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Abstract: This research proposes a method called enhanced collaborative and
geometric multi-kernel learning (E-CGMKL) that can enhance the CGMKL
algorithm which deals with multi-class classification problems with non-linear
data distributions. CGMKL combines multiple kernel learning with softmax
function using the framework of multi empirical kernel learning (MEKL) in
which empirical kernel mapping (EKM) provides explicit feature construction
in the high dimensional kernel space. CGMKL ensures the consistent output
of samples across kernel spaces and minimizes the within-class distance to
highlight geometric features of multiple classes. However, the kernels con-
structed by CGMKL do not have any explicit relationship among them and
try to construct high dimensional feature representations independently from
each other. This could be disadvantageous for learning on datasets with com-
plex hidden structures. To overcome this limitation, E-CGMKL constructs
kernel spaces from hidden layers of trained deep neural networks (DNN).
Due to the nature of the DNN architecture, these kernel spaces not only
provide multiple feature representations but also inherit the compositional
hierarchy of the hidden layers, which might be beneficial for enhancing the
predictive performance of the CGMKL algorithm on complex data with
natural hierarchical structures, for example, image data. Furthermore, our
proposed scheme handles image data by constructing kernel spaces from a
convolutional neural network (CNN). Considering the effectiveness of CNN
architecture on image data, these kernel spaces provide a major advantage
over the CGMKL algorithm which does not exploit the CNN architecture for
constructing kernel spaces from image data. Additionally, outputs of hidden
layers directly provide features for kernel spaces and unlike CGMKL, do not
require an approximate MEKL framework. E-CGMKL combines the consis-
tency and geometry preserving aspects of CGMKL with the compositional
hierarchy of kernel spaces extracted from DNN hidden layers to enhance the

http://dx.doi.org/10.32604/cmc.2022.027874
mailto:allahditta@ue.edu.pk


5100 CMC, 2022, vol.72, no.3

predictive performance of CGMKL significantly. The experimental results on
various data sets demonstrate the superior performance of the E-CGMKL
algorithm compared to other competing methods including the benchmark
CGMKL.

Keywords: CGMKL; multi-class classification; deep neural network; multiple-
kernel learning; hierarchical kernel spaces

1 Introduction

Machine learning has become necessary nowadays in every sector of life. Machine learning
methodologies for binary classification like decision trees, Support Vector Machines, K-nearest
neighbor, neural network, and Naïve Bayes can be extended for multi-class classification [1]. The
most common traditional techniques used for multiclass classification are one-vs.-one (OVO) and
one-vs.-all (OVA). In OVA a single classifier is designed per class i-e if there are K classes then K
classifiers are constructed. When data is given as input to the classifiers then the classifier that belongs
to a particular class gives the highest probability value for that class [2]. But an imbalance problem
exists in OVA because single class samples are much less as compared to the number of samples in the
remaining classes [3]. OVO approach divides the problem into n(n+1)

2
binary classifiers or sub-problems.

The outputs of these base classifiers are combined to get the final output [2]. The results show that
OVO performance is better as compared to OVA [4]. But the OVO method is encountered by non-
competence problems [5]. In both of the methods, OVO and OVA, there is an issue of computational
inefficiency due to the formation of several binary classifiers. To overcome the limitations mentioned
above, the softmax function is used which requires much easier parameter learning strategies and
optimizes a single log-likelihood function during the training phase. The outcome of a softmax
function is a monomial probability distribution on k number of possible classes. The class with the
highest probability is the predicted class [6]. For a given test sample, softmax directly outputs the
probability of that sample belonging to a particular class, hence avoiding the need to develop multiple
binary classifiers.

Although the softmax function deals well with multi-class classification problems when the data
distributions have linear decision boundaries, it encounters performance degradation on nonlinear
data sets. This problem is addressed by employing kernel methods that map the original data points
to higher dimensional feature space to make the classification task easier. Some kernel methods
construct implicit feature representations in the higher dimensional space through the use of kernel
function, but this approach does not apply to softmax function. To combine kernel methods with
softmax function, empirical kernel mapping (EKM) is used [7]. EKM maps each sample x into an
explicit feature vector ϕe (x) in the high dimensional kernel space. Once ϕe (x) is computed it can be
easily inserted into the softmax function [8]. Introduces the collaborative and geometric multi-kernel
learning (CGMKL) algorithm which effectively incorporates the multiple empirical kernel learning
(MEKL) framework into the softmax function. CGMKL enhances the expression of sample data
through empirical feature space ϕe and enriches the classification ability of the softmax function.
Additionally, CGMKL ensures collaborative working of softmax function among different kernel
spaces and improves classification of all kernel spaces by controlling output trends of input samples.
To accomplish these tasks, CGMKL employs two regularization terms: RTUn and RTSn . The term RTUn

