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Abstract: There have been many digital signature schemes were developed
based on the discrete logarithm problem on a finite field. In this study,
we use the elliptic curve discrete logarithm problem to build new collective
signature schemes. The cryptosystem on elliptic curve allows to generate
digital signatures with the same level of security as other cryptosystems but
with smaller keys. To extend practical applicability and enhance the security
level of the group signature protocols, we propose two new types of collective
digital signature schemes based on the discrete logarithm problem on the
elliptic curve: i) the collective digital signature scheme shared by several
signing groups and ii) the collective digital signature scheme shared by several
signing groups and several individual signers. These two new types of collective
signatures have combined the advantages of group digital signatures and
collective digital signatures. These signatures have a fixed size and do not
depend on the number of members participating in the creation of the final
collective signature. One of the advantages of the proposed collective signature
protocols is that they can be deployed on top of the available public key
infrastructures.

Keywords: Elliptic curve; signing group; individual signer; collective signature;
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1 Introduction

One of the important applications of asymmetric cryptosystems is digital signatures (DS).
Authenticatic systems based on digital signatures are quite popular today. Digital signature protocols
are developed based on difficult problems in mathematics such as the factorization problem of a
large integer, the discrete logarithmic problem on finite field, the discrete logarithmic problem on
the elliptic curve, or the problem of finding the roots modulo large primes (a new hard problem).
To meet the authentic requirements of many different practical applications, many types of different
digital signature schemes have been researched and published: Single (individual) digital signature
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schemes [1]; Blind digital signature schemes [2,3]; Group digital signature schemes [4–6]. Collective
digital signature schemes [3].

In practice there are documents that need i) to be signed by several different signing groups; ii) to
be signed by a number of different signing groups and a number of different individual signers. We rely
on the advantages of the collective digital signature and the advantages of the group digital signature
to build signatures for these cases. This is still a single digital signature but signed by i) all the given
signing groups; ii) all the given signing groups and the individual signers. In this paper, we propose the
novel digital signature schemes that help to generate signatures for the two cases just mentioned.

The discrete logarithm problem on the elliptic curve has been standardized in the standard
ECDSA [7,8] and the standard GOST R34.10-2001 [9]. We use both standards to build the proposed
collective signature schemes.

We use a combination of the collective signature generation technique [10] and the group signature
generation technique [6] in building the new collective signature schemes. In these schemes, the public
key of signers is masked. This is similar to the blind signature protocols described in [6].

2 Related Basis Collective Digital Signature Schemes

The digital signature protocol on the elliptic curve be described in detail at [11]. We based on
this protocol to propose protocols of collective digital signature of a signing collective. There are two
schemes built here, one based on ECDSA standard and one based on GOST R34.10-2001 standard.
These schemes are used to build the collective signature schemes for signing groups and for individual
signers.

2.1 Constructing the Collective Signature Scheme Based on the Standard ECDSA

Let the elliptic curve domain D = (p, a, b, P, q, h). Suppose that there are n signers who
want to sign the same message m. Each signer randomly selects an integer di, d ∈ [1, q − 1], 1 ≤
i ≤ n, and calculates the corresponding public key as the point Qi: Qi = diP. Let FH is a one-way
hash function, SHA-1 or SHA-2. The collective digital signature scheme using ECDSA includes the
following procedures:

• The signature generation procedure on the message m

1. Each signer selects random number ki ∈ [1, q − 1] and computes: Ri = kiP and sends
(broadcasts) Ri to all signers.

2. One of a signing collective calculates the common randomization value as the point R:

R = R1 + R2 + · · · + Rn = (xR, yR) (1)

3. He/She calculates the first part of the collective digital signature e: e = xRH mod δ; with δ is
a large prime. The length of δ is |δ| = 160 bits; H is a hash value calculated from the message
m: H = FH(m). The value e is broadcasted to the other signer.

