
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.028284

Article

A Blockchain-Based Framework for Secure Storage and Sharing of Resumes

Huanrong Tang1, Changlin Hu1, Tianming Liu2 and Jianquan Ouyang1,*

1Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education,
Computer Science College of Xiangtan University, Xiangtan, Hunan Province, China
2Department of Computer Science, The University of Georgia, Athens, Georgia, USA

*Corresponding Author: Jianquan Ouyang. Email: oyjq@xtu.edu.cn
Received: 06 February 2022; Accepted: 10 March 2022

Abstract: In response to problems in the centralized storage of personal
resumes on third-party recruitment platforms, such as inadequate privacy
protection, inability of individuals to accurately authorize downloads, and
inability to determine who downloaded the resume and when, this study
proposes a blockchain-based framework for secure storage and sharing of
resumes. Users can employ an authorized access mechanism to protect their
privacy rights. The proposed framework uses smart contracts, interplane-
tary file system, symmetric encryption, and digital signatures to protect,
verify, and share resumes. Encryption keys are split and stored in multiple
depositories through secret-sharing technology to improve the security of
these keys. Corresponding key escrow incentives are implemented using smart
contracts to automatically verify the correctness of keys and encourage the
active participation of honest key escrow parties. This framework combines
blockchain and searchable symmetric encryption technology to realize multi-
keyword search using inverted indexing and Bloom filters and verify search
results on the chain. Escrow search service fees are charged through contracts.
Only after the search results are verified can the search service provider obtain
the search fee, thus ensuring fair and efficient search for encrypted resumes.
The framework is decentralized, secure, and tamper-evident, and achieves
controlled sharing while protecting personal privacy and information security.

Keywords: Resume; blockchain; interplanetary file system; secret sharing;
searchable encryption

1 Introduction

In the recruitment market, a personal resume is an essential document that highlights the
qualifications of an individual for a job. The resume states the person’s educational background and
work experience, as well as contact information and even identification numbers.

Resumes are generally publicly stored on a third-party recruitment cloud server, exposing the
owner’s private information. Even if some third-party recruitment platforms also provide an encryp-
tion function, the keys for encrypting and decrypting resumes are stored centrally on a third-party

http://dx.doi.org/10.32604/cmc.2022.028284
mailto:oyjq@xtu.edu.cn

5396 CMC, 2022, vol.72, no.3

server. When a third party maliciously views or leaks keys, the encryption security is put at risk. Also,
the resume owner on the existing recruitment platform cannot control the authorization or know when
the document has been downloaded.

Many recruitment platforms have leaked user resumes. An example in the United States is Ladders,
one of the most popular recruitment websites specializing in high-paying job recruitment. In 2019, this
company mistakenly made its database public without a password such that anyone could access the
data, resulting in the disclosure of user information belonging to more than 13.7 million individuals.

According to the published judgment files on China Judgments Online, from 2017 to 2020, a total
of 48 cases involving resume trading were convicted of infringing on citizens’ private information.
These cases involved websites such as 58.com, Ganji.com, and Zhilian.com. Criminal cases for the
sale of resumes on third-party recruitment platforms are rampant, and the security of personal privacy
information contained in resumes cannot be guaranteed.

On Zhilian.com, as long as a corporate account pays for membership, it has unlimited ability
to download resumes containing personal information. Similar problems occur on 51job.com and
Liepin.com. Corporate accounts only need to pay a fee to download the complete resumes of job
applicants. Thus, the privacy of applicants is compromised without their knowledge.

With the current centralized storage and management of resumes on third-party recruitment
platforms, resumes’ security, authenticity, and controllability are seriously challenged. For example,
when a resume is shared, there is no guarantee that the owner has control over the resume, and there is
no real way to know when the resume is shared with whom. This research proposes a blockchain-based
framework for securely storing and sharing resumes to address these issues.

The main contributions of this study are the following:

1) A blockchain-based resume-sharing framework is proposed, which leverages interplanetary file
system (IPFS), smart contracts, and digital signature technology to store and share resumes
securely. Only authorized recruiters have access to plaintext resumes. Authorization and other
access services are done by blockchain accounts to ensure identity privacy protection.

2) Secret sharing is used to implement secure key escrow and design incentives for it. A fair and
verifiable multiple-keyword searchable encryption algorithm is proposed to achieve fair and
efficient search of encrypted resumes.

3) We implemented our scheme and performed security and performance analysis. The time
for index generation, trapdoor generation, search, and verification, as well as the economic
consumption of the contract function, have been experimentally simulated. Results show that
the proposed scheme is feasible.

The rest of this paper is organized as follows. Section 2 describes the research background
and related work. Section 3 outlines the system model and definition of each stage. Section 4
summarizes the detailed design of the framework. Section 5 introduces the design of smart contracts.
Section 6 discusses security and performance. Section 7 provides the research conclusions and future
development directions.

2 Background and Related Work
2.1 Blockchain

Blockchain is a concept proposed by Satoshi Nakamoto in the “Bitcoin White Paper” [1].
Ethereum, a representative of Blockchain 2.0, provides smart contracts that can be automatically

CMC, 2022, vol.72, no.3 5397

executed on the blockchain and has the characteristics of strong tamper-proof modification and a
high degree of decentralization [2,3].

2.2 IPFS

The IPFS is a distributed storage system that uses distributed hash tables to solve the problem of
data transmission and positioning, and changes the single point of transmission through a peer-to-peer
(P2P) network. The IPFS makes data storage safer and more efficient for a longer period compared
with the traditional system [4].

