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Abstract: Non-orthogonal multiple access (NOMA) has been a key enabling
technology for the fifth generation (5G) cellular networks. Based on the
NOMA principle, a traditional neural network has been implemented for user
clustering (UC) to maximize the NOMA system’s throughput performance by
considering that each sample is independent of the prior and the subsequent
ones. Consequently, the prediction of UC for the future ones is based on the
current clustering information, which is never used again due to the lack of
memory of the network. Therefore, to relate the input features of NOMA
users and capture the dependency in the clustering information, time-series
methods can assist us in gaining a helpful insight into the future. Despite its
mathematical complexity, the essence of time series comes down to examining
past behavior and extending that information into the future. Hence, in this
paper, we propose a novel and effective stacked long short term memory
(S-LSTM) to predict the UC formation of NOMA users to enhance the
throughput performance of the 5G-based NOMA systems. In the proposed
strategy, the S-LSTM is modelled to handle the time-series input data to
improve the predicting accuracy of UC of the NOMA users by implementing
multiple LSTM layers with hidden cells. The implemented LSTM layers have
feedback connections that help to capture the dependency in the clustering
information as it propagates between the layers. Specifically, we develop, train,
validate and test the proposed model to predict the UC formation for the
futures ones by capturing the dependency in the clustering information based
on the time-series data. Simulation results demonstrate that the proposed
scheme effectively predicts UC and thereby attaining near-optimal throughput
performance of 98.94% compared to the exhaustive search method.
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1 Introduction

Imminent 5G and beyond 5G networks are anticipated to provide high spectral-energy efficiency,
deliver super-fast data transmission, ensure ultra-reliability, support massive connectivity and guar-
antee the lowest possible latency compared to its predecessors [1]. Unfortunately, the conventional
orthogonal multiple access (OMA) [2,3] schemes adopted in 4G networks will not be employed in
the future cellular networks due to its orthogonality limitation prohibiting bandwidth expansion
from accommodating the spectral demand for future applications. Recently, the emergence of non-
orthogonal multiple access (NOMA) [4] introduced a technological paradigm shift in accessing
networks, which has successfully lifted the bandwidth limit boundary above the OMA spectral limit
[5,6]. The main feature of NOMA is to remove orthogonality requirements between the allocated
resource blocks to different users who are allowed to simultaneously send data over the same frequency,
time, or code.

Generally, NOMA is classified into two types, i.e., power-domain NOMA (PD-NOMA) and
code-domain NOMA (CD-NOMA). PD-NOMA is the most widely studied NOMA scheme for
5G networks and beyond. The working principle of the PD-NOMA is to allow the non-orthogonal
transmission of multiple users’ signals using superposition coding (SC) at the transmitting end, and the
superposed signal is then passed through the successive interference cancellation (SIC) receiver at the
receiving end to eliminate interference and implement quadrature demodulation. For a multi-carrier
PD-NOMA, the subchannel transmission still adopts the orthogonal frequency division multiplexing
(OFDM), where the subchannels are partitioned so that they are orthogonal to each other and do
not interfere. Unlike orthogonal frequency division multiple access (OFDMA), the subchannel is no
longer exclusively assigned to one user only, but it is shared by various users to increase the spectrum
utilization. The users who share the same set of subchannels can transmit their signal using power
multiplexing technology such as the SC technique. Hence, the signal power of each user arriving at the
receiver is unique and distinguishable. Non-orthogonal transmission between different users on the
same subchannel will generate co-channel interference between users, which can be solved using SIC
technology at the receiver. The SIC implementation enforces a strict power allocation requirement
that associates users of good channel conditions with low-power assignment policy while users of
poor channel conditions with high-power allocation policy. These policies allow the SIC to effectively
eliminate interference and decode the signals for each user [7]. Nevertheless, this new multiple access
approach of permitting multiple users to share a set of subchannels raises another research issue on
how to cluster users on different sets of subchannels so that the users can benefit spectrally from the
sharing of subchannels while satisfying the power allocation policies enforced by the SIC.

1.1 Recent Works
Over the last few years, user pairing and user clustering (UC) for NOMA networks have been

vigorously studied from different perspectives due to the emergence of SIC technology. In [8], two
different user pairing schemes were investigated to evaluate the outage probability and average
achievable bit rate of a dense NOMA network. In this study, the first scheme was developed based
on a random pairing basis, in which two users are randomly chosen to form a NOMA cluster. On
the other hand, the second scheme enhances the system performance by selectively pairing the users
whose normalized channel gains are above and below certain pre-determined threshold levels, which
leads to lower outage probability. Since the user pairing is highly dependable on the locations of
users, the impact of near-far user pairing on the performance of cell center, mid, edge users were
meticulously explored in [9]. In this work, the authors proposed a novel pairing scheme that groups
the near-far users, leaving the cell mid users ungrouped to solve the SIC imperfection issue due to the
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small channel diversity among the NOMA users. Subsequently, the authors in [10] developed a user
pairing and access algorithm to enhance NOMA spectral efficiency and system capacity while ensuring
fairness among NOMA users. The proposed mechanism first sorts the users based on channel states
and pairs them with the most distinctive channel conditions. In [11], the UC was developed to group
user equipment into several clusters equal to or more than the base station (BS) transmit antennas.
After that, a linear beamforming approach was incorporated to mitigate inter-cluster interference. The
inter-cluster and intra-cluster power allocation was then applied to maximize the overall cell capacity
of the NOMA system. Furthermore, a simple heuristic user pairing algorithm [12] was designed for
a two-user scenario to pair a cell center user with an edge user, aiming to improve the edge user’s
achievable rate.