4. Each signer computes his/her shared signature si, using the secret values di, ki and the value e,
as follows:

si = (ki − edi) mod q (2)

5. One of a signing collective calculates the second element of the CDS:

s = s1 + s2 + · · · + sn mod q (3)
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The pair (e, s) is the CDS on message M.

• The signature verification procedure on the message m

This protocol use the collective public key y.

1. The first, calculates the collective public key Q:

Q = Q1 + Q2 + · · · + Qn (4)

2. Using the signature (e, s) calculates value R′:

R′ = eQ + sP = (xR ′ , yR ′) (5)

3. Calculate e′:

e′ = xR′H mod δ (6)

4. Comparing e′ with e.

If e′ = e, then the collective signature on the message m is valid. Otherwise the signature is
invalid.

• Proof of correctness of CDS

Let us show that the proposed protocol generates the correct CDS (e, s).

Substituting the point Q = Q1 + Q2 + · · · + Qn and the value s = s1 + s2 + s3 + · · · + sn in the
right part of the verification equation R′ = eQ + sP we get:

R′ = eQ + sP = e
n∑

i=1

diP +
n∑

i=1

(ki − edi)P =
n∑

i=1

kiP = R

Thus, the correctness of this protocol has been proved.

2.2 Constructing the Collective Signature Scheme Based on the Standard GOST R34.10-2001

Russian signature standard GOST R34.10-2001 specifies the DS algorithm based on the elliptic
curve (EC) defined over the finite field GF(p) with the equation y2 = x3 + ax + b mod p, where
a, b ∈ GF(p) and x and y are coordinates of the points on the elliptic curve.

Given an elliptic curve satisfying the requirements of the standard GOST R34.10-2001. Let the
point G on this EC. G has the large prime order q. There are n members in the signing collective.
Each of signers selects a private key kj. His/her public key is Qj: Qj = kjG, j ∈ [1 , n]. The collective
signature scheme using the standard GOST R34.10-2001 includes the following procedures:

• The signature generation procedure on the message m

1. Each of signers selects a random value tj. The he/she calculates a point on the EC:

Rj = tjG; where j ∈ [1 , n] (7)

2. He/She calculates the collective public key Q of the signing collective:

Q = Q1 + Q2 + · · · + Qn (8)
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(Qj is the public key of individual signers; j ∈ [1 , n])

3. He/She calculates a value R as follows:

R = R1 + R2 + · · · + Rn (9)

and then calculates a value r:

r = xQxR mod q, (10)

where xR(xQ) is the abscissa of the points R(Q) on the elliptic curve.

The value r is the first element of the collective digital signature.

4. Each of signers calculates his/her shared signature sj in the collective digital signature as:

sj = (rkj + tje) mod q, (11)

where e = H mod q and H is the hash value of the signing document.

5. The second element of the signature is s:

s = s1 + s2 + · · · + sm mod q. (12)

The pair (r, s) is the collective digital signature on message M.

• The signature verification procedure on the message m

1. Calculates the collective public key Q:

Q = Q1 + Q2 + · · · + Qn (13)

2. Calculates the point on the EC R∗:

R∗ = (se−1 mod q)G + ((q − r)e−1 mod q)Q (14)

3. Calculates the value:

r∗ = xQxR∗ mod q (15)

and compares r∗ and r. If r∗ = r, then the collective signature on the message m is valid. Otherwise the
signature is invalid.

• Proof of correctness of CDS

Let us show that the proposed protocol generates the correct CDS (r, s).

Substituting the point Q = Q1 + Q2 + · · · + Qn and the value s = s1 + s2 + s3 + · · · + sn in the
verification equation R∗, we get:

R∗ = (se−1 mod q)G + ((q − r)e−1 mod q)Q

=
(

n∑
j=1

sje−1 mod q
)

G + ((q − r)e−1mod q )
n∑

j=1

Qj

=
(

n∑
j=1

(rkj + tje)e−1G mod q
)

+
(

n∑
j=1

(kjG)(q − r)e−1 mod q
)

=
(

n∑
j=1

(Grkje−1 + tjG) mod q
)

+
(

n∑
j=1

(Gqkje−1 − Grkje−1) mod q
)

=
n∑

j=1

tjG mod q = R
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Thus, the correctness of this protocol has been proved.