2.3 Secret Sharing

Secret sharing is a technology for sharing secrets among a group of participants. It is mainly used
to protect critical information and prevent information from loss, damage, or tampering. Shamir [5]
and Blakley [6] first proposed it in 1979. Asmuth et al. [7] proposed a (t, n) threshold scheme based on
the Chinese remainder theorem in 1983. Using secret sharing technology to keep the keys can prevent
confidential information from risk exposure and being extremely concentrated in authoritative third
parties, thereby improving the stability and robustness of the keys.

2.4 Symmetric Searchable Encryption

Searchable encryption technology can efficiently retrieve ciphertext data without leaking private
information. As symmetric searchable encryption only requires one symmetric key, the scheme has
a simple structure, the encryption and decryption processes are fast, and the method is suitable for
data encryption and retrieval. Construction methods of symmetric searchable encryption include
SWP scheme proposed by Xiaoding et al. [8] and SSE-1 scheme proposed by Curtmola et al. [9].
Cash et al. [10] proposed symmetric searchable encryption that can be extended to massive databases.
Existing symmetric searchable encryption schemes are expanded from multiple perspectives, including
security [11,12], dynamic [13,14], and expandability [15–18].

2.5 Bloom Filter

The Bloom filter [19] is a long binary vector and a series of random mapping functions that
can quickly determine whether an element belongs to a certain set or not. Its advantage is that the
space efficiency and query time are much better than the general algorithm. Its disadvantage is its
misidentification rate and deletion difficulty.

2.6 Related Work

In recent years, many researchers have explored the application of blockchain technology in
data sharing. For example, Fan et al. [20] proposed an information management system called
MedBlock using blockchain, access control protocols, and symmetric cryptography. This system
enables authorized users to share sensitive medical information.

However, a centralized database management system controls a large amount of data and involves
many hidden dangers, such as denial of service attacks and single points of failure. Tan et al. [21] used
the IPFS to store archive data and realized the management, verification, and sharing of such data on
the chain through a combination of public and alliance chains. Nizamuddin et al. [22] used the smart
contract of the Ethereum blockchain to manage the sales of e-books and realized the transaction
sharing of e-books but not the access control of e-book owners and other users who obtained e-
books. Alzubi et al. [23], based on AG codes over Hermitian curve, design a new crypto system

5398 CMC, 2022, vol.72, no.3

for IoT devices to protect data security, and in [24] propose an IoT network combining blockchain
and artificial intelligence-driven secure medical data transfer (BAISMDT) for data transfer security
and privacy in IoT networks. Uddin et al. [25] proposed an electronic health record (EHR) system
incorporating the Hyperledger Fabric blockchain for storing, sharing, and exchanging EHRs in a P2P
network of healthcare stakeholders. Alnssayan et al. [26] proposed a VacChain system in conjunction
with blockchain to track children’s vaccination records, creating a convenient information-sharing
solution without loss of integrity and privacy, as well as alleviating the current problems of human
error, intentional tampering, and untraceable vaccination records for vaccination certificates.

The aforementioned data-sharing schemes for file encryption can ensure data confidentiality, but
they do not consider the safe custody of content-encryption keys. Naz et al. [27] used secret sharing to
split and encrypt the hash address of the file stored in the IPFS and store it in other nodes. However,
once the hash address of the file is leaked, anyone can directly access the plaintext data through the
address. Sohrabi et al. [28] improved the security of encrypted file keys for cloud data by using the
Shamir secret sharing algorithm, which enables the owner to split the decryption key into n parts
distributed to miner nodes on the blockchain for storage through a secure channel. However, this
algorithm does not verify the correctness of the miner nodes’ keys, nor does it provide escrow rewards.

Searchable encryption can effectively retrieve ciphertext data, so some scholars have incorporated
this technology into effective search when sharing encrypted data in their proposed schemes. Never-
theless, the traditional searchable encryption technology cannot guarantee the fairness of retrieval.
Zhang et al. [29] used a method that involved submitting a deposit in the blockchain to achieve fair
payment of the handling fee, ensuring that participants can obtain correct search results and service
fees when they execute honestly. However, numerous signature verifications are required during the
verification process, and the overhead is large. Li et al. [30] proposed a searchable symmetric encryption
scheme using the Bitcoin blockchain system to solve the problem of data search and the unfairness of
traditional symmetric searchable encryption schemes. However, the scheme requires six transactions
to obtain search results. The correctness of the search results verified through the Bitcoin script makes
the transaction cycle long and inefficient. Chen et al. [31] proposed a searchable encryption scheme
for EHRs based on blockchain, supporting logical expression queries and fair payment. This scheme
uses smart contracts to replace cloud servers. However, its ciphertext database and security index
are stored in smart contracts, which requires a large amount of gas. Feng et al. [32] used attribute
encryption and searchable encryption methods to control private data on the blockchain and fast
ciphertext search, which solved the privacy leakage problem. However, this scheme cannot achieve
efficient multi-keyword search or fair payment.

Blockchain-based technology research has made great progress in digital rights, finance, and elec-
tronic medical record sharing. However, relatively little research has been done related to resumes. The
above studies still have the problems of inability to securely escrow keys and inefficiency of searchable
encryption schemes. This paper uses secret sharing and blockchain technology to enhance the security
of keys. A fair searchable encryption scheme supporting multi-keyword search is implemented using
Bloom filters to improve the searching efficiency of encrypted resumes.