helps softmax function to collaboratively work in different kernel spaces. This term harmonizes the
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information between different kernel spaces and provides consistent outputs of samples in them. The
term RTSn reduces the within-class distance and improves the classification capability of all kernel
spaces. However, the kernels constructed by CGMKL do not have any explicit relationship among
them, and hence try to construct high dimensional feature representations independently from each
other. This could be disadvantageous for learning on datasets with complex hidden structures. To
address this issue, one possible solution is to construct kernel spaces from hidden layers of trained
deep neural networks (DNN). Due to the nature of the DNN architecture, these kernel spaces not
only provide multiple feature representations but also inherit the compositional hierarchy of the hidden
layers which might be beneficial for improving the predictive performance of the CGMKL algorithm
on complex data.

Deep learning is a subset of machine learning that employs deep neural network architectures
in which multiple hidden layers help to learn a more abstract representation of data as we move
progressively from the shallow to the deeper layers. Deep learning methodologies surpass traditional
machine learning algorithms especially when the data becomes huge or problems become complex, for
example, image classification, natural language processing (NLP), and speech recognition problems
[9]. Usually, in deep neural networks, only the last hidden layer is used to get the final output and
intermediate representations of hidden layers are used for preparing a more abstract representation of
the output layer. In [10] KerNET method is proposed and applied on two renowned architectures i-e
multi-layer perceptron (MLP) and convolutional neural network (CNN). Motivated from [10] our
paper likewise exploits the information of intermediate representations extracted from the hidden
layers of a trained DNN. The output of the nth hidden layer “ ϕn” is used as a feature vector to make a
base kernel Kn (i, j) = ϕn (xi) .ϕn

(
xj

)
. The multiple kernel spaces constructed from these hidden layers

inherit the compositional hierarchy of the hidden layers. This hierarchical structure might help improve
the predictive performance of the classification algorithm on data sets with complex hidden structures.

This paper proposes an enhanced collaborative and geometric multi-kernel learning (E-CGMKL)
algorithm that can enhance the CGMKL algorithm, and deal with complex multi-class classification
problems with non-linear data sets. Below we provide a list that highlights the advantages of our
proposed method over CGMKL:

(a) The kernels constructed by CGMKL do not have any explicit relationship among them and
try to construct high dimensional feature representations independently from each other.
This could be disadvantageous for learning on datasets with complex hidden structures. To
overcome this limitation, E-CGMKL constructs kernel spaces from hidden layers of trained
deep neural networks (DNN). Due to the nature of the DNN architecture, these kernel spaces
not only provide multiple feature representations but also inherit the compositional hierarchy
of the hidden layers, which might be beneficial for enhancing the predictive performance of
the CGMKL algorithm on complex data with natural hierarchical structures, for example,
image data.

(b) Furthermore, our proposed scheme handles image data by constructing kernel spaces from a
convolutional neural network (CNN). Considering the effectiveness of CNN architecture on
image data, these kernel spaces provide a major advantage over the CGMKL algorithm which
does not exploit the CNN architecture for constructing kernel spaces from image data.

(c) Additionally, outputs of hidden layers directly provide features for kernel spaces and unlike
CGMKL, do not require an approximate MEKL framework.

(d) E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the
compositional hierarchy of kernel spaces extracted from DNN hidden layers to enhance the
predictive performance of CGMKL significantly.
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This paper is organized as follows. Section 2 briefly describes existing work related to our research.
Section 3 provides a detailed description of our proposed E-CGMKL algorithm. Section 4 presents
and discusses experimental results. In the last section, conclusions are provided.

2 Related Work

Kernel method is a remarkable technique that converts nonlinear complex pattern data to a linear
pattern in high dimensional reproducing hilbert kernel space (RHKS) [11].

2.1 Kernel Methods
Kernel Methods introduced in [12,13] such as support vector machines (SVM), Gaussian kernel,

kernel principal component analysis (PCA), and kernel fisher discriminant analysis (KFDA) are well-
established machine learning methods. These kernel methods use kernel functions K : X x X → R to
implicitly map non-separable input data to a possibly high dimensional feature space by defining the
inner product in that space: Kn

(
xi, xj

) = ϕn (xi) .ϕn

(
xj

)
. Fig. 1 shows the Kernel function mapping of

non-separable input data to separable high dimensional kernel space.

