DNN model

Model Configuration Iteration Initial learning rate

1st AE 19900-1000-19900 150 0.0001
2nd AE 1000-600-1000 300 0.0001
3rd AE 600-40-600 800 0.0001
4th AE 40-2-40 2000 0.0001
DNN 19900-1000-600-40-2 200 0.01

3.5 Multi-Scale Attention (MSA) Module
The attention mechanism simulates the perceptual process of human visual system, which will

concentrate on the features with obvious inter-group differences and suppress the features that do not
contribute significantly to the classification. For the FC pattern classification, the sample-size of fMRI
data is relatively smaller in compare with the massive natural image data, the traditional deep network
structure alone may not focus well on the FCs with more significant changes, and thus limits the
further improvement of model performance. Therefore, we introduced a flexible MSA module in our
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DNN model to achieve the purpose of focusing on more discriminative FC features by automatically
adjusting the attention weights. This module would further enhance the interpretability of the model,
and ensure the sparsity of the network weights.

Figure 3: The illustration of the MSA module

The basic configuration of the MSA module is shown in Fig. 3. Let the input feature be X ∈ R
1×L,

where 1 and L represent the number of channels and the length of the feature, respectively. In the
following, we described the data structure of the MSA module in the format: number of channels,
sample length. The attention weights for the FC features were obtained by two steps. In the first
step, we conducted multi-scale convolutional operations on the FCs to enrich the data information by
describing FC features at multiple scales. In this work, we performed one-dimensional convolutional
operations F1×5, F1×7, F1×9 with the convolutional kernel sizes of 5, 7 and 9 to extract multi-scale FC
features. Suppose Vi = [vi1, vi2, . . . , viC] denote a convolution kernel of one scale, and the output
after the convolution operation is Ui = [ui1, ui2, . . . , uiC]. Then, the output uic for that channel can
be given as: uic = vic ∗ X , where ∗ represents the convolution operation, uic ∈ R

1×L. Sequentially,
for feature maps U1 ∈ R

C×L, U2 ∈ R
C×L, and U3 ∈ R

C×L that containing three different scales
of features, the MSA module spliced the features along the channel dimension to obtain the fused
feature representation U ∈ R

3C×L. In the second step, a further generalized representation of the fused
features was performed to reduce the computational effort. We used average-pooling and max-pooling
operations to integrate the channel dimension information. Pooling is a commonly used nonlinear
down-sampling method. Assuming that the feature maps obtained after max-pooling and average-
pooling are UMax = [

u1
Max, u2

Max, . . . , uL
Max

]
and UAvg = [

u1
Avg, u2

Avg, . . . , uL
Avg

]
, respectively. The process of

using pooling operations to obtain feature maps can be expressed as follows:

ul
Max = max ul

c, c ∈ [1, 2, . . . , 3C] (5)

ul
Avg = 1

3C

3C∑
c=1

ul
c (6)

where ul
c represents the l-th FC feature in channel c. Then, we spliced these two feature maps to generate

a generalized representation of the fused features U as U ′ ∈ R
2×L. Finally, we used a one-dimensional

convolutional operation with kernel size of 7, and a Sigmoid function to obtain the attention weights
for the FC features. These weights indicate the degree to which the model emphasizes or suppresses
the corresponding FC features in the model training. As shown in Fig. 1c, before the features entered
the next layer of the DNN model, the attention weights were multiplied with the learnt features of the
current layer to integrate the attention description for the FC features (by dot product operation).
Briefly, the above mentioned two steps for attention weights generation can be summarized by the



CMC, 2022, vol.72, no.3 4653

following Eqs. (7) and (8), respectively:

U = [F1×5(X); F1×7(X); F1×9(X)] (7)

W ′ = σ(F1×7([fMax(U); fAvg(U)])) (8)

where [ · ; · ] represents the feature fusing, fMax, fAvg represent the max-pooling and average-pooling
respectively, σ represents the Sigmoid function, and W ′ represents the attention weights. The imple-
mentation of the MSA module to add attention weights for the FC features is described in Algorithm 1.

Algorithm 1: The implementation of the MSA module
Input: the FC features xi ∈ R

1×L of the i-th subject.
Output: the FC features after integrating attention weights zi ∈ R

1×L.
1: Use one-dimensional convolution operations with convolution kernel sizes of 5, 7, and 9 to extract
the multi-scale FC features;
2: Splice the multi-scale features to obtain the fused feature representation U ∈ R

3C×L;
3: Use max-pooling and average-pooling to obtain the feature maps UMax, UAvg;
4: Splice UMax and UAvg to obtain the fused feature map U ′ ∈ R

2×L;
5: Use one-dimensional convolution operation on the fused feature map U ′ and employ Sigmoid

function to obtain the attention weights W ′;
6: for l = 1 to L do
7: Add attention weights to the FC features: Multiply attention weight with the corresponding FC

feature zl
i = xl

i × w′
i
l, where xl

i,w
′
i
l represent the l-th FC feature of the i-th sample and its attention

weight;
8: end for
9: return zi.