3 System Framework/Stage Definition
3.1 System Framework

In this section, the overall design of our framework is presented. Tab. 1 summarizes the symbols
and corresponding descriptions used.

CMC, 2022, vol.72, no.3 5399

Table 1: Symbols and descriptions

Symbol Description

enc Use AES algorithm for encryption
dec Use AES algorithm for decryption
inv Solve the inverse element
PRF Pseudo-random function
H Hash function
|| Concatenate string
BF Bloom Filter

The framework consists of the following four entities:

Applicant (Ap): Ap is the resume owner who has the absolute right to hold the document. Ap
encrypts the resume and, at the same time, uploads the search index corresponding to the encrypted
resume to the cloud server. No one can view Ap’s resume unless authorized by him/her.

Recruiter (Rt): Users request to download complete resume information. After the request is
authorized, the full key is synthesized through a smart contract. After Rt enters the address of the
encrypted resume on the client and calls the contract to receive the decryption key, the complete
plaintext resume can be obtained. At the same time, Rt can use the contract to generate a search
token to search for resumes containing keywords.

Key keeper (Kk): Kk receives Ap’s subkey through a secure channel and can receive the custodian
fee from Ap. Kk can obtain a portion of the money from Rt for downloading the resume by providing
the subkey correctly through a smart contract and assisting in recovering the symmetric key.

Third-party recruitment platform (TRP): TRP and Kk operate the IPFS. TRP operates the
blockchain platform, keeping the encrypted index uploaded by Ap and providing the search function.
If TRP returns correct search results, then TRP receives a service fee, but a penalty is applied if TRP
returns incorrect results. Fig. 1 shows the framework diagram of the safe storage and sharing system.

Figure 1: System framework

5400 CMC, 2022, vol.72, no.3

Each step in the figure is described as follows:

1) Ap enters his/her information, generates an encryption key in the local client, encrypts the
complete resume containing personal private information, and then uploads the encrypted
data to the IPFS.

2) The IPFS returns the hash address of the file.
3) Ap stores the hash address and the resume information on the blockchain.
4) Ap divides the encryption key into n subkeys via (t, n) secret sharing scheme and sends them

to different Kk via secure channels.
5) Ap creates and uploads the search index related to the resume to TRP.
6) Rt selects the keywords, uploads to the blockchain to get the search token, and sends it to TRP.
7) TRP sends the search results to Rt.
8) Rt uploads the search results to the blockchain and obtains the verified search results.
9) Rt initiates the request and stores the request information on the blockchain.

10) Ap authorizes Rt after receiving the request and notifies Kk.
11) Kk enters the subkey into the key recovery function in the smart contract, and Kk is rewarded

for correct subkey verification.
12) The contract recovers the original key and notifies Rt after receiving the correct subkey that

meets the threshold. Rt empties the subkey stored on the contract after calling the contract
method to obtain the original key.

Finally, Rt accesses the encrypted resume according to the hash address set of the searched resume
and uses the recovered key for decryption to obtain a complete plaintext document.

3.2 Stage Definition

Based on the secret-sharing scheme by Asmuth [7] and the SSE scheme by Curtmola [9], a
blockchain-based secure storage and sharing framework for personal resumes is constructed through
seven stages, which can be defined as VSSE = (Gen, Enc, IndexGen, TokenGen, Search, Verify, Dec).
Each stage is described in the following:

1) Key generation stage: Gen (1λ) → (K)

Security parameter λ is entered and a set of keys K = (K1, K2, K3) is output. K1 is used as
the key for encrypted files, K2 is used as the document verification set encryption key, and K3 is used
as the key to generating the index.

2) Encryption stage: This stage is run by Ap and consists of the following two substages:

File encryption stage: FileEncrpyt (file, K1, K2) → (IpfsHash, kw, MACkw), where file and
encryption key are input, and hash address set IpfsHash, keyword set kw, and verification set MACkw

are output.

Key distribution stage: Keydistrput (k) → (k1, k2, · · · , kn, MACss, r, p), where the encryption
key is input, and n subkeys, verification set MACss, and random numbers r and p are output.

3) Index generation stage: IndexGen (kw, K3) → γw, γ̃w, where the index generation stage
takes a keyword set kw and encryption key as input. The encrypted keyword-file hash address
as the key-value pair index table γw and the file hash address-Bloom filter as the key-value pair
index table γ̃w are output.
4) Search token generation stage: TokenGen (K3, w) → τw, where the search key and keywords
are entered, and the token is output.

CMC, 2022, vol.72, no.3 5401

5) Search stage: Search (τw, γw, γ̃w) → Iw. The search token τw and search index γw, γ̃w are
input. A set of files containing keywords Iw is output.
6) Verification stage: Verify (IpfsHash, K2, MACkw) → IpfsHashtrue/false. The search result
hash address set IpfsHash is returned by the server, and the key K2 and verification set MACkw

are used as input. The correct output ipfshashtrue is verified; otherwise, the output is false.
7) Decryption stage: This stage consists of the following two sub-stages:

Key recovery stage: KeyRecover (addr, u1, u2, . . . , ut, MACss, r, p) → k/false, where the
account address on the chain, t subkeys, and subkey verification set cooperation MACss are taken
as input. The correct output file decryption key is verified; otherwise, the output is false.