Figure 1: Graphical illustration of kernel mapping

2.2 Multiple Kernel Learning
The success of a kernel-based learning algorithm depends on appropriate kernel selection. Choice

of the kernel is a fundamental problem of kernel methods. Various evaluation measures of kernel
function for modal selection have been proposed such as kernel polarization [14], cross-validation,
kernel alignment [15], and spectral analysis [16,17]. Yet, these mechanisms cannot guarantee an
optimal selection of kernel functions for the good performance of kernel-based classifiers. To address
this problem, a popular technique called multiple kernel learning (MKL) has attracted the attention of
many researchers. MKL combines a set of base kernels constructed by using different kernel functions.
The optimal combination of base kernels can automatically learn the importance of each feature
[18–20]. Different algorithms have been proposed that try to improve the learning efficiency of MKL
by exploiting various optimization techniques: Simple-MKL [21], Easy-MKL [22], and stochastic
variance reduced gradient SVRG-MKL [23]. To improve the regular MKL, extended MKL techniques
have been proposed e-g Localized MKL (LMKL), novel sample-wise alternating optimization for
training LMKL [24]; Sample Adaptive MKL, adaptively switch base kernels corresponding to each
sample [25]; Bayesian Maximum Margin MKL, improves the learning speed and generalization ability
by defining a multiclass likelihood function that accounts for margin loss for kernelized classification
[26]; and Multiple Empirical Kernel Learning (MEKL) which explicitly represents the samples by
mapping input space to explicit feature space [27].
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2.3 Deep Learning and Conventional Machine Learning
There are some traditional machine learning algorithms used for multi-class classification namely

random forest, support vector machine (one vs. one) SVM (OVO), support vector machine (one vs.
all) SVM (OVA), and BPNN. Random forest is an ensemble method introduced by Breiman in 2001
[28], it involves a group of tree-structured predictors in learning process. This approach is used in
[29] for diabetes classification effectively. But this method consists of a lot of trees in learning which
makes it computationally expensive and is also not known to perform well on image and audio
data. SVM (OVO) and SVM (OVR) are the most common classification techniques in which SVM
(OVO) divides the problem into n(n+1)

2
binary classifiers and in SVM (OVA) single classifier is used per

class. Reference [30] implements OVO and OVA approach to extract discriminative features and to
predict multiclass motor imagery features respectively. Both of the methods encounter the issue of
computational inefficiency because of the formation of several binary classifiers. Back propagation
neural network (BPNN) is a supervised learning algorithm used for classification. In [31] BPNN
algorithm is designed to predict the silicon oxide content during chemical analysis estimated according
to rock main oxide. In BPNN only the last layer representation gives the classification result but
intermediate representations can be used for the main classification task.

In deep kernel learning, there are three current research directions. The first one is to form a
synergy model in which a front-end deep module is used and a kernel machine is used at the back-end.
This type of work has been done in [32] which presented a hybrid system in which a CNN identifies
generic objects, and the features learned through CNN are used in training Gaussian-kernel SVM.
This type of work can also be found in [33]. In the second direction, the kernel method is fitted
in deep architectures. Reference [34] introduces a convolutional kernel network (CKN) which fills
the gap between kernels and neural network literature. Kernels in CKN produce representations of
the images in a sequence built-in multilayer fashion and these layers are named image feature maps.
Similar work has been done by Reza et al. in [35]. The third direction is to combine the idea of deep
kernel learning and optimization. Reference [36] introduces scalable deep learning which combines the
structural properties of deep neural networks with the nonparametric flexibility of kernel methods, by
presenting scalable probabilistic gaussian processes. Semi-supervised deep kernel learning [37] is the
extension of this work [11].