In general, the UC for a NOMA network is always intertwined with power allocation. The impact
of user pairing on the performance of fixed power allocation for a NOMA system and a cognitive
radio assisted NOMA was examined in [13] to demonstrate that the NOMA system could offer a
larger sum-rate than that of the OMA schemes. In this work, it is suggested that the users who do not
experience a significant difference in channel gains are opportunistically paired under the condition
that the interference generated by one of the users does not adversely impact the quality of service
(QoS) requirement of another user. With this mechanism, the cognitive radio assisted NOMA system
prefers to pair the first strongest users with the second strongest users. In contrast, the NOMA system
with fixed power allocation favors the pairing of the strongest user with the weakest user. In [14],
the user pairing for a cooperative NOMA transmission system with power allocation was explored.
This work reveals that the two users experiencing significantly different channel diversity should be
grouped based on the ascending order of the users’ channel gains. In another novel study, two-user
pairing schemes, i.e., centralized UC and distributed UC was proposed in [15] in which the NOMA
users are sorted based on the large-scale fading (LSF) gain. The centralized UC selects the primary
user with the highest LSF and pairs it with the complementary chosen users based on signal difference
alignment. On the other hand, the proposed distributed UC pairs the primary user with the highest
LSF with the user-selected based on the zero-forcing vector achieved by the primary user.

From the state-of-the-art, it is observed that the user pairing and clustering for NOMA systems
are pretty inflexible. Recently, a dynamic user clustering (DUC) scheme was proposed in [16] by
selecting a feasible number of clusters and grouping the NOMA users into these clusters. As a result,
the size of the cluster is dynamically adjusted based on the performance requirements. Nevertheless,
the maximum limit imposed on the number of users grouped in a cluster has forced some users to be
unfavorably paired together, yielding lower throughput performance. This rigid limit has been lifted
in [17], which proposes a UC based on the Brute-force search (B-FS) method where the users are
clustered dynamically without any limit merely subject to the SIC constraints. The approach used in
[17] has manifested that the NOMA system can achieve a higher performance limit than the OMA.
However, the method developed in [17] can only serve for upper-bound performance limits because
implementing the B-FS-based clustering method incurs prohibitive computational cost and is not
scalable efficiently with the network size. Subsequently, the authors in [18] proposed a particle-swarm
optimization (PSO) based UC scheme capable of reducing the complexity. Its main drawback is the
early convergence of the particles causing the search space to get trapped in a local minimum.

Machine learning and artificial intelligence (AI) have recently started to make inroads into 5G
and beyond 5G networks. In [19], the authors have successfully designed an efficient network slicing
scheme using a hybrid machine learning algorithm involving three phases, i.e., data collection, optimal
weight feature extraction, and slice classification. The experimental results indicated that the proposed
hybridization greatly influences the provision of accurate network slicing. Besides, the review in [20]
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also highlights the need for explainable AI (XAI) towards the upcoming 6G networks in every aspect
that can mitigate the risk of losing control over decision making including 6G technologies (e.g.,
intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0) to make a
future AI-based 6G system more transparent and trustworthy.

Not surprisingly, machine learning has been widely applied to solve various resource allocation
problems in NOMA networks. In terms of UC for the NOMA system, the availability of clustering
datasets obtained from the B-FS method in [17] inspired the author in [21] to adopt an artificial neural
network (ANN) as an efficient clustering tool to learn the grouping behaviors of the users based on
their power levels and the diversity of the channel gains. Due to the single hidden-layer feature in ANN,
the proposed ANN cannot efficiently capture the input-output relationship between the clustering
behaviors with the channel heterogeneity and power differences among NOMA users. The work [22]
enhanced the performance by extending it to the deep neural network (DNN) based UC scheme,
which provides more room for hyperparameter optimization to improve the learning competency. The
DNN-based UC method can learn effectively, attaining approximately 97% of the B-FS approach’s
throughput performance. In [23], an extreme learning machine (ELM) was employed to the same UC
problem to improve the training and testing speed together with the computational complexity of the
DNN-based UC. The use of the ELM eliminates the backpropagation algorithm during the training
process of the DNN approach, thereby producing a fast-learning UC method, which can also achieve
near-optimal performance.

1.2 Motivations and Contributions
Taking into account the discussions mentioned above, it is apparent that all the state-of-the-art

UC methods only solve the clustering problem for an instantaneous time without considering the
historical clustering results and the variation of channel gains and power levels. Theoretically, the
channel variations of wireless 5G networks can be modelled statistically and estimated accurately
[24]. The time-series data on the channel variations, power assignment and the clustering behaviors
is an essential input to increase the optimality in UC. In this paper, the implementation of long short
term memory (LSTM) is developed to characterize the dependency on the sequential processing of
the clustering information, including the channel gains, powers and clustering outcomes. Unlike the
traditional neural networks, LSTM consists of multiple feedback connections to capture the time-
series data indicating the dependency on the clustering information.

Recently, LSTM has been widely applied for natural language processing (NLP) in [25,26] due to
its superiority of signal processing and the capability of resolving the vanishing gradient and long term
dependency present in recurrent neural network (RNN). The application of LSTM in cellular networks
is also not newfangled. In [27], the LSTM network was developed to autonomously determine the
channel characteristics by training the network with simulated channel data. The results showed an
improvement in terms of sum rates and bit error rates (BERs) when the LSTM is utilized and compared
with the conventional NOMA. In [28], the authors estimate the channel and detect multiple users to
avoid the propagation of errors in the sequential decoding process of the SIC detector in the receivers
using LSTM, which is able to detect the changing characteristics of the channel. Meanwhile, a new
channel estimation technique based on LSTM aimed to improve the outage probability, BER, and
user sum rate of the conventional NOMA is presented in [29]. LSTM has also been demonstrated
in conjunction with an appropriate gradient-based learning algorithm to overcome error backflow
problems in [30] to bridge time intervals above 1000 steps even in case of noisy, incompressible input
sequences, without loss of short-time-lag capabilities. In [30], LSTM-based NOMA receivers are



CMC, 2022, vol.72, no.3 6123

investigated over the Rayleigh fading channel conditions. It has been proved that the LSTM-based
NOMA detector performance is much better than the conventional NOMA detectors.