Resume recovery stage: FileDecrypt (k, IpfsHash) → file, where the decryption key and hash
address of the file stored on the IPFS are taken as input, and the output is a complete decrypted
resume.

4 Specific Program

1) System initialization stage

Gen (1λ) → (K): Random keys K1, K2, and K3 are generated using pseudo-random function
(PRF), where K1 is used as the key for encrypting the file, K2 is used as the encryption key for the
verification set, and K3 is used as the key for generating the index.

2) Encryption phase

Based on the assumption that Ap has several plaintext resume files CV = {CV1, CV2, · · · , CVn},
the following steps are performed for these files.

Step 1: File encryption, FileEncrpyt (file, K1, K2) → (IpfsHash, kw, MACkw). Ap encrypts
CVi(i∈[1, n]) and randomly generates the initial vector iv of corresponding bits. The encryption
key is K1, and obtains Ei = enck1 (iv||CVi) |i ∈ [1, n] and uploads Ei to IPFS, which returns
the specific hash address of the file IpfsHashi = {Upload(iv||Ei)|i ∈ [1, n]}.

Ap calls the Evidence() in the smart contract to record the hash address of the uploaded
encrypted file and other related information. The verification key K2 is used to generate
the verification set MACkwi = {PRF (K2, IpfsHashi) |i ∈ [1, n]}. Then, the verification key
is recorded along with a set of message verifications on the chain using addmac() in the
verification contract.

Step 2: Key splitting, Keydistrput (k) → (k1, k2, · · · , kn, MACss, r, p). Ap uses an
Asmuth–Bloom secret-sharing scheme to split the file encryption key K1 into n copies and
sends them to Kk through a secure channel. The key-splitting algorithm is shown in algorithm
1. Meanwhile, for each subkey, MACssi = {H (i ||xi|| mi) | i ∈ [1, n]} is computed, and Ap
uploads the subkey verification set and r, p to the data-sharing contract storage.

5402 CMC, 2022, vol.72, no.3

Algorithm 1: Key Distribution
Input: K, t, n
Output: k1, k2, · · · , kn, r, p
01: U ← []
02: random choose prime number p, p > K
03: m1, m2, · · · , mn ← getm()

04: N ← m1m2 · · · mt

05: randomly choose r, 0 ≤ r ≤ N/p − 1
06: k′ ← K + r · p
07: for i ←1 · · · n do
08: xi ← k′ mod mi

09: end
10: for i ←1 · · · n do
11: U [i] ← (i, xi, mi), k [i] ← U [i]
12: end
13: return k1, k2, · · · , kn, r, p

3) Index generation stage

IndexGen (kw, K3) → γw , γ̃w, Ap extracts keywords from the CV set CV = {CV1, CV2, · · · , CVn}
to form a combination kw. For each keyword w ∈ kw, K3 is used to generate encrypted keywords
τw = PRF(K3, 1||w), τw is used as key, file hash address is used as value to build index table γw,
γw [τwi] = {

ipfshashj, · · · , ipfshashk

}
, file hash address is used as key, the keyword

{
τwi, · · · , τwj

}
contained in each file is added to the Bloom filter to obtain the binary vector { · · · , 101, · · ·},
γ̃w [ipfshashi] = BF

({
τwi, · · · , τwj

}) = {· · · , 101, · · ·} . Then, γw and γ̃w are sent to the server.

4) Search token generation stage

TokenGen (K3, w) → τw, where the search token is generated in the smart contract by
TokenGen(). In TRP, qualified recruiters have the right to store the relevant service fees through the
TokenGen() function after inputting keywords to calculate the search token τw = PRF(K3, 1||w).

5) Search stage

Search (τw, γw, γ̃w) → Iw, where the server uses the search token provided by Rt to search its saved
index table γw and γ̃w . Only γw is searched when searching with a single keyword. When searching
with multiple keywords {τw1, · · · , τwk}, for the first keyword τw1, γw is searched to confirm exactly
which files contain the keyword. Then, for all files that contain the first keyword, γ̃w is searched
to confirm whether {τw2, · · · , τwk} are in the file. The set of hash addresses matching the keywords
Iw = {

ipfshashj, · · · , ipfshashk

}
are output, and Iw is sent to Rt.

6) Verification stage

Verify (IpfsHash, K2, MACkw) → IpfsHashtrue/false. After Rt receives the IpfsHash set from
the server in the client backend, IpfsHash is sent to the verification contract. The verify() function is
called in the verification contract and incoming the parameter MACkwi and K2. MACkwi and K2 are
stored as private variables on the verification contract, which can only be used within a contract and
not viewed from an external call. If there is MAC kwi = PRF (K2, IpfsHashi) for all search results of
IpfsHashi, then the search results returned by the server are correct, and the smart contract returns the
search results to the user and transfers the service fee temporarily stored in the search token generation

CMC, 2022, vol.72, no.3 5403

stage to the account of TRP. If it is not equal, i.e., then the search result returned by TRP is wrong.
The smart contract will deduct a small portion of the deposit of TRP and return it to Rt’s account
together with the service fee.