In the context of complex feature learning using deep nets [38] recently proposed TBE-net
algorithm. TBE-Net provides complex feature learning and leads to more integral diverse vehicle
features. Recently [39] proposed RSOD algorithm for small object detection which smartly exploits
the feature maps generated by the shallow and deep layers as well as employs an attention mechanism
to improve the detection accuracy. In [10] Lauriola et al. proposed a deep learning framework named
as KerNet. This framework combines the hidden layer representations optimally through the multi-
kernel learning (MKL) framework. This combination improves the quality and performance of the
final representation. Each hidden layer output has a feature vector ϕ (x) corresponding to each input
sample x which is used to build the base kernels Kn

(
xi, xj

) = ϕn (xi) .ϕn

(
xj

)
. These base kernels are

then combined using the MKL framework i-e K = ∑
l

μlKl. Fig. 2 illustrates this process. In [8]

Wang et al. introduce the CGMKL algorithm for multiclass classification which ensures consistent
outputs of samples across multiple kernel spaces and minimizes the within-class distance to highlight
the clustering of different classes but it does not use structurally related kernel spaces. In this paper,
a hybrid mechanism is proposed which combines the kerNET framework with CGMKL. We exploit
the intermediate representations extracted from hidden layers of trained DNN to construct multiple
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kernel spaces which inherit the compositional hierarchy of the hidden layers. These kernel spaces are
then used in the CGMKL method to enhance its predictive performance.

Figure 2: Neural network architecture showing the inner representation of input samples at nth hidden
layer ϕn and arranged sequence of nonlinear transformations μ1, . . . , μn

3 Methodology

Deep neural network architecture output depends on the compositional sequence of non-linear
mapping that conveys progressively complex representations of input data. In this paper, we are using
intermediate representations extracted from a hidden layer of DNN. The mathematical model of these
intermediate representations is described by the function ϕn (x) which is the composite function given
by:

ϕn (x) = μno μn−1o . . . μ1 (x) (1)

where μn (x) = g ( Wn (x) + b ) represents a nonlinear transformation from n − 1 to nth hidden layers
and ϕ0 = x is the input sample as illustrated in Fig. 2.

3.1 Multiple Kernel Spaces Extracted from DNN
E-CGMKL algorithm can be applied to any DNN architecture. There are two main architectures

used in this work namely MLP and CNN. In MLP architecture the neural network weights are fully
trained using Keras and Tensor-flow libraries by selecting the best hyperparameters. Afterward, the
output of the nth hidden layer of the trained network is used to make the nth base kernel Kn

(
xi, xj

) =
ϕn (xi) .ϕn

(
xj

)
. The kernel spaces constructed from these hidden layers inherit the compositional

hierarchy of the hidden layers and hence, enhance the ability of the softmax function to classify non-
separable datasets with complex hidden structures. In the case of CNN, the output of the hidden layer
is not in the form of a single vector as in the case of MLP architecture, instead, it is in the form of
a tensor whose dimension depends on the pixels of the input image times the number of filters used
in the hidden layer. So, the output of the hidden layer is flattened before using it as a feature vector.
CNN architecture also has different types of layers e.g., convolutions, pooling, dropout, and dense
from which only the representations of convolution and dense layers have been used. The notation
ϕn (x) used for CNN is depicted in Fig. 3.
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Figure 3: Convolutional neural network (CNN) architecture is composed of convolution, pooling,
and fully connected layers. As the figure illustrates the intermediate representation ϕn is defined by the
output convolution and fully connected layer

3.2 E-CGMKL Algorithm
A brief mathematical description of the CGMKL algorithm [8] is given below. The overall loss

function of the CGMKL algorithm is given as follows.

L =
l∑

n=0

[Lstm (fn) + δRTSn ] + σRTUn (2)

In Eq. (2) Lstm (fn) is the loss of softmax function written as below:

Lstm (fn) =
N∑

i=1

log

⎛
⎝exp

(
xn

i Wn

)
yT

i

exp
(
xn

i Wn

) ⇀

1

⎞
⎠ (3)

If there are Nnumber of samples in training set then N samples are defined as xn
i = [

ϕe
n (x) , 1

]
which

represents the feature vector in nth kernel space corresponding to ith training sample and Wn is the
weight matrix of nth kernel space which is learned during parameter learning. If R is the number
of neuron in DNN hidden layer and C is the number of classes then the dimension of Wn matrix is
R X C In Eq. (2) RTUn is the regularization term that helps softmax function to collaboratively work
in different kernel spaces. This term harmonizes the information between different kernel spaces and
provides consistent outputs of samples in them and σ is the parameter that controls the importance
of RTUn . The detailed term is given as:

RTUn = 1
2N

l∑
n=0

tr(

(
X n

i Wn − 1
l

l∑
j=1

X j
i Wj

) (
X n

i Wn − 1
l + 1

l∑
j=1

X j
i Wj

)T

) (4)

In Eq. (4) X n
i represents matrix form of intermediate representation of each sample xn

i = [
ϕe

n (x) , 1
]
.