In this paper, the promising deep learning (DL) approach can be integrated into the traditional
neural network and the implementation of proposed stacked LSTM (S-LSTM) to perform the learning
mechanism that results in the automatic prediction of UC to enhance the throughput performance of
the NOMA system. The proposed S-LSTM is also known as deep LSTM. Hence, the two terms will be
used interchangeably throughout the paper. Compared to the conventional S-LSTM applied to solve
different problems in other domains, we have adapted the S-LSTM to NOMA environments to tackle
UC issue. In summary, the main contributions of this paper are summarized as follows:

1. The UC problem in the NOMA system is investigated with the help of DL by implementing
the deep neural network (DNN) with multiple layers to enhance the flexibility of the model.

2. The S-LSTM architecture is then constructed and integrated into the DNN model to process
the time-series data to capture the dependency in the clustering information. This model aims
to avoid shrinking gradient values that usually vanish as the information propagates between
multiple hidden layers during backward propagation (BP). The power allocation strategy for
each user is then derived that can provide optimal throughput performance.

3. The performance analysis of the proposed S-LSTM-UC NOMA system under various net-
work parameters is provided. Specifically, the average throughput and mean squared error
(MSE) has been examined. In addition, significant simulation findings and comparisons are
shown to prove the effectiveness and strength of the proposed schemes.

1.3 Organization of the Paper
The remaining sections of this paper are laid out as follows. In Section 2, a NOMA-based 5G

system model is developed with the temporal channel model. Besides, the SIC constraints are outlined
in this section, while the UC and power allocation problems are also formulated. Subsequently, the
working principle of S-LSTM-based UC is described in Section 3. The proposed new UC algorithms
for training and testing phases are also outlined in this section. Simulation results with in-depth
analytical discussions are shown in Section 4. Last but not least, the paper ends with some insightful
concluding remarks and navigates the readers to some possible future research directions related to
this work in Section 5.

2 System Model and Problem Formulation
2.1 System Model and Temporal Channel Model for NOMA-Based Networks

Consider a downlink NOMA-based single-cell 5G system with a single BS located at the center of
the cell, within which K number of users are randomly and uniformly distributed. In the NOMA
system, the users can share a set of exclusive subcarriers in distinct clusters. The inter-cluster
interference does not exist due to the assumption of perfect orthogonality among all subcarriers. The
users are susceptible to interference caused by other users within the same cluster due to the sharing
of subcarriers. Even though sharing among users increases subcarriers’ frequency reuse, it does not
guarantee a throughput improvement due to the interference. Therefore, clustering users to share the
subcarriers becomes the determining factor in overall system throughput. Rationally, when the channel
diversity among users is small, it is preferable to group more users in a cluster to increase the spectrum
utilization. Still, increasing cluster size certainly causes higher interference, resulting in throughput
degradation. Therefore, it is essential to find a good tradeoff between the two conflicting parameters,
i.e., cluster size and interference.
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In the NOMA system, the 5G spectrum is partitioned into J subcarriers, each with a bandwidth Bj

which is less than the channel’s coherence bandwidth such that each subcarrier manifests flat fading. In
addition, it is assumed that the adjacent subcarriers can perfectly preserve orthogonality so that inter-
symbol interference between the adjacent symbols can be eliminated. The 5G channel is assumed to
exhibit frequency-selective Rayleigh fading in which a noticeable correlation between channel gains of
adjacent subcarriers is perceived. The subcarrier correlation coefficient between subcarriers i and j for
user k can be defined as

χ k
i,j =

(
1 + δk

i,j

)
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where Ai and τi represent the amplitude and time delay for ray l, respectively, in a M-ray Rayleigh
fading model.

In the conventional OMA system (also known as Orthogonal Frequency Division Multiple Access
(OFDMA)), the users perceive different channel gains on different subcarriers and let the channel gain
experienced by user k on subcarrier j be gj,k. Instead of simulating a snapshot or ensemble description
of channel gains for all the subcarriers, we observe the channel variation experienced by the users
in a temporal dimension for a period T which is slotted discretely in this context (T denotes the
total number of time slots). Let’s assume the random channel gain variables based on the Gaussian
distribution over a specific time t be gt

j,k ∼ N
(
μ, σ 2

)
where gt

j,k is the channel gain of user k on
subcarrier j at a specific time t while μ and σ denote the mean and standard deviation of normal
distribution N , respectively. In this context, we assume that the NOMA network is geographically
static because the time scale of algorithm convergence is shorter than the channel coherence time, and
the sampling period of the time slot is chosen such that the channel gains are fixed for a particular time
slot. The probability density function, f (x) of the Gaussian distributed channel variation of temporal
NOMA channel can be modelled as

f (x) = 1

σ
√

2π
e

− 1
2

⎛
⎝ gt

j,k−μ

σ

⎞
⎠2

(4)

Precisely, μ and σ can be represented as follows
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In a power-domain NOMA-based 5G system, users can share a set of exclusive subcarriers
in which superposition coding (SC) is used to multiplex users on the same subcarriers. Let U t

c,j

�={
k ∈ K : pt

j,k > 0
}

denotes cluster c in which a set of users multiplexed on subcarrier j at time slot t
where pt

j,k is the power allocated for user k on subcarrier j at time slot t. Usually, the users in U t
c,j may

also share other subcarriers to achieve the minimum bit rate, hence, J
(
U t

c

)
is the collection of the

subcarriers allocated to U t
c where U t

c = U t
c,i ∩U t

c,j, ∀i, j ∈ J
(
U t

c

)
, i �= j. In other words, the users who

are clustered together are required to share the same set of subcarriers; even some subcarriers are not
their best choice. This allocation has made the NOMA system’s UC an NP-hard problem that requires
an exhaustive search to obtain the optimal solution [17].