Algorithm 2: Key Recover
Input: addr, u1, u2, · · · , uv, MACss, r, p
Output: K
Require: addr Authorized
Contract storage subkey execution:
01: TemoMap ← []
02: count ← 0
03: for i ← 1 · · · n do
04: i, xi, mi ← parse (ui)

05: if H (i ||xi|| mi) == MACssi

06: reward()
07: TempMap.add (xi, mi)

08: count ← count + 1
09: end
10: else
11: punishment()
12: end
13: end
When equal count t, stop receiving subkeys and call the correct subkey to recover:
14: (x1, m1) , (x2, m2) , · · · , (xt, mt) ← get xi, mi from TempMap
15: M ← m1m2 · · · mt

16: for i ← 1 · · · t do
17: yi ← inv

(
M
mi

, mi

)

18: end
19: k1 ← 0
20: for i ←1 · · · t do
21: k1 ← k1 +

(
M
mi

)
xiyi

22: end
23: k1← k1 mod M
24: Empty the TemoMap
25: return k1-rp

7) Decryption phase

Key recovery phase: KeyRecover (addr, u1, u2, . . . , ut, MACss, r, p) → k/false. After con-
firming that Rt is successfully authorized, Kk enters subkeys into the key recovery contract, notifies
Rt when there are enough correct subkeys, and recovers the key. The recovery algorithm is in algorithm
2. The input addr is Rt’s account to confirm that it is authorized, and MACss is used to verify that the
subkeys provided by Kk are correct. If the validation is correct, then the reward() function is called
to reward. If the validation is incorrect, then the punishment() function penalizes Kk by deducting a
portion of its deposit in the data-sharing contract.

5404 CMC, 2022, vol.72, no.3

Decryption stage: FileDecrypt (k, IpfsHash) → file, where Rt uses the symmetric key returned
from the key recovery smart contract and the hash address of the resume stored on IPFS as the
input. The encryption key is K1, by accessing the IPFS address of the resume to obtain Ei =
enck1 (iv||CVi) |i ∈ [1, n]. The iv is parsed out, and Di = {Deck1 (CVi) |i ∈ [1, n]} can be obtained.
which automatically converts into a complete decrypted resume.

5 Smart Contract Design

This section describes the interface and algorithm logic of the smart contract used in this study.
The smart contract is programmed using Solidity and mainly includes a data-sharing contract and
verification contract.

1) Data-sharing contract. The main functions used in the data-sharing contract and resume-
sharing interaction are shown in Fig. 2. The implementation of the AddShareAccess() function
is mainly used for authorization.
2) Verified contract. The main verification operation is implemented in the contract, as shown
in algorithm 3, the add() function is used to add the processed search results, and loop is used
to compare whether elements in R are equal to those in Mackw. If the elements are equal, then
1 is added to the counter, and if the counter is equal to the size of R, then the results are verified
correctly, the reward()TRP function is called to transfer the service fee temporarily stored by Rt
to the server account, and the correct result is returned. Otherwise, punishment()TRP is called
to deduct part of the guaranteed amount stored by the server in the contract to Rt to return
false. (The function complete description is shown in Tab. 2).

Algorithm 3: Verify
Input: returnIpfshash, Mackw, K
Output: returnIpfshash/false
01: count ← 0
02: R ← []
03: R.add(PRF

(
K, returnIpfshash [i]

)
04: for i ← 0 · · · length of returnipfshash do
05: for j ← 0 · · · length of Mackw do
06: if R [i] == Mackw [j]
07: count ← count + 1
08: break
09: end
10: end
11: end
12: if count == length of R
13: reward()TRP

14: return returnipfshash

15: end
16: else
17: punishment()TRP

18: return false
19: end

CMC, 2022, vol.72, no.3 5405

Figure 2: Complete resume sharing interaction

Table 2: Contract functions and descriptions

Function Description

Evidence() Store the resume hash and other related information, so that Ap can
confirm the right.

addkeeper() Adding a key keeper account.
deletekeeper() Deleting a key keeper account.
AddShareAccess() Record shared information, authorize access.
Isauthorized() Verify that the account is authorized.
request() Rt initiates the request information and records it on the chain.
keyrecover() Call this function to restore the symmetric key.
addmac() Add information about the subkey verification set.
reward()
reward()TRP

reward(): Kk provides the correct subkey to participate in key recovery
will receive a portion of the amount paid by Rt for downloading the
resume.
reward()TRP: Transfers the search fee to the TRP address that provided the
correct search result.

punishment()
punishment()TRP

punishment(): Deduct part of the deposit of the Kk that provided the
wrong subkey to Ap and Rt. The node that applied to be a Kk (TRP) will
first have to store the deposit in the contract.
punishment()TRP: Deduct part of the deposit to Rt for the TRP that
provided the wrong search result.

6 Analysis

This section evaluates the proposed framework from three aspects: security, function, and
performance.

5406 CMC, 2022, vol.72, no.3

6.1 Security Analysis

The proposed framework combines Ethereum blockchain, IPFS, secret-sharing technology, and
searchable encryption technology, which have more advantages than the traditional TRP for storing
and sharing resume files. This section discusses the benefits of the framework in the following four
aspects:

1) Controlled sharing and recording

Only authorized recruiters can recover the key for decrypting resumes in the proposed framework.
Rt is entitled to the key only when the candidate adds Rt to the authorized list of the data-sharing
contract. Meanwhile, the resume information, Rt’s request, and other operation records related to the
resume are stored in the blockchain and cannot be tampered with, making it easy to track and confirm
the right resume with high traceability.

2) Resume security and privacy

Instead of traditional cloud servers, the IPFS is used to store files. Even if a node is breached, the
stored data are fragments instead of complete files, and outsiders can only view messy code. Thus, the
proposed framework guarantees secure storage and privacy protection of resumes.