3 The Proposed Group Digital Signature Schemes

In this section, we rely on the ECDSA standard [8] and the GOST standard R34.10-2001 to
propose two new types of digital signature schemes for a group of signers. We are based on these
basis schemes to construct the new collective signature schemes.

3.1 The Group Digital Signature Scheme Based on the Standard ECDSA

Given an EC satisfying the requirements of the standard and the point G on the EC. G has the
large prime order q. There are m members in the signing group who want to sign the document M.
Each of signers selects a private key kj. His/Her public key is Pi: Pi = kiG, i = 1 , . . . , m. The group
manager calculates his/her public key as the point L = zG, where z is his/her private secret key. The
GDS scheme using ECDSA includes the following procedures:

• The signature generation procedure on the document M

This procedure includes the following steps:

1. The group manager computes a hash value from the document: H = FH(M), where FH is some
hash function. Then he/she calculates values λi (masking coefficients):

λi = FH(H||xPi ||FH(H||xPi ||z)) (16)

and the group manager sends the values λi to the i-th group member, where i = 1, 2, . . . , m. Then
he/she calculates the first element of the group signature U:

U = λ1P1 + λ2P2 + · · · + λmPm (17)

2. Each of signers generates a random number ρi < q, where i = 1, 2, . . . , m. And then
he/she calculates the value:

Ri = ρiG (18)

and he/she sends Ri to the group manager.

3. The next, the group manager selects the random number ρ ′ < q. Then he/she calculates the
values:

R′ = ρ ′G (19)

R = R′ + R1 + R2 + · · · + Rm (20)

and

e = FH(M||xR||xU) mod δ (21)

where δ is a large prime. The length of δ is |δ| = 160 bits, xR and xU–abscissa of points R and U .The
next element of the group signature is e. Then he/she sends this element (e) to all members of the
group.

4. Each i-th signer calculates his/her shared signature (where i = 1, 2, . . . , m):

si = ρi − eλiki mod q (22)
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and he/she sends si to the signing group manager.

5. The signing group manager uses the checking Eq. (20) to verify the correctness of each shared
signature (si):

Ri = λiePi + siG (23)

If all shared signatures si satisfy the Eq. (20), then he/she calculates his/sher share signature:

s′ = ρ ′ + ze mod q (24)

and he/she calculates s. s is the last element of the group signature:

s = s′ + s1 + s2 + · · · + sm mod q (25)

The triple (U, e, s) is the group digital signature of the signing group on the document M.

• The signature verification procedure on the document M

The verification procedure includes the following steps:

1. The verifier calculates the hash value from the document M: H = FH(M). Using the group
public key L and the group signature (U, e, s) he/she calculates a value R∗:

R∗ = sG − e(U + L) (26)

2. He/She calculates a value e∗:

e∗ = FH(M||xR∗ ||xU) mod δ (27)

3. Comparing e with e∗. If e∗ = e, then the signature on the document M is valid. Otherwise, the
signature on the document M is invalid. He/She rejects the signature.

• Proof of correctness of GDS

Substituting the value s = s′ + s1 + s2 + · · ·+ sm mod q, U = λ1P1 +λ2P2 + · · ·+λmPm and L = zG
in the verification Eqs. (3.11)–(26):

R∗ = sG − e(U + L)

We get:

R = (s′ + s1 + s2 + · · · + sm)G − e(λ1P1 + λ2P2 + · · · + λmPm + zG)