Let’s assume that the cardinality of U t
c denoted as 1 ≤ ∣∣U t

c

∣∣ ≤ K represents the number of users
in the cluster U t

c . To facilitate the implementation of SIC at the receivers of U t
c when

∣∣U t
c

∣∣ > 1, the
SIC conditions must be fulfilled so that NOMA users can distinguish the decodable signals from non-
decodable signals. For simplicity, the signal yt

j,k received by user k on subcarrier j at time slot t can be
shown as
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where xt
j,k is the signal transmitted by the BS destined to user k on subcarrier j at time slot t while ηt

j,k

is the additive white Gaussian noise (AWGN) power perceived by user k on subcarrier j at time slot
t. It is shown in Eq. (7) that the superimposed signal comprises multiple signals intended to multiple
users, where the first term of Eq. (7) is the intended signal. In contrast, the second term of Eq. (7) is
unwanted signals or interference.

At a specific time slot t, let’s assume a scenario where there are three users (users x, y, z) sharing
an exclusive set of subcarriers. The channel gains of the users are arranged in a descending order
gt

j,k > gt
j,k > gt

j,k where U t
c = {x, y, z} , j ∈ J

(
U t

c

)
. The transmission power allocated to each user on a

particular subcarrier must satisfy the following SIC conditions so that the SIC can work at the users’
receivers.

SIC conditions for user x
[[
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SIC condition for user y
[[

gt
j,y

(
pt

j,z − pt
j,x − pt

j,y

)
> pSIC (9)

where pSIC is the minimum power difference for a user to distinguish the intended signal from the
unwanted signals. From the SIC conditions for user x denoted in Eq. (8), the power allocation among
users x, y, and z is to ensure that user x can eliminate the interference signals caused by users y and z.
The SIC condition for user y denoted in Eq. (9) is for user y to efficiently cancel the interference signal
from user z. However, user y is unable to decode and cancel interference signals from user x, which is
then treated as noise. This assumption works validly because user x is allocated lower downlink power
compared to user y such that pt

j,x < pt
j,y, which results in negligible interference to user y. Similarly, user

z who possesses the lowest channel gain on subcarrier j cannot adopt the SIC mechanism to cancel
any interference signals from all users who have higher channel gains, but the efficient NOMA power
allocation such that pt

j,x < pt
j,y < pt

j,z leads to insignificant interference on user z. Based on Eqs. (8)
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and (9), the SIC conditions for a set of subcarriers shared by a group of users with the number of the
user indicated as

∣∣U t
c

∣∣ can be generalized as

gt
j,k
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pt
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k−1∑
i=1

pt
j,i

)
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The SIC condition in Eq. (10) works for any number of users in U t
c > 1. In this context, we assume

that all users’ receivers adopt the same SIC threshold, pSIC.

To better model the SIC implementation mathematically, the order of decoding for each user
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Based on the Shannon capacity formula, the achievable throughput Rt
j,k of user k on subcarrier j

at time slot t can be expressed as
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Based on Eq. (12), the sum throughput of the NOMA system at time slot t can be further expressed
as
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where C is the total number of clusters formed in the NOMA clustering process. This work aims to
cluster the NOMA users optimally and allocate the downlink power to maximize throughput denoted
in Eq. (13) subject to various constraints and conditions, including the SIC conditions.

2.2 User Clustering and Power Allocation Problem Formulation
Fig. 1 illustrates a NOMA-based system model where a BS concurrently serves K users in

downlink transmission. It is seen that K users are grouped into C clusters, each sharing a set of
subcarriers on which the superposed signals are transmitted by the BS to all clusters. The channel
gains of each user on the allocated subcarriers are observed for the duration of time, which is discretely
partitioned into T slots. The variation of the channel gains over time has a direct impact on the cluster
formation because the order of decoding may change after some time as some users may experience
degrading channel conditions, whereas some users may achieve better channel gains. In such a case,
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the original cluster formation might not be optimal after some time because the throughput achieved
by some clusters may degrade, and the SIC conditions might be violated, which should trigger a
cluster re-formation. Once a new cluster formation is initiated, the power allocation should also be
re-performed to maximize the throughput and satisfy the SIC conditions. In this paper, a UC scheme
will be developed to maximize the sum throughput of the NOMA system by taking into account the
time-varying communication channels. Once the optimal UC is obtained, the power allocation scheme
proposed in [21] can be adopted to maximize throughput performance.