3) Key management

The file encryption key is divided into n parts by a secret-sharing scheme, and they are assigned
to different custodians. Therefore, at least t trustees need to collude maliciously to recover the key
and decrypt the resume. Smart contracts provide automatic reward and penalty mechanisms for Kk.
Those who send correct subkeys honestly can obtain certain rewards. By contrast, after sending wrong
subkeys, malicious Kk incurs a deduction on deposit to achieve incentives and fairness.

4) Retrievability and retrieval fairness

The traditional scheme does not support the retrieval of encrypted files, which causes great
inconvenience. This condition requires the use of searchable encryption technology to ensure the
efficient retrieval of encrypted files. Still, most traditional searchable encryption solutions only support
single keyword searches and require semi-honest cloud servers. The cloud server may maliciously
return the wrong results while obtaining service fees. This framework constructs two index tables for
multi-keyword search through inverted indexes and Bloom filters. It generates a search token using
a smart contract by temporarily storing the service fee at the contract address. After performing the
retrieval task, the server returns the result to the validating smart contract, and the validating contract
verifies whether the result is correct. If the result is correct, then the corresponding service fee is
transferred to the server account; if it is incorrect, then the server loses the service fee and receives
a penalty. Therefore, to obtain the service fee and avoid penalties, the server returns the correct search
results to ensure a fair search.

6.2 Performance Analysis

1) Functional comparison

On the one hand, the functional features of the proposed framework are compared with the
schemes presented by [25–32], as shown in Tab. 3. Y indicates that this feature is implemented, and
N indicates that it is not.

CMC, 2022, vol.72, no.3 5407

Table 3: Function comparison

Paper IPFS Access
control

Key security Searchable Fair payment Multiple
Keywords

Paper [25] Y Y N N N N
Paper [26] N Y N N N N
Paper [27] Y Y Y N N N
Paper [28] N Y Y Y Y N
Paper [29] N N N Y Y N
Paper [30] N N N Y Y N
Paper [31] N Y N Y Y Y
Paper [32] N Y N Y N N
Our Y Y Y Y Y Y

As can be seen from Tab. 3, in terms of data sharing, the advantages of the scheme in this paper
are the design of a secret sharing scheme with an incentive mechanism to improve the security of the
key. And the support of multiple keywords for encrypted data retrieval. In terms of resume application
scenarios, this paper uses IPFS and blockchain to replace the centralized storage and management of
resumes in current recruitment platforms to avoid the problems of resume forgery, loss, and leakage.
Further, the existing recruitment platform only has public and confidential options. Once a resume is
confidential, it cannot be searched. Applicants are faced with the dilemma of protecting their privacy
and not being retrieved by recruiters. This paper combines searchable encryption to ensure that the
recruiter can search the resume by keywords. The disadvantage of the solution is that the construction
and maintenance of IPFS and the Ethereum platform will increase the cost.

2) Performance comparison

The computational cost of the blockchain-based framework for secure storage and sharing
resumes (BBFSSR) in the present study is compared with the schemes TKSE [29] in index generation,
token generation, search phase, and verification phase, as shown in Tab. 4. H denotes hashing
operation, PRF denotes pseudo-random function, CP denotes string comparison operation, |N|
denotes the number of keywords extracted by Ap in the index generation phase, |F| denotes the number
of files containing keyword w, |R| denotes the number of returned ciphertext files, |C| denotes the
number of files, |W| denotes the number of keywords in a multi-keyword query, and |BF| denotes
the time required to determine whether a keyword is in Bloom’s filter. Furthermore, S denotes
the signature algorithm, which contains two processes: signature and verification. SE denotes the
symmetric encryption algorithm, which contains two processes: encryption and decryption.

Table 4: Performance comparison

Paper Index generation Token generation Search Validation

TKSE |N||F|(PRF+H+ S) |C|PRF |C|(H+S) |C|(H+S)
BBFSSR |N|PRF+|C||BF| PRF 1/|W||C||BF| |R|(PRF+|C|CP)

5408 CMC, 2022, vol.72, no.3

In the index generation phase, TKSE needs to execute 1 S, 1 PRF, and 1 H for each keyword.
BBFSSR needs to perform 1 PRF to build the first inverted index γw and then build a Bloom filter
on |C| files to build the second index γ̃w . In the token generation phase, TKSE and BBFSSR both
use PRF to generate tokens, TKSE as the number of files increases, the number of PRF performed
increases, and BBFSSR only performs one PRF. In the search phase, when searching with a single
keyword, BBFSSR uses the keyword-file set approach to build the index, so enter the search token will
get the results immediately, and the search efficiency is O(1). When searching with multiple keywords,
the user has to determine for each file whether |W| keywords are in corresponding Bloom filters, and
the search efficiency is |W||C||BF|. In the validation phase, TKSE requires the user to perform |C|
times H and S locally, and BBFSSR performs |R| times H and |R||C| times CP in the smart contract.

3) Experimental analysis

To more accurately evaluate the actual performance of the framework, this paper conducts
simulation tests in terms of index generation time, search token generation time, search time, and
verification time. The experiments use English word dataset, and hashing algorithm H is SHA-
256, pseudo-random function PRF is HMAC-SHA256, symmetric encryption algorithm SE is AES-
256 CBC mode, signature algorithm is ECDSA, the smart contract is solidity language, Ethereum
blockchain is built locally, embark framework is used to compile, deploy and run. The hardware
environment for this experiment is Intel Core™ i5-10400 CPU (2.9 GHz) with 32 GB RAM. The
experimental results are shown below.