= (ρ ′ + ze + ρ1 − eλ1k1 + s2 + ρ2 −eλ2k2 + · · · + sm + ρm − eλmkm)G
= R′ + R1 + R2 + · · · + Rm = R − e(λ1k1G + λ2k2G + · · · + kmzmG + zG)

and compute:

e∗ = FH(M||xR∗ ||xU) mod δ

= FH(M||xR||xU) mod δ = e

Thus, the correctness of the protocol has been proved.
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3.2 The Group Digital Signature Scheme Based on the Standard GOST R34.10-2001

Given an EC satisfying the requirements of the standard and the point G on the EC. G has the
large prime order q. There are m members in the signing group who want to sign the document M.
Each of signers selects private key kj. His/Her public key is Pi: Pi = kiG, i = 1 , . . . , m. The group
manager calculates his/her public key as the point L = zG, where z is his/her private secret key. The
GDS scheme using GOST R34.10-2001 includes the following procedures:

• The signature generation procedure on the document M

This procedure includes the following steps:

1. The group manager computes a hash value from the document: H = FH(M), where FH is some
hash function. The he/she calculates values λi (masking coefficients):

λi = FH(H||xPi ||FH(H||xPi ||z)) (28)

and the group manager sends each value λi to the i-th group member, wherei = 1, 2, . . . , m. Then
he/she calculates the first element of the group signature U:

U = λ1P1 + λ2P2 + · · · + λmPm (29)

2. Each of signers generates a random number ρi < q, where i = 1, 2, . . . , m. And then
he/she calculates the value:

Ri = ρiG(3.15) (30)

and he/she sends Ri to the group manager.

3. The signing group manager selects the random number ρ ′ < q. The next he/she calculates the
values:

R′ = ρ ′G, (31)

R = R′ + R1 + R2 + . . . + Rm, (32)

and

e = FH(M||xR||xU) modδ, (33)

where δ is a large prime. The length of δ is |δ| = 160 bits, xR and xU are abscissa of points R and
U .The next element of the group signature is e. Then he/she sends this element (e) to all members of

the group.

4. Each i-th signer calculates his/her shared signature (i = 1, 2, . . . , m):

si = λiki + eρi mod q (34)

and then sends si to the signing group manager.

5. The signing group manager uses the checking Eq. (31) to verify the correctness of each shared
signature (si):

Ri = siGe−1 − λie−1Pi (35)

If all shared signatures si satisfy the Eq. (31), then he/she calculates his/her shared signature:

s′ = eρ ′ + z mod q (36)



602 CMC, 2022, vol.73, no.1

and he/she calculates s. s is the last element of the group signature:

s = s′ + s1 + s2 + · · · + sm mod q (37)

The triple (U , e, s) is the group digital signature of the signing group on the document M.

• The signature verification procedure on the document M

This verification includes the following steps:

1. The verifier computes the hash value from the document M: H = FH(M). Using the group
public key L and group signature (U , e, s) he/she calculates a value R∗:

R∗ = sGe−1 − (U + L)e−1 (38)

2. He/She calculates a value e∗:

e∗ = FH(M||xR∗ ||xU) mod δ (39)

3. Comparing e with e∗. If e∗ = e, then the signature on the document M is valid. Otherwise, the
signature on the document M is invalid. He/She rejects the signature.

• Proof of correctness of GDS

Substituting the values s = s′ + s1 + s2 + · · · + sm mod q, U = λ1P1 + λ2P2 + · · · + λmPm and
L = zG in the verification Eq. (34):

R∗ = sGe−1 − (U + L)e−1

We get:

R∗ = (s′ + s1 + s2 + · · · + sm)Ge−1 − (λ1P1 + λ2P2 + · · · + λmPm + zG)e−1

= (eρ ′ + z + λiki + eρi + λiki+eρi + · · · + λikj + eρi)Ge−1 − (λ1k1G + λ2k2G + · · · + λmkmG + zG)e−1

= (eρ ′ + z + λjkj + eρi + λiki +eρi + · · · + λiki + eρi)Ge−1 − (λ1k1G + λ2k2G + · · · + λmkmG + zG)e−1

= (ρ ′ + ρ1 + ρ2 + · · · + ρm)G
= R′ + R1 + R2 + · · · + Rn = R

and compute:

e∗ = FH(M||xR∗ ||xU) mod δ

= FH(M||xR||xU) mod δ = e

Thus, the correctness of the protocol has been proved.