Figure 1: Downlink NOMA time-series system model

Let the UC indicator vector of a user k for C number of clusters be β t
j,k = {

β t
j,k (1) , β t

j,k (2) , . . . , β t
j,k (C)

}
where β t

j,k (c) ∈ {0, 1} is a Boolean variable such that β t
j,k (c) = 1 if user k is grouped into cluster c on

subcarrier j at time slot t, otherwise β t
j,k (c) = 0. For simplicity, the cluster set is represented by

C t = {
U t

1,U t
2, . . . ,U t

C

}
. It is noteworthy that the cluster formation problem in this work is dynamic

clustering which does not fix the cluster size and the number of clusters in the NOMA system, unlike
the existing works, which place stringent conditions on cluster formation. With the relaxation on the
cluster formation, the value of C is not pre-determined, and the number of users per cluster may be
different due to the channel diversity of the NOMA users. Naturally, C becomes larger if the channel
diversity among the users is small because the users tend to form smaller clusters by not sharing their
subcarriers owing to the incompliance to the SIC conditions denoted in Eq. (10). On the other hand,
if the channel difference among the users is significantly great, C becomes smaller as the users can
form larger clusters to share their subcarriers due to the relaxation of conditions in Eq. (10). In this
context, The UC strategies for all users at time slot t can be represented by

β t =
⎡
⎢⎣

β t
j,1 · · · β t

j,K
...

. . .
...

β t
J,1 · · · β t

J,K

⎤
⎥⎦ (14)

To fulfil the SIC conditions, power allocation of the users on the shared subcarriers must be
prudently implemented. Let pt

k = [
pt

1,k, pt
2,k, . . . , pt

J,k

]
be the power allocation strategy of user k

on all the subcarriers, and the power allocation strategies for all users are represented by Pt ={
pt

1, pt
2, . . . , pt

K

}
. Zero power will be allocated for those subcarriers not assigned to user k.

In this context, the sum throughput of the NOMA system is defined as the objective function, and
the joint clustering and power allocation problem for throughput maximization in a downlink NOMA
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system can be formulated as

max
βt ,Pt

C∑
c=1

K∑
k=1

J∑
j=1

β t
j,k (c) Bjlog2

⎡
⎢⎢⎣1 + gt

j,kp
t
j,k∑∣∣∣U t

c,j

∣∣∣
m=∏−1

j (k+1)

(
gt

j,kp
t
j,
∏

j (m) + ηt
j,k

)
⎤
⎥⎥⎦ (15)

subject to
K∑

k=1

J∑
j=1

pt
j,k ≤ ptotal (16a)

J∑
j=1

Rt
j,k ≥ Rmin

k (16b)

gt
j,k

(
pt

j,k −
k−1∑
i=1

pt
j,i

)
≥ pSIC, k = 2, 3, . . . ,

∣∣U t
c

∣∣ and ∀j ∈ J (16c)

C∑
c=1

β t
j,k (c) ≤ 1, , ∀j ∈ J, ∀k ∈ K (16d)

where constraint Eq. (16a) limits the allocation of power to all users to the total power budget available
at the BS, constraint Eq. (16b) guarantees that every NOMA user can achieve the minimum through-
put, constraint Eq. (16c) imposes the SIC conditions to all users’ receivers. Constraint Eq. (16d)
ensures that one NOMA user is only grouped to one cluster only. From [15], it can be noticed that
the number of clusters is not fixed initially, but it is only known once the optimal β t

j,k is obtained. This
is the key difference of the optimization of this work as compared to that of the existing results.

This paper presents a novel machine learning approach to solve the UC problem formulated in
Eq. (15) and Eqs. (16a)−(16d). In the throughput maximization in Eq. (15) considered in this work, it
is assumed that the subcarriers are pre-allocated randomly to each user before they form clusters to
share their subcarriers. In other words, each user will be allocated an exclusive set of subcarriers before
the UC process. The subcarriers assigned to a user will not be exchanged with other users during the
UC process. The users can only share their subcarriers with other users based on their cluster formation
strategy. In short, subcarrier allocation is not the primary consideration in this work.

Similarly, even though power allocation is one of the maximizing variables in [15], the power
allocation problem is not the main focus of this work. In this optimization problem, since power
allocation and user clustering are intertwined, the optimization is an NP-hard problem, which requires
an exhaustive search method to find the optimal solution. To solve this problem within an allowable
time, we have decoupled the problem into multiple sub-problems (i.e., power allocation problem and
user clustering problem), which can be solved in a series. Therefore, an equal power allocation is
employed before the UC process, and once the optimal UC is obtained, the power allocation strategy
proposed in [17] is adopted to maximize the throughput.

3 Proposed Stacked-LSTM Based UC

This section presents the proposed stacked LSTM based UC (S-LSTM-UC) technique for the
NOMA downlink. We first describe the generation and the attributes of the dataset and then explain
the holistic working principle of S-LSTM-UC in detail.
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3.1 Data Acquisition
To train the proposed S-LSTM-UC, the B-FS based UC (B-FS-UC) [17] is utilized to generate

a time series dataset that comprises the transmit powers, channel gains, and the optimal cluster
formation by exhaustively examining the throughputs for all the possible combinations of cluster
formations and selecting the best cluster formation that maximizes the throughput performance. In
addition, considering the aspect of subcarrier allocation, each user will be randomly pre-allocated with
a subset of subcarriers before UC. As described in Section 2.2, the time series dataset is collected by
observing the channel gains of the users, and the corresponding transmit powers for T time slots. As
such, the dataset for a K-user NOMA system consists of a total of KT channel gain values, KT power
gain values, and K cluster information values. To improve the robustness of the proposed scheme
against network dynamics and channel variations, we collect the dataset for NOMA systems with
different numbers of users, which are randomly distributed and a different number of subcarriers with
varying fading levels.