As shown in Fig. 3, suppose each file contains 200 keywords in the index generation phase. TKSE
and BBFSSR increase index generation time as the files increase and the corresponding keywords
increase; TKSE involves the signature operation; the index takes a long time to generate, 10,000
keywords to build the index, TKSE takes 4889.95 ms, BBFSSR takes only 324.26 ms. As shown in
Fig. 4, in the token generation phase, BBFSSR executes 1 PRF algorithm. TKSE runs more PRF
depending on the number of files. In Fig. 4, assuming that the total number of files |C| is 5, TKSE
performs 5 PRFs.

Figure 3: Index generation time

CMC, 2022, vol.72, no.3 5409

Figure 4: Token generation time

As shown in Fig. 5, a single keyword search in BBFSSR is O(1) operation, and the search time
in the index table is established by 2000 to 10000 keywords is maintained at 0.1 ms. TKSE increases
the search time due to increasing the number of files, and when the number of files is 100, the search
time is 47.65 ms. TKSE does not support multi-keyword search; to search for multiple keywords, not
only to conduct multiple single-keyword searches also need to constantly filter out the files containing
all the keywords, very time-consuming, as shown in the figure, the search in 100 files to meet the files
containing 10 keywords took 950.12 ms. In contrast, BBFSSR supports multi-keyword search only
takes 85.72 ms. In the validation phase, the number of files returned by the search |R| is the same as
the total number of files |C|, and the validation times of the two schemes are shown in Fig. 6.

Figure 5: Search time

We simulated the cost of the smart contract, where the price of ETH is 1 ether = 1,906 USD, the
price of gas is 1 Gwei (1 Gwei = 10−9 and Wei = 10−9 ether). Figs. 7 and 8 show the cost of contract
deployment and several functions used. The contract deployment consumes a large amount of gas, but
the deployment of the functions in the contract consumes a small amount of gas, which is within the
acceptable range.

5410 CMC, 2022, vol.72, no.3

Figure 6: Verification time

Figure 7: Smart Contracts Cost (Gas)

Figure 8: Smart Contracts Cost (USD)

CMC, 2022, vol.72, no.3 5411

This paper tested the time to perform 1000 secret distributions and reconstructions for 256-bit
integers using the Asmuth-Bloom algorithm with different thresholds. as shown in Appendix A, in
Fig. 9 1000 times (10, 11) threshold secret distribution takes 51.34 s, and secret reconstruction takes
only 0.62 s. Therefore, the contract can reconstruct the key quickly when it receives enough subkeys.

7 Conclusion

This paper has presented a new solution based on blockchain, secret sharing, and searchable
encryption technology to address the problems of centralized data management, resume leakage,
falsification, and the inability to pursue responsibilities in traditional recruitment platforms accurately.
The solution uses blockchain to replace traditional third-party agencies. It combines on-chain and
off-chain distributed storage mechanisms and secret sharing technology to ensure the security and
authenticity of resumes. It also realizes fair and efficient resume search based on searchable encryption
technology. The analysis and experiments on the security and performance of the scheme show that
the scheme can support resume sharing and meet the requirements of privacy protection and sufficient
system performance. However, further refinement is needed in consensus mechanism selection and
framework deployment cost optimization.

Funding Statement: The authors gratefully acknowledge the financial supports by Key Projects of the
Ministry of Science and Technology of the People’s Republic of China (2018AAA0102301).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review, pp. 21260,

2008.
[2] K. Christidis and M. De vetsikiotis, “Blockchains and smart contracts for the internet of things,” IEEE

Access, vol. 4, pp. 2292–2303, 2016.
[3] N. Szabo, “Formalizing and securing relationships on public networks,” First Monday, vol. 2, no. 9, pp.

1–21, 1997.
[4] J. Benet, “IPFS - content addressed, versioned, P2P file system,” arXiv, arXiv:1407.3561, pp. 1–11, 2014.
[5] A. Shamir, “How to share a secret,” Communications of the ACM, 1979, vol. 22, no. 11, pp. 612–613, 1979.
[6] G. R. Blakley, “Safeguarding cryptographic keys,” in Proc. MARK, New York, NY, USA, pp. 313–318,

1979.
[7] C. Asmuth and J. Bloom, “A modular approach to key safeguarding,” IEEE Transactions on Information

Theory, vol. 29, pp. 208–210, 1983.
[8] S. D. Xiaoding, D. Wagner and A. Perrig, “Practical techniques for searches on encrypted data,” in Proc.

S&P 2000, Berkeley, CA, USA, pp. 44–55, 2000.
[9] R. Curtmola, J. Garay, S. Kamara and R. Ostrovsky, “Searchable symmetric encryption: Improved

definitions and efficient constructions,” in Proc. CCS ‘06, New York, NY, USA, pp. 79–88, 2006.
[10] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk et al., “Dynamic searchable encryption in very-large

databases: Data structures and implementation,” IACR Cryptol. ePrint Arch, vol. 2014, pp. 853, 2014.
[11] J. Li, Y. Huang, Y. Wei, S. Lv, Z. Liu et al., “Searchable symmetric encryption with forward search privacy,”

IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 1, pp. 460–474, 2021.
[12] Z. Li, J. Ma, Y. Miao and X. Liu, “Forward and backward secure keyword search with flexible keyword

shielding,” Information Sciences, vol. 576, pp. 507–521, 2021.