3.3 Security Advantages of the Proposed Group Digital Signature Schemes

The group signature schemes proposed in Sections 3.1 and 3.2 have the following security
advantages:

• According to formulas (16) and (17) or formulas (28) and (29): The masking coefficients λi and
U are generated by the group manager. λi contains the group manager’s private key. U contains
the information of the public key of all members of the signing group who participated in the
generation of the last group digital signature. Thus, only the group manager can know who
participated in the signature creation because only he/she can open the signature. Since only
he/she can calculate the masking coefficients λi and then calculate U.



CMC, 2022, vol.73, no.1 603

• Eqs. (23) and (25) or Eqs. (35) and (36) show that the shared signature si of all members of the
signing group is checked by the group manager. Only if all is valid, the manager conducts to
create the third part s of the group signature which contains his/her shared signature. Thus, if
the member’s shared signature is forged, it is also difficult to pass the test expression (23) or
(35).

• Another security advantage of the proposed schemes is the use of random parameter ρ in the
process of generating shared signatures of each group member. ρ is treated as the second private
key. This private key can only be used once, so the secrecy is very high. This also means that, if
someone wants to forge a shared signature of a group member, to pass a checking expression
(26) or (35), one must solve 2 discrete logarithmic problems to find k and ρ (see formula (23)
or (35)).

4 The Proposed Collective Digital Signature Schemes

The new collective signature schemes proposed in this section are built based on a combination of
the collective digital signature schemes described in Sections 2.1 and 2.2 and the group digital signature
schemes described in Sections 3.1 and 3.2. These collective digital signatures are formed in 2 steps:
The first step, form the pre-signature; The second step, form the collective digital signature for signing
groups. In Section 4.1, we use the signature standard ECDSA to construct the signature for a number
of signing groups. Meanwhile, in Section 4.2, we rely on the signature standard GOST R34.10-2001
to construct the signature for a number of signing groups and a number of individual signers.

4.1 Collective Digital Signature Scheme for a Number of Signing Groups Using the Standard ECDSA

Let g signing groups. There are m active members in each signing group. Let the public key of
j-th signing group is Lj = zjG, where zj is private key of the j-th group manager (j = 1, 2, . . . , g).
These signing groups want to sign on the document M. A set of members in the j-th signing group is
denoted by mj. The collective digital signature scheme for several signing groups includes following
procedures:

• The signature generation procedure on the document M

1. Do the same as the GDS protocol described in Sections 2.1 and 3.1, the group manager of each
signing group calculates masking parameters λji for the signers in his/her group. Then he/she
calculates the values Uj and Rj (i = 1, 2, . . . , mj):

Uj =
mj∑
i=1

λjiPji (40)

Rj = R′
j +

mj∑
i=1

Rij (41)

and then he/she sends values Uj and Rj to all other signing group managers.

2. Each j-th signing group manager (j = 1, 2, . . . , g) calculates the values U , R and e:

U =
g∑

j=1

Uj (42)
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R =
g∑

j=1

Rj (43)

e = FH(M ‖ xR ‖ xU) mod δ (44)

where δ is a large prime. The length of δ is |δ| = 160 bits.

The first element of this novel collective signature is U and e is the second element.

3. Each manager of j-th signing group calculates a shared signature of his/her signing group:

sj = s′
j +

mj∑
j=1

sji mod q (45)

where sji is the i-th signer’s shared signature who is a member of the j-th signing group. Then he/she
sends a value sj to all other signing group managers.