Dimension of X n
i is N X (R + 1) RTSn is another regularization term in Eq. (2). To exhibit a geometric

feature of classification results this term reduces the within-class distance and δ is the parameter that
controls the importance of RTSn . In this term, Sn is the scatter matrix in lth kernel space. The formula
of RTSn is given below:

RTSn = 1
2N

tr
(
SnWnW T

n ST
n

)
(5)

In Eq. (5) Sn for each kernel space is calculated by taking the mean of intermediate representation of
samples in each class in ϕn (x). Next the class mean of intermediate representation is subtracted from



5106 CMC, 2022, vol.72, no.3

the corresponding intermediated representation of that class. Dimension of Sn is R X R. Derivative of
loss function of Eq. (2) with respect to Wn is given as:

∂L
∂Wn

=
N∑

i=1

xnT
i (log

⎛
⎝ exp

(
xn

i Wn

)
exp

(
xn

i Wn

) ⇀

1

⎞
⎠ − yT

i ) + δ

N
ST

n SnWn

+ σ

N
(
l − 1

l
X T

n XnWn − 1
l

X T
n

l∑
j=1,j �=n

XjWj)

(6)

For parameter learning, RMSProp is used as an optimization method. To reach global minima faster,
RMSprop uses the memory matrix δ∂Wm to store the previous gradient.

δnew
∂Wn

= βδ∂Wn + (1 − β)

(
∂L
∂Wn

)2

(7)

Finally, RMSProp updates the weight equation as:

W new
n = Wn − α

(
1√

δnew
∂Wn + ε

)
∂L
∂Wn

(8)

In the above Eq. (7) β is the RMSProp parameter and in Eq. (8) α is the learning rate. A slight
modification in the prediction step of the CGMKL algorithm is also proposed. Unlike CGMKL the
following equation is used to predict the label for the test sample.

F (x) =
l∑

n=1

μlxnWn (9)

where ‘ μl’ are the weights given by the EASYMKL algorithm (multiple kernel learning algorithm).
These weights measure the importance of each kernel and provide an optimal combination of kernel
spaces for test sample prediction.

3.3 Training the E-CGMKL Algorithm
The training of our proposed algorithm consists of two phases. In the first phase, a deep neural

network (DNN) is trained with the best hyperparameter settings. Then the feature vectors for kernel
spaces are extracted from the outputs of the hidden layers of the trained DNN. Each hidden layer
generates its own kernel space. These feature vectors are extracted for each data sample given as
input to the trained DNN. In the second phase, these feature vectors are given as input to the
CGMKL algorithm. Based on the multiple kernel spaces extracted from trained DNN, the CGMKL
algorithm learns its weight parameters using the variant of the gradient descent algorithm known as
the RMSPROP algorithm. The pseudo-code of the proposed E-CGMKL method is listed in Tab. 1.

Table 1: Learning process of enhanced collaborative and geometric multi-kernel learning (E-CGMKL)
method

Input: Training samples (x) and their labels (y) Output: Weight matrix Wn

1. Train the deep neural network (DNN) by selecting the best hyper-parameters.
2. Extract feature vectors i-e 
n (x) to nth hidden layer where x represents the input sample.

(Continued)
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Table 1: Continued
Input: Training samples (x) and their labels (y) Output: Weight matrix Wn

3. Obtain xn
i = [
e

n (x)], sample matrix Xn and scatter matrix Sn

4. Calculate the lossiter as L
5. Initialize the parameters α, β, δ, σand ε. Initialize Wnwith random normal distribution;
6. For iter = 1:max-iter
7. For each n (n = 1, . . . , l) kernel spaces calculate derivative ∂L

∂Wn

8. Calculate matrix δiter
∂Wn

;
9. Find the updated weights W iter

n ;
10. Calculate the lossiter as L;
11. If lossk − lossk−1 < 10−4 :
12. Break
13. End if
14. End for

4 Experiment

This section introduces the data sets used for evaluating the effectiveness of E-CGMKL.