3.2 Working Principle of Stacked LSTM Based UC
Fig. 2 depicts the structure of the proposed S-LSTM-UC. As illustrated, it is constructed by

cascading an input layer with K ×L nodes, N LSTM layers, and a dense layer with K output nodes. In
the figure, X is a multivariate input window that contains the channel gains and users’ initial transmit
powers, while Z is a vector of size 1 × K that corresponds to the UC information at time t. To enable
the proposed S-LSTM-UC to effectively mine the deep temporal correlations between the multivariate
time-series inputs (channel gains and users’ initial transmit powers) and the UC information, N LSTM
layers are employed and stacked. As shown in the figure, the output of the LSTM layer of S-LSTM-UC
serves as an input to the subsequent layer. As compared to a single-layer LSTM, multi-layer LSTM
is endowed with a superior ability to disentangle the underlying complex temporal dynamics of the
time-series data and to progressively create a higher level of representation of the time series inputs.

Figure 2: Architecture of stacked LSTM based UC

In S-LSTM-UC, each LTSM layer consists of multiple LSTM cells, and the internal structure
of the LSTM cell is shown in Fig. 3. Generally, LSTM is a variant of recurrent neural network
(RNN) designed to capture the long term dependencies present in time-series data. Unlike the vanilla
RNNs, which are plagued by the issues of gradient disappearance and gradient explosion during
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backpropagation, LSTM regulates the flow of information and maintain the features extracted from
the previous time steps through the dynamics of gating mechanism, short-term and long-term memory
cells.

Figure 3: Schematic diagram of LSTM cell

As illustrated in Fig. 3, each LSTM cell is comprised of 2 internal states (hidden state ht and cell
state ct) and three gates (input gate it, output gate ut, and forget gate ft). The role of the cell state is to
keep track of the valuable information obtained from past inputs. On the other hand, the hidden state
synthesizes the information obtained from the current input, the previous cell state, and the previous
hidden state.

The forget gate governs what information to be retained and what information to be removed
from the previous cell state ct−1. Both information from the previous hidden state ht−1 and the current
input vector xt will be processed by a logistic activation function σ (·) which has an output value ft

that ranges from 0 to 1. Intuitively, ft = 1 indicates that the entire information from the ct−1 is retained
while ft = 0 implies that the information from ct−1 is irrelevant, and it should be removed entirely.
Mathematically, the operation of the forget gate can be expressed as

ft = σ
(
wxf · xt + whf .ht−1 + bf

)
(17)

where wxf is the weight matrix from the input layer to the forget gate, whf is the weight matrix from the
hidden state to the forget gate, and bf represents bias term for the forget gate.

The input gate it and the candidate hidden state c̃t determine the amount of information to be
added to the cell state, and the information is generated based on the current input vector xt and the
previous hidden state ht−1 as follows:

it = σ (wxi.xt + whi.ht−1 + bi) (18)

c̃t = tanh (wxc̃.xt + whc̃.ht−1 + bc̃) (19)

where wxi is the weight matrix from the input layer to the input gate, whi is the weight matrix from the
hidden state to the input layer, wxc̃ is the weight matrix from the input layer to the candidate hidden
state, whc̃ is the weight matrix from the hidden state to the candidate hidden state, bi denotes the bias
term for the input gate, bQc signifies the bias term for the candidate hidden state and represents the
hyperbolic activation function that scales the output values from −1 to 1. Next, the cell state ct can be
updated as follows:

ct = ft ⊗ ct−1 + it ⊗ c̃t (20)
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where ⊗ denotes element-wise operation.

The output gate ut selects the information that should be passed on to the next hidden state, and
it can be written as

ut = σ (wxu.xt + whu.ht−1 + bu) (21)

ht = ut ∗ tanh(ct) (22)

Finally, to predict the best UC formation, a dense layer connects all the neurons in the N-th LSTM
layer to each of the output nodes. It is noteworthy that the UC problem in this work is modelled using a
regression-based S-LSTM-UC which outputs the cluster number for each user. The cluster number is a
continuous value, which will be rounded up as an integer to indicate the cluster number of a particular
formation. The efficiency and deficiency of the S-LSTM-UC can be assessed by using mean-squared
error (MSE), which is defined as

MSE = 1
S

S∑
n=1

(
zn − ẑn

)2
(23)

where S and ẑn represents the total number of samples and the predicted cluster value for the n-th user.

The working principle of S-LSTM-UC during the training and testing phases are summarized in
Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: S-LSTM-UC Training Algorithm
Input: Multivariate input window representing the input features in t continuous time slots of K
NOMA users
Output: S-LSTM-UC model
1. Initialize the model

2. Input: X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gt−L
j,1 , . . . , gt−2

j,1 , gt−1
j,1 , gt

j,1

pt−L
j,1 , . . . , pt−2

j,1 , pt−1
j,1 pt

j,1

gt−L
j,2 , . . . , gt−2

j,2 , gt−1
j,2 , gt

j,2

pt−L
j,2 , . . . , pt−2

j,2 , pt−1
j,2 pt

j,2
...

gt−L
j,K , . . . , gt−2

j,K , gt−1
j,K , gt

j,K

pt−L
j,K , . . . , pt−2

j,K , pt−1
j,K pt

j,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. for k = 1, 2, . . . , K do
4. for t = 1, 2, . . . , T do
5. for j = 1, 2, . . . , J do
6. Calculate ft, it and c̃t by utilizing (17), (18), and (19), respectively
7. Update cell state ct by using (20)
8. Calculate ut and ht by applying (21) and (22), respectively
9. end for
10. end for
11. Output: Z = [

Zt
1, Zt

2, . . . , Zt
K

]
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Algorithm 2: S-LSTM-UC Testing Algorithm
Input: S-LSTM-UC network with a fixed power allocation scheme
Output: S-LSTM-UC model UC of NOMA users in t continuous time slots
1. Feed from testing data samples into the trained S-LSTM-UC network
2. Process the network model to predict Z = [