4. Each manager of j-th signing group uses the checking Eq. (42) to verify the correctness of each
share signature sj:

Rj = sjG − e(Uj + Lj) mod q (46)

If all shared signatures sj satisfy the verification Eq. (46), then he/she calculates s. s is the last
element of this novel collective signature:

s =
g∑

j=1

sj mod q (47)

The tuple (U , e, s) created by this procedure is the collective signature of g signing groups on the
document M.

• The signature verification procedure on the document M

1. The verifier calculates the collective public key of all the signing collective L:

L =
g∑

j=1

Lj (48)

(Lj is the group public key of the j-th signing group)

2. He/She calculates the value R∗:

R∗ = sG − (U + L)e (49)

3. He/She calculates the value e∗:

e∗ = FH(M ‖ xR∗ ‖ xU) (50)

4. Comparing e∗ with e. If e∗ = e then the combined collective signature is valid, i.e., it was really
generated by the given m signing groups. Otherwise, the signature is invalid and it is rejected.



CMC, 2022, vol.73, no.1 605

It is easy to see that, the U contains the information of all the signers, in all the signing groups
that have participated in creating collective signatures for the signing groups on document M. The
identification of these signers is done similar to the procedures are presented in [9].

• Proof of correctness of the CDS for several signing groups

Substituting the values s = s′ + s1 + s2 + · · · + sm mod q, U = λ1P1 + λ2P2 + · · · + λmPm and L = zG
in the verification equation R∗ (49):

R∗ = sG − (U + L)e

=
g∑

j=1

sjG −
(

g∑
j=1

Uj +
g∑

j=1

Lj

)
e =

g∑
j=1

sjG −
g∑

j=1

(Uj + Lj)e

=
g∑

j=1

(sjG − (Uj + Lj)e)

=
g∑

j=1

Rj = R

and compute:

e∗ = FH(M ‖ xR∗ ‖ xU) mod δ

= FH(M ‖ xR ‖ xU) mod δ

= e

The correctness of the protocol has been proved.

4.2 Collective Digital Signature Scheme for a Number of Signing Groups and a Number of Individual
Signers Using the Standard GOST R34.10-2001
Within the framework of the CDS scheme for signing groups described in Section 4.1 several

individual signers can be also involved, if it will be assumed that the individual signature (e, s) is
considered as triple (O, e, s), where O if the elliptic curve point in infinity, i.e., each individual signer
contributes the share O in the first part of the last collective signature.

Suppose Lj (Lj = kjG) and kj, where j = g + 1, g + 2, . . . , g + m, are public key and private
key, correspondingly, of m individual signers participating in the protocol for generating the collective
digital signature for g signing groups and m individual signers. The collective signature scheme for g
signing groups and m individual signers includes the following procedures.

• The signature generation procedure on the document M

1. The manager of each j-th signing group (j = 1, 2, . . . , g) generates masking parameters λji for
signers in his/her signing group. Then he/she calculates the values Uj and Rj (i = 1, 2, . . . , mj):

Uj =
mj∑
i=1

λjiPji (51)

Rj = R
′
j +

mj∑
i=1

Rji (52)
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Then he/she sends the values Uj and Rj to all other group managers and individual signers. Each
j-th individual signer (j = g + 1, . . . , g + m) selects a random value ρj < q. The next he/she
calculates the value Rj :

Rj = ρjG (53)

where j = g + 1 , g + 2 , . . . , g + m. After sents to all signers (group managers and individual
signers).

2. Each j-th group manager (j = 1, 2, . . . , g) and each individual signer (j = g + 1, g +
2 , . . . , g + m) computes values:

U =
g+m∑
j=1

Uj, (54)

R =
g+m∑
j=1

Rj (55)

and

e = FH(M||xR||xU) mod δ, (56)

where δ is a large prime. The length of δ is |δ| = 160 bits, Uj = O for (j = g +1 , g +2 , . . . , g +m);

The first element of this novel collective signature is U and e is the second element.

