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Abstract: Wrist cracks are the most common sort of cracks with an excessive
occurrence rate. For the routine detection of wrist cracks, conventional radiog-
raphy (X-ray medical imaging) is used but periodically issues are presented by
crack depiction. Wrist cracks often appear in the human arbitrary bone due to
accidental injuries such as slipping. Indeed, many hospitals lack experienced
clinicians to diagnose wrist cracks. Therefore, an automated system is required
to reduce the burden on clinicians and identify cracks. In this study, we
have designed a novel residual network-based convolutional neural network
(CNN) for the crack detection of the wrist. For the classification of wrist
cracks medical imaging, the diagnostics accuracy of the RN-21CNN model
is compared with four well-known transfer learning (TL) models such as
Inception V3, Vgg16, ResNet-50, and Vgg19, to assist the medical imaging
technologist in identifying the cracks that occur due to wrist fractures. The
RN-21CNN model achieved an accuracy of 0.97 which is much better than
its competitor`s approaches. The results reveal that implementing a correct
generalization that a computer-aided recognition system precisely designed
for the assistance of clinician would limit the number of incorrect diagnoses
and also saves a lot of time.
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1 Introduction

In emergency departments (ED), missed crack radiographs are one of the most common causes
of diagnostic errors [1,2]. On radiographs, interpretation faults contributed by environmental aspects
and humans, like clinician fatigue, weakness, interruption, less time, and poor review conditions.
Computerized investigation of radiographs, which are predictable, would be costly to expand the
working of radiologists and emergency clinicians. Recent developments in the area of computer
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vision, a deep learning approach called Convolutional Neural Network (CNN) have acquired a lot
of grips. To overcome the diagnostic mistake, CNN learns selective features through pixel information
of huge image datasets. Rapid advancements in the architectures of CNN have coupled with a
statistical increment in hardware computational power to acquire the performance of human levels
like image classification, handwriting recognition, and facial recognition [3,4]. Previous studies show
that applying deep learning techniques has produced promising results for the analysis of images in the
medical field such as tuberculosis classification on chest X-rays, mammographic mass classifications,
diabetic retinopathy classification, and bone age assessment [5–8]. In crack detection, some of the
previous studies have shown the viability of CNN on X-ray Images [9–11] acquired 83% accuracy
for cracks diagnosis by using a network that is trained on a heterogeneous collection of the ankle,
hand, and wrist. A model trained on 1389 lateral wrist X-rays was able to obtain 0.954 of an area
under the curve (AUC) [10]. The actual region of the abnormality was not localized by these deep
learning systems because entire X-ray images both cracks and non-cracks categories were based on
binary classification. Due to such black-box models, it was not so easy for clinicians to assure wide
classification labels, as it is not apparent that how the network gets to the results. Abnormality location
information is important to support the results of classification by providing graphic proofs that
are easily demonstrable by medical clinicians. The CNN object detection is an addition of image
classification representation that not only classifies and identifies objects but can also confine the area
of every object by illustrating a proper box around it [12]. As a result of treating cracks as an object,
we hypothesized that CNN object detection [13–16] can be utilized to localize and identify cracks on
wrist X-ray imaging.

The latest development in deep learning [17–19] has allowed the development of computer
prototypes that can exactly solve many graphical assignments relating to object localization, classifi-
cation, and recognition [20]. Deep learning has uncovered huge introductory potential at assignments
inside clinical imaging, for example, anticipating the furthest point of diabetic retinopathy from
retinal fundus images [21], categorizing skin wounds [22], and examining histopathology [23,24].
Deep learning prototypes are different from the technology used by primary CAR systems in that
they do not depend on pre-defined illustrations of low-level visual structures within images. Sub-
specialized professionals can educate models to carefully identify cracks by classifying them in massive
radiographs datasets because models usually learn by examples. This is an extraordinary methodology,
fixated on improving the analytic abilities of clinicians and radiologists relatively changing them by
the usage of an algorithm. With an adequate supply of skillfully labeled instances, a suitably designed
model can learn to match the findings of those skilled clinicians who provided the labels.