3.6 Important Functional Connections Analysis
In order to identify the important FCs that best discriminate between ASD and HC subjects,

we conducted saliency map analysis to find the FC features with the most significant contribution
to the classification. The main idea of saliency map is to calculate the partial derivatives of the
classification results to the FC features, obtain the gradients of classification results for each FC,
and then obtain the importance of the FC during the classification process. Thus, we performed back
propagation and obtained the derivative gradients to indicate the contribution of the input FC features
to the classification. Assuming the FC between the i-th and j-th ROIs is denoted as FCij, i �= j,
i, j ∈ [1, 2, 3, . . . , 200], Wij represents the importance of the FC feature during classification, which
can be expressed by the absolute value of the gradient of the classification result Sc to FCij; that is,

Wij =
∣∣∣ ∂Sc

∂FCij

∣∣∣. In this experiment, we calculated Wij in each fold of cross-validation and added the

results obtained from ten folds to get the average value. Finally, we ranked these weights in descending
order and obtained the top 20 FCs that contribute mostly to the ASD classification.

4 Experimental Results

In this study, we conducted systematic experiments on the large aggregate ABIDE dataset to
evaluate the classification performance of the proposed model. We employed two cross-validation
schemes in our experiments. The first one is the classical 10-fold cross-validation which was performed
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similarly as those were implemented in previous studies; and the other one is the leave-one-site-out
cross-validation which more closely emulated real clinical settings. Briefly, in 10-fold cross-validation,
we randomly divided the data into ten subsets with similar size, in which the proportion of ASD
patients and HC subjects in each subset was approximately equal. In each fold, we took 9 subsets
data as the training set and the remaining one subset as the test set. The similar training process
was carried out ten times until each subset was taken as test set once. We compared our model with
several classical methods, including SVM, LR, RF, one-dimensional convolution neural network (1D-
CNN) and stacked auto-decoders (SAEs). These methods were widely employed in recent studies
on FC-based brain disease classification, with the first three are classical machine learning methods
and the last two are deep learning methods. In addition to the classical 10-fold cross-validation, we
conducted leave-one-site-out cross-validation to verify the model generalization to inter-site variability
[30]. In this scheme, we left out the data of one site as the test data each time, and the data of the
remaining sites were used as the training set. Data from different acquisition sites may be collected with
different acquisition protocols (such as scanner type, collecting parameters, participant recruitment
requirements, etc.). Therefore, the leave-one-site-out cross-validation emulated the conditions in real
clinical settings more closely, and imposed higher requirements for the model generalization. Results
are summarized in the subsections. The classification performance is evaluated by the accuracy,
specificity, sensitivity, precision, and F1-score based on the results of cross-validation.

4.1 Classification Results of 10-Fold Cross-Validation
To evaluate the classification performance of the proposed model, we firstly performed classical

10-fold cross-validation experiments similarly as those were implemented in previous studies of ASD
classification. We compared our model with SVM, RF, LR, 1D-CNN and SAEs, which were classical
methods in the FC pattern classification. The results (accuracy, specificity, sensitivity, precision,
and F1-score) of different methods are summarized in Fig. 4. As the results shown, the proposed
MSA-DNN obtained the best classification performance on all evaluation measures. In consistent
with previous studies, the present work also primarily relied on prediction accuracy to assess the
performance. Compared with the competing methods, the MSA-DNN achieved an average accuracy
of 70.5%, which was 5.2%, 7.1%, 4.4%, 8.7%, and 3.6% higher than that of SVM, RF, LR, 1D-CNN,
and SAEs. For specificity, sensitivity, prevision, and F1-score, our MSA-DNN also revealed obvious
advantages than other methods. In addition, the standard errors of MSA-DNN were generally lower
than those of the comparison methods, suggesting better robustness of our model in the classification
process. These results indicate that the proposed MSA-DNN show better classification performance
on the FC patterns, which further superior to the classical classification methods.