4.1 Datasets
Eight multi-class classification data sets selected from UCI Repository are used in this research.

The names of the datasets are as follows: Seeds, Wine, Balance Scale, Hayes Roth, Accent recognition,
JAFFE, and Vehicle. Hayes-Roth is the dataset for human subjects’ transfer test. The data has four
attributes namely: hobby, age, educational level, and marital status. The class is divided into nominal
value between 1 and 3. Wine is the dataset of chemical analysis results of wine grown in Italy derived
from three cultivars but have same region. The attributes include 13 constituents quantities found
during analysis. Seeds dataset consists of 7 geometric parameters of wheat kernels belonging to 3
different varieties of wheat: Rosa, Kama, and Canadian. JAFFE is the image dataset of 10 Japanese
female expressers with 7 posed expressions: happy, sad, fear, angry, disgusting, surprised, and neutral.
The dataset consists of 210 images of 256 pixels. Speaker accent recognition is an audio dataset of
people accents belonging to 6 countries: Spain, Georgia, France, Italy, United Kingdom, and United
States of America. Led7digits is a dataset of LED display with 7 light-emitting diodes hence there
are 7 Boolean attributes having 10 concepts ranging between 0 and 9. Balance Scale is the dataset
classified according to the balance scale tip which is to the right, left or balanced. Vehicle is the dataset
of silhouette of 4 types of vehicles: opel, saab, bus, and van. Different angle of views were taken to
classify vehicles according to 18 attributes. Pen-based recognition of handwritten digits is the dataset
of 10 digits between 0 and 9 written by 44 writers with 16 attributes having integers ranging between 0
and 100. These data sets are medium-sized ranging from 160 to 10,992 samples. Data sets with diverse
characteristics having different numbers of input features, attributes, and classes are selected to analyze
the effectiveness of the proposed algorithm with varied constraint conditions. The number of classes
and number of attributes of these data sets is in the range of 3–10 and 4 256 respectively. Description
of the datasets is given in Tab. 2. Preprocessing of input features is done through normalization to get
a symmetric and fast converging cost function. Classification accuracy is used as a metric to evaluate
the performance of the E-CGMKL method.
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Table 2: Dataset description

Name # Classes # Attributes # Samples

Hayes-Roth 3 4 160
Wine 3 13 178
Seeds 3 7 210
JAFFE 7 256 213
Accent recognition 6 12 329
Led7digits 10 7 500
Balance-Scale 3 4 625
Vehicle 4 18 846
Pen-based Digits 10 16 10,992

4.2 Competing Algorithms
The proposed scheme is compared with six baseline methods: CGMKL, BPNN, kerNET, SVM

(OVO), SVM (OVR), and Random Forest. A brief description of baseline methods is given below:

• CGMKL: collaborative and geometric multi-kernel learning, the reference method in which
multiple RBF kernels are utilized.

• BPNN: backpropagation neural network with hidden layers, where the final output is extracted
from the last layer as in MLP architecture.

• kerNET: an ensemble algorithm that utilizes EASYMKL for a combination of base kernels
then SVM learning is used to train the model.

• SVM (OVA): support vector machines (one vs. all), it is a classical method that splits the data
into multiple binary classification problems and then binary classifiers are trained for each
problem to classify multi-class data.

• SVM (OVO): support vector machines (one vs. one), it is a classical method that splits the
multiclass data into binary classification problems for a single class vs. every other class to
classify multi-class data.

• Random Forest: it is the state-of-the-art multi-class classification algorithm involving decision
trees. It follows an ensemble learning approach.

4.3 Experimental Setting
In experiments, 5 fold cross-validation is used in which data is divided into 5 folds from which 4

folds are used for training and the remaining 1 fold is used for testing. This process is repeated until
each fold is used for testing and then the final result is evaluated by taking the average of test accuracies
obtained from each of the five folds. The same partition is used for 5 fold cross-validation for each of
the competing algorithms to get unbiased results. To train BPNN the number of hidden layers is set
to 2 and the number of neurons per layer is set to 50 and 25 for the first and second layers respectively.
ADAM is used as an optimization algorithm and ReLU is used as an activation function. Training
of the BPNN is stopped when the loss function converges. For CNN architecture, two convolutional
layers are used with 6 and 12 5 × 5 filters respectively. After each convolutional layer, two Max-pool
layers are used having a size of 1x1 with a stride of 2. After the Convolutional and Max-pool layers, a
dense layer is placed with 128 neurons. Since 2 hidden layers are used, the trained DNN gives 3 base
kernels. The proposed algorithm gives the best result using 3 kernels that is why 2 hidden layers are
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used in DNN. The learning rate of E-CGMKL α is set to 0.01. RMSProp parameters γ , β, and ε