In the past, Computer-Aided Recognition (CAR) in radiology was not so successful to attain
improvements in diagnostic correctness, decreasing clinician sensitivity and leading to needless addi-
tional diagnostic tests. With the arrival of deep-learning approaches to CAR, there is an immense
enthusiasm about its applications to medicine; however, there is slight evidence representing enhanced
diagnostic accuracy in clinically-relevant applications. For this study, we designed a residual network-
based 21-layers of convolution neural network (RN-21CNN), trained on a high-quality labels wrist
fracture dataset that could generate an automated cracks recognition, proficient in rivaling diagnostic
acumen of a squad of professional orthopedic specialists. Most of the previous research studies [20–24]
believe that residual network is the significant choice for classifying and indexing the image feature
characteristics of the small region wrist cracks. Some limitations with the residual network are also
observed. When the model gets deeper, it becomes more and more difficult for the layers to propagate
the information from shallow layers due to which the information is lost. Therefore, to overcome
this issue, the residual network is combined with a 21-layer of CNN model. The designed classifier
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assists the less skilled emergency clinicians, their crack recognition specificity and sensitivity can be
meaningfully improved. We also reveal that ability to accurately observe cracks significantly improves
when emergency medicine clinicians are provided with the support of a trained model.

In summary, the major contribution of this study is stated below:

1. The RN-21CNN model is applied to accurately classify the crack regions in an X-ray image to
relieve clinicians’ burden.

2. The model can extract the features for bone crack identification. As we demonstrate in the
experiment, our model can better reflect the crack line.

3. The RN-21CNN model has achieved the highest classification accuracy of 97.0% as compared
to the four well-renowned pre-trained classifiers and state-of-the-art classifiers in terms of
accuracy, specificity, sensitivity, and f1-score.

This manuscript is structured as follows. State-of-the-art is discussed in Section 2. In Section 3,
the context of materials and methods is presented. Section 4 consists of extensive experimental results
and their discussions. The conclusion and future work of this study is described in Section 5.

2 State-of-the-Arts

Continuous developments in deep learning (DL) research have resulted in the creation of auto-
mated versions that can accurately resolve a variety of observable tasks, such as recipient recognition,
limitation, and clustering. Inside clinical imaging, DL has demonstrated tremendous achievements,
such as foreseeing the seriousness of diabetic retinopathy from retinal fundus images, ordering skin
sores, and dissecting histopathology. DL taking in models varies from the innovation utilized by early
CAR frameworks in that they do not depend on predefined portrayals of low-level visual highlights
inside images. Alternatively, they can figure out how to find task-explicit visual highlights that help
precise clinical translations. This is a unique strategy, as it focuses on increasing physicians’ and
radiologists’ suggestive abilities rather than relying on a computation to replace them. The model
had a sensitivity of 93.9% and a specificity of 94.5% [25]. This information lends itself impeccably to
Machine Learning (ML). In the field of general imaging and computer vision, DL is the leading AI
instrument. Deep knowledge alludes to procedures that expand on improvements in counterfeit neural
organizations in which numerous organization layers are added to build the levels of reflection and
execution. The sensitivity and specificity of the model were 0.88 and 0.90, accordingly [26].