4.2 Classification Results of Leave-One-Site-Out Cross-Validation
To evaluate the classifier performance across sites, we further performed a leave-one-site-out cross-

validation experiment. In this process, we left out the data of one site as the testing set, and used the
data of the remaining sites in the training process. This scenario emulated the clinical settings more
closely, and the results reflected the applicability of our model to new, different sites. The classification
results of leave-one-site-out cross-validation are summarized in Tab. 3. As the results shown, our model
obtained an average accuracy of 67.2% on the entire dataset, suggesting the robust inter-site prediction
of our model for new site data. Together with the results from 10-fold cross-validation, our results
indicate the effectiveness of the proposed model.
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Figure 4: Classification performance comparisons between the proposed model and competing
methods using 10-fold cross-validation

Table 3: Results of the leave-one-site-out cross-validation (%)

Site Accuracy Specificity Sensitivity Precision F1-score

CALTECH 57.1 42.9 64.3 69.2 66.7
CMU 71.4 66.7 75.0 75.0 75.0
KKI 75.0 85.0 67.9 86.4 76.0
LEUVEN 68.9 72.4 65.6 72.4 68.9
MAXMUN 57.7 62.5 53.6 62.5 57.7
NYU 72.3 60.0 81.6 72.7 76.9
OHSU 69.2 50.0 85.7 66.7 75.0
OLIN 61.8 52.6 73.3 55.0 62.9
PITT 65.5 44.8 88.5 59.0 70.8
SBL 57.1 28.6 85.7 54.5 66.7
SDSU 72.4 45.5 88.9 72.7 80.0
STANFORD 76.9 84.2 70.0 82.4 75.7
TRINITY 62.2 86.4 39.1 75.0 51.4
UCLA 67.3 66.7 68.2 62.5 65.2
UM 68.6 77.3 60.8 75.0 67.2
USM 70.4 60.9 88.0 55.0 67.7
YALE 69.1 66.7 71.4 69.0 70.2
Average 67.2 61.9 72.2 68.5 69.0

4.3 Important FCs for ASD Classification
At last, we identified important FCs that best discriminate between ASD patients and healthy

controls. These FCs may serve as potential biomarkers for the ASD diagnosis. We analyzed the
importance of the FC features and obtained the top 20 FCs that contribute mostly to the ASD classi-
fication. To better visualize these important FCs, we separately illustrated them in the connectogram
representation (Fig. 5a) and mapped them onto the cortical surface (Fig. 5b). Different colors are used
to indicate different modules (the frontal, temporal, occipital, parietal lobes, cerebellum, vermis, and
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subcortical nuclei). Lines of the intra-module connections are represented by the same color as the
located module, while the inter-module connections are represented by gray lines.

Figure 5: Visualization of the top 20 discriminative FCs for ASD classification. (a) The Connectogram
visualization. (b) Results mapped onto the cortical surface. The coordinates of each node are according
to the CC200 atlas, and the brain regions are scaled by the number of their connections
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5 Discussion

This study proposed a novel MSA-DNN model to classify the FC patterns for the ASD diagnosis.
The model employed AE as basic unit to build the backbone classification network, and added MSA
module in the hidden layers to enhance the interpretability and sparsity of the DNN model. Both
unsupervised and supervised learning processes were conducted to improve the model performance.
Systematic experiments were carried out on the large ABIDE dataset, which aggregated fMRI data of
ASD patients and healthy controls from worldwide multi-sites. Results of both 10-fold cross-validation
and leave-one-site-out cross-validation experiments demonstrated the robust generalization of the
proposed model. We also identified the important FCs associated with ASD classification that can
likely serve as the diagnostic biomarkers.

Due to the high acquisition cost of fMRI data, training DNN models on the FC patterns
commonly encounter the problem of high dimensional features in relatively smaller samples. To solve
this problem, we proposed a novel MSA-DNN model to classify the FC patterns. The model built a
fully connected backbone DNN and combined both unsupervised and supervised training processes.
For the backbone network, we built the DNN based on AEs to project high-dimensional FC features
into a lower-dimensional feature space. In order to further ensure the sparsity of the model weights
to avoid overfitting, a flexible MSA module was proposed and added between the hidden layers of
the backbone DNN. The MSA module extracted multi-scale features of the FC patterns and added
attention weights to the FC features. This ensured that more important FC features were continuously
emphasized and less important FC features were continuously suppressed. The attention mechanism
has been demonstrated utility in computer vision studies, which can be considered as a useful means to
enhance the representation power towards the most informative features in a computationally efficient
manner [31]. Recent studies have shown promising findings for the combination of spatial and channel
attention as well as modeling channel-wise relationships, which fuse the features extracted by multiple
convolution kernels with different sizes to improve the feature representation power [32,33]. Motivated
by these studies, in this work, we conducted multiple convolution operations to extract multi-scale FC
features and obtained the attention weights for each FC. The proposed MSA module is simple and
flexible, and can be easily embedded into other classification networks.