are set to 0.1, 0.9, and 10−8 respectively. The controlling parameters of regularization terms δ and σ

are selected from [0.01, 0.1, 1, 10, 100]. The learning of E-CGMKL is stopped when the difference
of two consecutive losses is below the threshold value of 10−4. In kerNET, base kernels are combined
through the EasyMKL algorithm. EasyMKL has a hyperparameter λ, the value of λ is selected from
[0, 0.1, 0.2, 0.5, 0.9, 1]. For class prediction, kerNET employs SVM (OVO). SVM (OVO) contains
the hyperparameter C whose value is selected from [10n, n = −3 . . . 3]. The proposed method is also
compared with SVM (OVO) and SVM (OVR). These algorithms have hyperparameters C and gamma
respectively. The value of C and gamma is selected from {0.01, 0.1, 1, 10, 100}. The RBF kernel is
used in both SVM (OVO) and SVM (OVR). In the Random forest algorithm, the number of decision
trees is set to 100. Parameters of classification algorithms selected for comparison with E-CGMKL
are adjusted to get the highest accuracy results. The hyperparameters of all the algorithms are selected
using k-fold cross-validation.

5 Results

Tab. 3 presents the testing accuracy of all the classification algorithms used for comparison. As can
be seen from Tab. 3, BPNN and Random forest do not show improvement in performance as compared
to CGMKL. However, SVM (OVO) and SVM (OVR) lead to significant improvement in average test
accuracy compared to CGMKL. E-CGMKL outperforms all the competing algorithms in terms of
test accuracy averaged over all datasets. E-CGMKL also achieves higher test accuracy compared to
the other methods in 7 out of 9 datasets. Compared to the benchmark CGMKL method, E-CGMKL
shows a 1.33% improvement in average test accuracy. This indicates the benefit of constructing multiple
kernel spaces from the hidden layers of the trained neural network. As compared to BPNN, E-
CGMKL shows an improvement of 2.1% test accuracy. This also indicates the advantage of exploiting
intermediate representations of the hidden layers instead of using the output layer for classification
results. E-CGMKL also outperforms the KerNET algorithm which demonstrates the crucial role
played by the CGMKL algorithm in imposing the consistency constraint across multiple kernel spaces
as well as preserving a geometric feature suitable for classification. Compared to Random Forest, E-
CGMKL shows an improvement of 6.12% test accuracy. As can be seen from Tab. 3, E-CGMKL gives
better test accuracy compared to SVM (OVO), SVM (OVR), and Random Forest in 7 out of 9 data
sets. Fig. 4 shows the test accuracies of data sets individually and Fig. 5 shows the average test accuracy
results.

Table 3: Test accuracy result

Datasets E-CGMKL CGMKL BPNN KerNET Random forest SVM (OVO) SVM (OVR)

Hayes roth 80.00 ± 6.74 82.30 ± 4.74 80.00 ± 7.52 79.06 ± 2.33 83.75 ± 5.13 83.13 ± 4.48 83.75 ± 4.77
Wine 98.33 ± 1.52 97.78 ± 2.02 97.78 ± 1.99 97.28 ± 2.23 97.78 ± 2.03 96.66 ± 2.33 97.22 ± 2.48
Seeds 97.14 ± 3.91 95.71 ± 3.28 91.43 ± 6.43 93.54 ± 5.68 88.57± 10.5 92.38 ± 7.48 91.90 ± 7.19
JAFFE 88.37 ± 4.44 86.98 ± 4.53 83.72 ± 5.16 86.55 ± 3.54 77.24 ± 4.16 86.05 ± 2.92 86.05 ± 3.28
Accent
recognition

75.89 ± 5.52 72.12 ± 7.84 70.91 ± 9.28 71.53 ± 6.23 70.30 ± 7.15 76.75 ± 5.40 76.35 ± 6.46

Balance scale 97.28 ± 2.23 94.10 ± 3.14 95.54 ± 2.02 86.55 ± 3.46 67.84 ± 14.9 95.04 ± 1.58 93.28 ± 1.56
Vehicle 98.08 ± 0.68 96.23 ± 0.67 97.78 ± 0.91 96.69 ± 1.60 96.11 ± 1.36 97.86 ± 0.66 97.55 ± 0.52
Led7digits 74.40 ± 3.21 72.60 ± 2.41 73.80 ± 2.05 73.05 ± 2.78 73.40 ± 1.82 74.20 ± 2.39 74.20 ± 2.95
Pen digits 99.53 ± 0.47 99.24 ± 0.36 99.14 ± 0.29 99.01 ± 0.35 98.98 ± 0.57 99.07 ± 0.13 98.70 ± 0.25
Average 89.89 ± 3.19 88.56 ± 3.22 87.79 ± 3.96 87.87 ± 3.13 83.77 ± 5.29 88.85 ± 3.04 88.67 ± 3.27
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(a) Hayes-Roth test accuracy (b) Wine test accuracy