Zt
1, Zt

2, . . . , Zt
K

]
3. Calculate MSE by using (23)

4 Numerical Results and Discussions

This section verifies the effectiveness of the proposed S-LSTM-UC via extensive MATLAB
simulation. More specifically, we have done an extensive hyper-parameter tuning on the proposed
S-LSTM-UC model to investigate the influence of hyper-parameters. The learning rate, activation
functions, length of training data samples, network depth, number of hidden layer nodes, and number
of epochs on the MSE and the average throughput performance of S-LSTM-UC in NOMA downlink
systems for different numbers of users will be thoroughly analyzed. The performance of the proposed
S-LSTM-UC will also be compared against the existing OMA, DUC, ANN-UC, and B-FS-UC
schemes. Tabs. 1 and 2 summarize the detailed configuration of the simulation parameters for the
proposed S-LSTM-UC and the downlink NOMA system. Unless otherwise specified, the learning
rate, batch size, and activation function are set as 0.001, 50, and ReLu, respectively. The selection of
the ranges for investigation outlined in Tab. 1 is determined from the extensive simulation to avoid any
local maxima issue.

Table 1: Simulation parameters for S-LSTM-UC

Parameter Value

Number of data samples 48000
Length of training data 24000, 28800, 33600, 38400
Length of validation data 7200
Length of testing data 7200
Number of LSTM layers 4
Learning rate 0.1, 0.02, 0.01, 0.002, 0.001
Number of input layer nodes 48
Number of LSTM layer nodes 40
Number of output layer nodes 24
Batch sizes 10, 20, 50, 100
Activation functions ReLu, Sigmoid, Sine, Tanh

Table 2: Simulation parameters for the downlink NOMA system

Parameter Value

Cell radius 100 m
The bandwidth of the resource, B 180 kHz

(Continued)
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Table 2: Continued
Parameter Value

Downlink transmission power for a cluster, pc 46 dBm
Detection threshold at SIC receiver, pmin 10 dBm
Noise power −118 dBm
Number of NOMA users 2–24
Number of subcarriers 256
Deployment of NOMA users random and uniform
Path loss v ∼ U (3, 5)

Shadowing effect 10log10Sn ∼ N
(
0, σ 2

s

)
, n ≤ N,

σ 2
s ∼ U (4, 10).

Fig. 4 presents the throughput performance of S-LSTM-UC during the training phase as a func-
tion of the length of training data and the number of users at a learning rate of 0.001. Unsurprisingly,
the throughput performance of S-LSTM-UC improves as the number of users and number of training
samples increase. This phenomenon is attributed to the fact that the number of training samples below
33600 is inadequate to train the proposed model to effectively disentangle the complex correlation
between the input features of NOMA users and the UC. For instance, in the 24-user NOMA downlink,
the throughput performance of S-LSTM-UC with 28800 and 24000 training samples dropped by
3.26% and 7.95%, respectively, compared to the case 33600 training samples.

Figure 4: Throughput performance of S-LSTM-UC for the different number of users and different
lengths of training samples

Having studied the influence of the length of the training samples and number of users, Fig. 5
shows the throughput performance of S-LSTM-UC during the testing phase for different numbers of
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epochs. The learning rate is varied from 0.001 to 0.1. It is observed that the throughput of S-LSTM-UC
increases when smaller step size is adopted. In addition, the throughput performance of the proposed
schemes also improves as the number of epochs is increased from 10 to 40. However, when the number
of epochs is increased to 50, the throughput performance of the model degrades. This observation
is because the proposed model could be sufficiently trained to learn the cluster formation using 40
epochs. Further training of the model will lead to over-fitting and the noise present in the training
samples will be captured, resulting in throughput degradation. As such, the optimum throughput
performance for this deployment scenario could be obtained when the learning rate and the number
of epochs are configured as 0.001 and 40, respectively.

Figure 5: Throughput performance of S-LSTM-UC for different learning rates and the different
number of epochs

Fig. 6 provides an insight into the effects of the depth of S-LSTM-UC. At a learning rate of 0.001,
we investigate the number of epochs on the MSE and the average throughput performance during the
testing phase. As the number of epochs increases, the MSE decreases while the average throughput
increases linearly. It is also noteworthy that the MSE and throughput performance tend to improve
when the depth of S-LSTM-UC increases, i.e., more hidden layers are utilized. For instance, in the
case of 40 epochs, the best MSE and throughput performance are attained when four hidden layers
are used. Compared to the case of 4 hidden layers, the average throughput performance of S-LSTM-
UC with 2 and 3 hidden layers drops by 9.32% and 6.02%, respectively. However, when the number of
hidden layers increases to 5 and 6, the throughput and MSE performance degrade. This phenomenon
can be explained as follows. When the number of users and subcarriers are large, NOMA clustering
and power allocation will incur higher complexity, and the dimensions of the non-convexity of the
UC dataset will increase. Consequently, S-LSTM-UC schemes with 2 and 3 hidden layers fail to fully
extract the deep temporal correlations between the multivariate time-series input features and the UC
information. On the other hand, S-LSTM-UC with a four-layer configuration can fully exploit the
inherent temporal dependency of the time series sequence and generalize well. Nonetheless, further
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increasing the network depth to 5 and beyond has no favorable effect on the MSE and throughput
performance as the model will be over-fitted to the training data.