5412 CMC, 2022, vol.72, no.3

[13] C. Xu, L. Yu and L. Zhu, “A Blockchain-based dynamic searchable symmetric encryption scheme under
multiple clouds,” Peer-to-Peer Netw, vol. 14, pp. 3647–3659, 2021.

[14] S. Cui, X. Song and M. R. Asghar, “Privacy-preserving dynamic symmetric searchable encryption with
controllable leakage,” ACM Transactions on Privacy and Security, vol. 24, no. 18, pp. 1–35, 2021.

[15] J. Chen, K. He, L. Deng, Q. Yuan, R. Du et al., “EliMFS: Achieving efficient, leakage-resilient, and multi-
keyword fuzzy search on encrypted cloud data,” IEEE Transactions on Services Computing, vol. 13, no. 6,
pp. 1072–1085, 2020.

[16] L. Li, C. Xu, X. Yu, B. Dou and C. Zuo, “Searchable encryption with access control on keywords in multi-
user setting,” Journal of Cyber Security, vol. 2, no. 1, pp. 9–23, 2020.

[17] J. Zhang, G. Xu, X. Chen, H. Ahmad, X. Liu et al., “Towards privacy-preserving cloud storage: A
blockchain approach,” Computers, Materials & Continua, vol. 69, no. 3, pp. 2903–2916, 2021.

[18] C. Xu, L. Mei, J. Cheng, Y. Zhao and C. Zuo, “IoT services: Realizing private real-time detection via
authenticated conjunctive searchable encryption,” Journal of Cyber Security, vol. 3, no. 1, pp. 55–67, 2021.

[19] P. Almeida, C. Baquero, N. Preguiça and D. Hutchison, “Scalable bloom filters,” Information Processing
Letters, vol. 101, pp. 255–261, 2007.

[20] K. Fan, S. Wang, Y. Ren, H. Li and Y. Yang, “Medblock: Efficient and secure medical data sharing via
blockchain,” Journal of Medical Systems, vol. 42, pp. 1–11, 2018.

[21] H. Tan, T. Zhou, H. Zhao, Z. Zhao, W. Wang et al., “Archival data protection and sharing method based
on blockchain,” Journal of Software, vol. 30, pp. 2620–2635, 2019.

[22] N. Nizamuddin, H. Hasan, K. Salah and R. Iqbal, “Blockchain-based framework for protecting author
royalty of digital assets,” Arabian Journal for Science and Engineering, vol. 44, pp. 3849–3866, 2019.

[23] O. A. Alzubi, J. A. Alzubi, O. Dorgham and M. Alsayyed, “Cryptosystem design based on hermitian curves
for IoT security,” the Journal of Supercomputing, vol. 76, no. 11, pp. 8566–8589, 2020.

[24] O. A. Alzubi, J. A. Alzubi, K. Shankar and D. Gupta, “Blockchain and artificial intelligence enabled
privacy-preserving medical data transmission in internet of things,” Transactions on Emerging Telecom-
munications Technologies, vol. 32, no. 12, pp. e4360, 2021.

[25] M. Uddin, M. S. Memon, I. Memon, I. Ali, J. Memon et al., “Hyperledger fabric blockchain: Secure and
efficient solution for electronic health records,” Computers, Materials & Continua, vol. 68, no. 2, pp. 2377–
2397, 2021.

[26] A. A. Alnssayan, M. M. Hassan and S. A. Alsuhibany, “Vacchain: A blockchain-based emr system to
manage child vaccination records,” Computer Systems Science and Engineering, vol. 40, no. 3, pp. 927–945,
2022.

[27] M. Naz, F. A. Al-zahrani, R. Khalid, N. Javaid, A. M. Qamar et al., “A secure data sharing platform using
blockchain and interplanetary file system,” Sustainability, vol. 11, no. 24, pp. 7054, 2019.

[28] N. Sohrabi, X. Yi, Z. Tari and I. Khalil, “BACC: Blockchain-based access control for cloud data,” in Proc.
(ACSW ‘20), New York, NY, USA, pp. 1–10, 2020.

[29] Y. Zhang, R. H. Deng, J. Shu, K. Yang and D. Zheng, “TKSE: Trustworthy keyword search over encrypted
data with two-side verifiability via blockchain,” IEEE Access, vol. 6, pp. 31077–31087, 2018.

[30] H. Li, H. Tian, F. Zhang and J. He, “Blockchain-based searchable symmetric encryption scheme,”
Computers & Electrical Engineering, vol. 73, pp. 32–45, 2019.

[31] L. Chen, W. K. Lee, C. C. Chang, K. K. R. Choo and N. Zhang, “Blockchain based searchable encryption
for electronic health record sharing,” Future Generation Computer Systems, vol. 95, pp. 420–429, 2019.

[32] T. Feng, H. Pei, R. Ma, Y. Tian and X. Feng, “Blockchain data privacy accesscontrol based on searchable
attribute encryption,” Computers, Materials & Continua, vol. 66, pp. 871–890, 2021.

CMC, 2022, vol.72, no.3 5413

A Appendix Secret sharing time consumption

Figure 9: Secret sharing time consumption

	A Blockchain-Based Framework for Secure Storage and Sharing of Resumes
	1 Introduction
	2 Background and Related Work
	3 System Framework/Stage Definition
	4 Specific Program
	5 Smart Contract Design
	6 Analysis
	7 Conclusion
	A Appendix Secret sharing time consumption