3. Each manager of j-th signing group calculates a shared signature of his/her signing group

sj = s′
j +

mi∑
i=1

sji mod q (57)

where sji is the i-th signer’s shared signature who is a member of the j-th signing group. The he/she
sends sj to other signing group managers. Each j-th individual signer (j = g + 1, g + 2, . . . , g + m)
calculates his/her shared signature:

sj = λjkj + eρj mod q (58)

4. Each manager of j-th signing group uses the checking Eqs. (59) and (60) to verify the
correctness of each shared signature sj:

Rj = sjGe−1 − (Uj + Lj)e−1 (59)

for j = 1, 2, . . . , g and

Ri = siGe−1 − λie−1Pi (60)

for j = g + 1 , g + 2 , . . . , g + m.

If all shared signatures sj satisfy the verification Eqs. (59) or (60), then he/she calculates s. s is the
last element of this novel collective signature:

s =
g+m∑
j=1

sj mod q (61)
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The tuple (U , e, s) created by this procedure is the collective signature of g signing groups and m
individual signers on the document M.

• The signature verification procedure on the document M

1. The verifier calculates the collective public key of signing collective:

L =
g+m∑
j=1

Lj (62)

(Lj is the group public key of the j-th signing group or of the j-th individual signer)

2. He/She calculates the value R∗:

R∗ = sGe−1 − (U + L)e−1 (63)

3. He/She calculates the value e∗:

e∗ = FH(M||xR∗ ||xU) (64)

4. Comparing e with e∗. If e∗ = e, then the combined collective signature is valid, i.e., it was really
generated by the given m signing groups and g individual signers. Otherwise, the signature is
invalid and it is rejected.

Same as in Section 4.1, the U contains the information of all the signers, in all the signing groups
that have participated in creating collective signatures for the signing groups on document M.

• Proof of correctness of the CDS for several signing groups and several individual signers

Substituting the values:

s =
g+m∑
j=1

sj mod q, U =
g+m∑
j=1

Uj and L =
g+m∑
j=1

Lj

in the verification Eq. (63):

R∗ = sGe−1 − (U + L)e−1

We get:

R∗ =
(

g∑
j=1

(s′
j +

mj∑
i=1

sji)
g+m∑

j=g+1

sj

)
Ge−1 −

⎛
⎜⎜⎝

g∑
j=1

mj∑
i=1

λjiPji +
g+m∑

j=g+1

λjPj

+
g∑

j=1

mj∑
i=1

λjiLji +
g+m∑

j=g+1

λjLj

⎞
⎟⎟⎠ e−1

=

⎛
⎜⎜⎝

g∑
j=1

(
zj + ρ

′
j e +

mi∑
i=1

(λjikji + eρji)

)

+
g+m∑

i=ε+1

(λjkj + eρj)

⎞
⎟⎟⎠ Ge−1 −

(
g∑

j=1

mi∑
i=1

λjiPji +
g+m∑

j=g+1

λjPj +
g∑

j=1

mi∑
i=1

Lji +
g+m∑

j=g+1

Lj

)
e−1

=
(

g∑
j=1

(
ρ

′
j +

mj∑
i=1

ρji

)
+

g+m∑
j=g+1

ρj

)
G =

g∑
j=1

(
R′

j +
mj∑
i=1

Rji

)
+

g+m∑
j=g+1

Rj = R
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and compute:

e∗ = FH(M||xR∗ ||xU) mod δ

= FH(M||xR||xU) mod δ = e

The correctness of the protocol has been proved.

4.3 Performance Evaluation of the Proposed Collective Digital Signature Schemes

Remember, the individual signer identification procedure needs the participation of the group
manager of the signing groups who participated in the formation of the final collective signature.
Thus, the computational complexity of this procedure is quite high. This will increase significantly as
the number of signing groups, the number of individual signers increases.