Moreover, using larger dataset is usually considered as a promising solution to the challenges
of reproducibility and statistical power, which would further benefit to promote clinically useful
imaging diagnosis and biomarker studies [34]. Large multi-sites datasets are associated with inter-
site variability owing to some potential sources of variations across different acquisition sites, such
as the scanner type, imaging acquisition parameters, and subject recruitment strategies [16,35]. Such
site-related variation in aggregate dataset closely emulates the conditions in real clinical settings. In
this study, the experiments on the whole ABIDE dataset reflect how our model generalizes to a
large dataset with site-related variability. Results show that the proposed MSA-DNN achieve robust
classification performance for both 10-fold cross-validation and leave-one-site-out cross-validation
experiments. For 10-fold cross-validation, our MSA-DNN obtained the best classification results on
all evaluation measures than the competing methods, suggesting robust generalization of our model
on large-scale dataset. In addition, the experiments of leave-one-site-out cross-validation, which left
out the data of one entire site as test data, further reveal reliable prediction performance of our model
to new, different sites. This scenario evaluates the performance of our model under simulated clinical
conditions and suggest the potential of our model for clinical application. Together, our results indicate
the effectiveness of the proposed model on large-scale dataset and suggest robust generalization of our
model for site-related variability.
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Furthermore, identifying discriminative FC features would be benefit to study which brain regions
are related to the specific behaviors of ASD, thus provide potential biomarkers for the ASD diagnosis.
In this work, we found that brain areas including the cerebellum, hippocampus, fusiform gyrus,
temporal pole, middle temporal gyrus, superior temporal gyrus, cuneus, and occipital cortex, are highly
important in the ASD classification. As shown in Fig. 5, the discriminative FCs are mostly associated
with these regions. The cerebellar area is an important regulatory center for human movement, which
is vital to balance the human body. Previous studies on ASD have found that the abnormalities
in movement and language tasks for ASD patients may be caused by the abnormal activations in
cerebellar area [36,37]. It has also been proved that the FCs in cerebellar are much weaker than those
in other regions for ASD patients [38]. In this study, we found that 4 of the top 20 discriminative FCs
were related to the cerebellar. Together with the previous findings, we suggest that increasing attention
for the functional and structural properties of cerebellar can be paid in future studies. In addition, the
temporal-lobe areas including the temporal pole, middle temporal gyrus, and superior temporal gyrus
are also involved in the discriminative FCs. Among them, the superior temporal gyrus is considered
as an important area for processing auditory and language information [39]. It was found that the
abnormal behaviors of ASD patients are related to this brain area [40,41]. Moreover, the injury of
middle temporal gyrus may cause disorders in facial expressions and gestures for ASD patients. In
clinical trials, patients with ASD often show problems in face recognition, which may be due to the
inactivation of related neurons in fusiform gyrus and occipital cortex [42]. Furthermore, as a core
processing unit for memory coding and object recognition, the hippocampus plays an important role
in high-level cognition. In this study, we found that 3 of the 20 discriminative FCs are associated with
hippocampus. These FCs may be an important cause for the differences in the memory tasks between
ASD patients and healthy controls. Besides, previous studies have also pointed out that differences
in the visual cortex exist between ASD patients and healthy subjects, and the visual processing in
human brain is related to the calcarine, cuneus, and occipital cortex. Overall, our results are in line
with previous findings, and provide additional support that these important regions and FCs may
serve as potential biomarkers for the ASD detection.

This study applied deep learning methods in the brain disease diagnosis. The limitation and
future work for this study are summarized as follows. Firstly, considering the complexity of brain
diseases and the potential individual differences, the functional interactions may be various across
different subjects, which makes the data distributions of the FC patterns much more difficult to model.
The use of large aggregate datasets is commonly cited as a promising solution for reproducibility
and statistical power. While this study validated the effectiveness of the proposed model on large-
scale ABIDE dataset, features identified may still be biased and necessitate further verify on more
participants. Moreover, although the MSA module enhances the sparsity of the model weights and
alleviates overfitting to some extent, the AE-based backbone DNN still needs to learn a large number
of parameters. In view of the promising results obtained from multiple modality data fusion method
in recent computer-aided medicine studies [27,43], the fusion of structure MRI features and FC
patterns as well as introducing multi-task learning strategy may further promote the model training
and enhance the classification performance. This possibility will be further explored in the future work.

6 Conclusion

In this study, we proposed a novel MSA-DNN model to classify the FC patterns for ASD detec-
tion. The model built a DNN based on AEs for FC feature dimensionality reduction and learning, and
combined both unsupervised and supervised training processes to improve the effectiveness of feature
learning. A flexible MSA module was added between the hidden layers of the DNN model, which
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further ensured the sparsity of the model weights and improved the model interpretability. Systematic
experiments on the large multi-sites ABIDE dataset demonstrate the effectiveness of the proposed
model. We also identified important FCs as biomarkers associated with ASD classification. To sum,
our study provides an effective framework to learn and classify FC patterns for ASD diagnosis, and
can be further extended to the imaging diagnosis of other brain diseases.
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