Figure 6: MSE and average throughput performance of S-LSTM-UC for the different number of
epochs and different numbers of hidden layers

In Fig. 7, the average throughput performance of the proposed S-LSTM-UC during the testing
phase for different network depths and the different number of hidden layers and hidden nodes is
investigated. Judicious selection of the number of hidden layer nodes is essential as the insufficient
number of hidden nodes would result in the under-fitted model. The UC scheme would fail to capture
the underlying complex structure of the time-series datasets fully. In contrast, excessive hidden nodes
may result in overfitting. Since UC in NOMA system is a highly complex problem, the number
of hidden layer nodes should be carefully determined to achieve optimum performance. Hence,
investigations are carried out by considering 2 to 6 hidden layers and 32 to 56 hidden nodes. The
simulations show that the highest average throughput could be attained when 40 hidden nodes are
chosen for all the number of hidden layers considered.

Since activation function is one of the essential hyper-parameters in S-LSTM-UC, the effects of
4 well-known activation functions, i.e., ReLu, Sigmoid, Sine and Tanh, on the average throughput
performance during the testing phase are investigated in Fig. 8. As illustrated in the figure, the ReLU
activation function is the best performer, and the average throughput performance gain of ReLU
over other activation functions is increasingly more prominent as the number of users increases.
Quantitatively, in the case of 24 users, it can be seen that the ReLu activation function substantially
outperforms the Sigmoid, Sine and Tanh counterparts in terms of average throughput by 21.01%,
30.13% and 33.80%, respectively. This observation is because the Sigmoid, Sine, and Tanh functions
fail to model the cluster formation precisely because the functions could lead to negative outputs.
However, the values of cluster information should always be positive. Conversely, the ReLu function
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could effectively overcome this issue by only outputting non-negative values. Hence, the ReLu function
is recommended for the proposed S-LSTM-UC.

Figure 7: Average throughput performance of S-LSTM-UC for the different number of hidden layers
and the different number of hidden layer nodes

Figure 8: Average throughput performance of S-LSTM-UC for different activation functions and
different number of users
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In Fig. 9, S-LSTM-UC is compared with ANN-UC to characterize their attainable MSE and
throughput performance at continuous time intervals for 24 users during the testing phase. The figure
shows that the throughput of S-LSTM-UC continues to increase at continuous time intervals t as
the optimality in learning the UC has been improved due to the sequential processing of clustering
information. On the other hand, MSE reduces for continuous-time intervals. However, for ANN-UC,
the throughput does not significantly improve compared to S-LSTM-UC, as it considers instantaneous
time without considering the historical clustering results and the variation of channel gains and power
levels.

Figure 9: MSE and throughput performance of S-LSTM-UC and ANN-UC at different time intervals

To assess the effectiveness of the proposed S-LSTM-UC scheme, four benchmarked techniques
have been identified, i.e., BF-S-UC, ANN-UC, DUC, and OMA. Fig. 10 depicts the comparison of
average throughput performance for various techniques considered for the different number of users
during the testing phase. The proposed S-LTSM-UC is configured using the best hyper-parameters
recommended in the initial analysis in this simulation. The figure shows that the techniques under
consideration demonstrate the following increasing order of average throughput performance: B-FS-
UC, S-LSTM-UC, ANN-UC, DUC, OMA. As anticipated, the proposed S-LSTM-UC significantly
outperforms the OMA, and its average throughput is about five times that of the OMA. Furthermore,
it is also noteworthy that S-LSTM-UC can achieve near-optimal average throughput performance,
which is approximately 98.94% of B-FS-UC for the different number of users considered. Compared
to DUC, S-LSTM-UC can obtain more than 50% of throughput. This performance advantage is
attributed to its capability to exploit the users’ channel diversity and heterogeneity fully. Thus, as
the number of users in the NOMA system grows, the performance gap between S-LSTM-UC and
DUC increases. Owing to the capability of S-LSTM-UC in capturing the deep and complex temporal
dynamics of the time-series data via long-term memory cells and its deep architecture, it can improve
the throughput performance of ANN-UC by 7%-30%.
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Figure 10: Comparison of throughput performance on the number of users for various UC schemes
in NOMA and OMA system

5 Conclusion and Future Work

This work proposes a novel S-LSTM-UC to tackle the UC problem in NOMA 5G systems by
capitalizing on the underlying deep temporal dynamics of the time-series inputs captured via long-
term memory cells and its deep architecture. The S-LSTM-UC can better characterize the non-linear
transformation of diversity in channel gains and powers into cluster formation by including more
LSTM layers in the model. Following the cluster formation, a power allocation method is implemented
to ensure all users in each cluster achieve the minimum throughput requirement while adhering to the
SIC constraint. To optimize the hyper-parameters of the S-LSTM-UC, extensive simulations have
been conducted. It is found that the proposed S-LSTM-UC achieves the best performance for all the
scenarios considered when it is equipped with four hidden layers and 40 nodes. With these optimal
settings, the proposed S-LSTM-UC scheme could significantly outperform the existing schemes and
achieve a near-optimal throughput performance, around 98.94% of the throughput attained by the
B-FS-UC method. In addition, the robustness of the S-LSTM-UC has also been tested in diverse
NOMA deployment scenarios. The results reveal that the proposed method could effectively adapt to
different NOMA environments without the need for re-training. In general, S-LSTM-UC is efficient
to forecast UC formation based on the time-series data collected over a period of time. To make it
more efficient and robust, more stacking LSTM layers can be incorporated, but this will increase the
complexity of the model, which will require a longer time to train and test. Furthermore, S-LSTM-UC
is sensitive to different random weight initializations. As future work, the proposed S-LSTM can be
developed deeper to accurately learn more complex time-series data to make a more precise prediction.
To cope with the complexity due to deeper S-LSTM model, some model compression techniques
such as pruning can be implemented. Besides, more analysis can be done to maximize the throughput
performance and minimize bit error rate and computational complexity.
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