We consider the performance of proposed schemes by comparing the time for the signature
generation proceduce and the time for signature verification procedure of our schemes and the scheme
in [12]. Both are collective signature schemes for signing groups, both are built on the difficult problem
of the discrete logarithm problem, but the scheme in [12] is in the finite field (in Section 2), the scheme
in this paper is in the EC combined with ECDSA standard (in Section 4.1).

Notations: Th : Time cost of a hash operation in Zp; Ts : Time cost of a scalar multiplication in Zp;
Tinv : Time cost of a inverse operation in Zp; Te : Time cost of an exponent operation in Zp; Tm : Time
cost of a modular multiplication in Zp. According to [13]: Th ≈ Tm, Ts ≈ 29Tm, Tinv ≈ 240Tm, Te ≈
240Tm.

Suppose there are g groups of signings and each jth group has mj signers. The time cost for
generating signature components of the proposed digital signature scheme and the collective digital
signature scheme in [12] is given in Tab. 1.

Table 1: Time cost of the signature scheme in [12] and the proposed signature scheme

The CDS based on GF(P) [12] The CDS based on ECDSA

Time for signature generation U =
g∑

j=1

(243mj)Tm

E =
g∑

j=1

(241mj + 241)Tm

S =
g∑

j=1

(484mj + 1)Tm

Sum =
g∑

j=1

(968mj + 242)Tm

U =
g∑

j=1

(31mj)Tm

e =
g∑

j=1

(29mj + 29)Tm

s =
g∑

j=1

(61mj + 1)Tm

Sum =
g∑

j=1

(121mj + 30)Tm

Time for signature verification (483 + g)Tm (58 + g)Tm

Tab. 1 shows that the time cost for the generation of signature components and for the signature
verification of the proposed collective signature scheme is much lower than that of the similar
signature scheme in [12].This disparity will be large as the number of members that participate in
signature formation increases when comparing the time cost for constructing the CDSs for several
signing groups and several individual signers of the schemes in [12] (at Section 3) and the scheme
in this paper (at Section 4.2).
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5 Discussion

The protocols described in Section 4 represent a new extension of the collective signature scheme
[9] proposed for generating a common signature that is shared by an arbitrary group of individual
signers and has a fixed size. The uniqueness consists in many signing groups or several signing groups
and several individual signers sharing a fixed-size single signature. That combination between the
collective signature schemes [9] and the group signature schemes [6,14] is possible because the last
schemes use the formation of the collective signature as a preliminary stage of the group signature
formation. Analogous combining of the collective signature scheme with the group signature protocols
of other types, for example, described in [15–17] appears to be impossible.

In the proposed protocols like the protocols in [10], the private keys used by each signer
participating in the process of computing the collective signature is known only for the owner of the
respective public key and the security justification of the security can be performed as reducing to the
security of the individual signature protocol or to the group signature protocol, directly in line with
security analysis provided by [9].

An important advantage of the proposed protocols relates to the possibility of using the existing
public key infrastructure for their practical use. Besides, some official signature standards, for example
[18–20], can be used as their base cryptoscheme.

6 Conclusion

Thus we have studied and proposed different types of signature schemes using the elliptic curves:
i) the collective digital signature scheme for several signing groups (using ECDSA); ii) the collective
digital signature scheme for a number of signing groups and a number of individual signers (using
GOST R34.10-2001). For each one, we designed the signature generation procedures, the signature
verification procedures, prove their correctness. The security advantages and the performance of the
novel collective digital schemes were also presented.

With the novelty that the group of authors presented in this article hopes to have practical
applications in practice. In the future, we will study and develop collective signature schemes as
proposed in this paper, but it only consists of 2 components E and S, like the signatures in [1–4,6,15]
by using the EC.

The computational difficulty of the described collective signature protocols is about m times
higher than the difficulty of the group signature protocols [6,12]. However the shared signatures of
the signing groups can be computed simultaneously, therefore in the case of the parallel computation,
their performance is comparable with performance with their base group signature scheme. In the
future, we will also study to construct new collective signature protocols under this approach.
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