(c) Seeds test accuracy (d) JAFFE test accuracy

(e) Balance scale test accuracy (f) Vehicle test accuracy

(g) Led7digits test accuracy (h) Pen-based digits test accuracy

(i) Accent recognition
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Figure 4: Test score of used data sets on multi-class classification
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Figure 5: Average test score of comparison algorithms

5.1 Parameter Analysis
As discussed in the methodology section, δ is the parameter that controls the importance of

RTSn regularization term in Eq. (2). To exhibit a geometric feature of classification results this term
reduces the within-class distance. To illustrate the role of parameter δ the data set having three classes
is taken as shown in Fig. 6. The red square, the blue star, and the black triangular represent classes
one, two, and three respectively. Fig. 6 shows the change in the distribution of points in kernel space
for the three classes as the value of δ increases. The sub-figure (a) demonstrates the original untrained
data set. The value of σ is fixed to 0.01 and the value of δ is varied from 0.01 to 100. The sub-figures
from (b) to (f) in Fig. 6 show that by increasing the value of δ the points belonging to the same class
form a tight cluster in the high dimensional kernel space. These plots demonstrate the effect of RTSn

regularization term on the distribution of class-specific points in the kernel space. Experiments reveal
that classification performance with smaller values of δ and σ is better as compared to larger values.

Figure 6: (Continued)
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Figure 6: Visualizing the significance of the regularization term δ sub-figure (a) shows the original
data set and other sub-figures show how classes with the same colors come closer when the value of δ

increases gradually

5.2 Convergence Comparison of E-CGMKL and CGMKL
This section discusses the convergence behavior of E-CGMKL and CGMKL. To accelerate

the gradient descent algorithm RMSProp is used in both algorithms. The convergence of both the
algorithms on all data sets can be seen in Fig. 7. It is evident from the graphs that convergence of
E-CGMKL is faster as compared to the CGMKL algorithm, especially, the convergence rate of E-
CGMKL on Hayes Roth, Balance scale, and vehicle datasets is significantly faster than CGMKL.

Figure 7: (Continued)
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Figure 7: Convergence comparison of E-CGMKL and CGMKL. In the sub-figures of convergence
graphs x axis represents the number of iterations and y axis represents the loss after each iteration

6 Conclusion

This paper proposes the E-CGMKL algorithm which enhances the CGMKL algorithm to classify
multi-class data with nonlinear data distribution. The softmax function is a good state-of-the-art
method to do multi-class classification for linearly distributed data, but when the decision boundary
is nonlinear it suffers from performance degradation. Hence, to deal with nonlinear data, CGMKL
combines softmax function with multi-kernel learning using the MEKL framework constructed from
RBF kernels. In which EKM are feature vectors 
n (x) corresponding to each data sample x. However,
kernel spaces constructed in the CGMKL algorithm do not have any explicit relationship as they are
constructed by independently setting the width parameter of the RBF kernel to different values. On
the other hand, the kernel spaces constructed by the E-CGMKL algorithm inherit the compositional
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hierarchy of the DNN hidden layers and more effectively capture any complex latent structure in
the data set. These hierarchical kernel spaces improve the performance of the CGMKL algorithm
significantly on complex datasets such as image data sets. CGMKL ensures consistent outputs of
samples across kernel spaces and minimizes the within-class distance to highlight the clustering of
different classes. E-CGMKL combines the consistency and cluster preserving aspects of CGMKL with
the hierarchical structure of kernel spaces extracted from DNN hidden representations to enhance
its predictive performance. The experimental results on various data sets demonstrate the superior
performance of the E-CGMKL algorithm compared to other competing methods including the
benchmark CGMKL. The performance of E-CGMKL is further enhanced on image classification
datasets as these data sets possess complex latent structure which is effectively captured by kernel
spaces constructed from CNN. Possible future directions for our work include using parameterized
activation functions to construct kernel spaces from DNN and employing transfer learning to
efficiently construct kernel spaces for small-sized data sets.
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