DL calculations have indicated pivotal execution in an assortment of advanced undertakings,
particularly those identified with images. They have frequently coordinated or surpassed human
implementation. Since radiology’s clinical field generally depends on separating valuable data from
photographs, it is a very familiar product territory for DL, and exploration here has quickly filled in
later a long time. The model presented by [27] used for the detection of wrist crack has achieved the
accuracy of 91.2% sensitivity was 95.7%, specificity was 82.5%, and AUC was 0.918. Convolutional
neural networks “learn,” separating highlights from the pixel data of massive images datasets to fit
the diagnostic issue. Consistent enhancements of Convolutional neural networks structures combined
with a mathematical increment in equipment computational force have empowered deep learning
convolutional neural networks to accomplish human-level execution in lay assignments, such as facial
acknowledgment and penmanship acknowledgment, and characteristic world images characterization.
The sensitivity, specificity, and AUC for each image were 95.7 percent, 82.5 percent, and 0.918 percent,
respectively [28]. Wrist cracks are the most ordinary sort of breaks found in crisis divisions; they are
assessed to be 18% of the damages found in grown-ups and 25% of cracks found in youngsters. They
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are usually distinguished in EDs by specialists analyzing horizontal and posterior-anterior radiographs
[29]. In this exploration, we will take a deep examination of the wrist break. Crack alludes to the total
or inadequate loss of bone, alveolar plate, or joint surface, frequently joined by harm to delicate tissues
or organs around the bone. The break of the lower arm happens when in any event, one of the two
significant bones of the territory between the elbow and the wrist-sweep also, ulna–is broken, and
regularly it goes with separation. It is led the way about by further double-edged power in drop-down
issues when the victim puts one’s hand on the floor with unequal position or the rapid competency by
a car crash or injury. The backhanded force causes an angled or twisting crack, and the instantaneous
power causes a horizontal break of the spiral and ulna [30].

A deep learning strategy is designed and applied to the crack location in arm bone X-rays.
The fundamental upgrades incorporate three perspectives. Initially, another spine network is set up
dependent on the highlight pyramid design to acquire fractal data. Second, an image preprocessing
method, including opening activity and pixel esteem change, is created to improve unique images’
differentiation. Third, the open field change containing anchor scale decreases, and small ROIs
development is abused to discover more breaks [31]. Radiologists decipher X-beam tests by outwardly
assessing them to observe the occurrence of breaks in different bones. Understanding radiographs
is a tedious and exceptional cycle, including manual assessment of gaps. Likewise, clinicians’ lack
in restoratively under-resourced zones, inaccessibility of master radiologists in occupied clinical
properties, or weariness caused because of requesting outstanding tasks at hand could prompt bogus
discovery rate what is more, helpless recuperation of the breaks. An exhaustive report is granted here
covering crack finding to help agents create models that naturally recognize breaks in human bones
[32]. The bone is a significant part of the human body. Bone gives the capacity to move the body.
Bone cracks are expected in the human body. The specialists utilize the X-beam images to analyze
the broken bone. The manual break location strategy is tedious, and the blunder likelihood chance is
high. The human body comprises numerous kinds of bone. Bone cracks are mainly caused by a car
accident or a horrifying drop. The bone-breaking danger is high in mature individuals due to the more
fragile bone. The broken bone mends by giving appropriate treatment to the patient. The specialist
utilizes x-beam or magnetic resource imaging (MRI) images to analyze the cracked bone. The little
break in the bone becomes hard to investigate by the specialist. The manual cycle for determining
the broken bone is tedious, and the mistake likelihood is likewise high. Consequently, it is necessary
to build up a PC-based framework to lessen the time and the possibility of broken bone finds. In
[33], a deep CNN architecture with the extension of the common U-Net was designed for the task of
detecting and localizing wrist fractures. The model achieved significant results such as AUC of 0.967,
93.9% sensitivity, and 94.5% specificity. Bone break discovery and order have been broadly discussed,
and numerous analysts have proposed various strategies to handle this issue. Despite this, a general
methodology ready to order all the cracks in the human body has not yet been characterized. We expect
to break down and assess a choice of papers, picked by their delegate approach, where the creators
applied diverse, deep learning methods to arrange bone breaks, all together to choose the qualities
of every one of them and attempt to depict a summed up methodology. The innovation used for the
first conclusion is generally X-beam, which is a methodology that has been utilized for more than 100
years and is still much of the time used. It is trying for specialists to assess X-beam images: initially,
X-beam could shroud specific bone; also, a ton of involvement is expected to effectively characterize
various kinds of breaks; thirdly, specialists frequently have to act in crisis circumstances and might be
compelled by weakness [34].
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3 Materials and Methods

This section contains the methodology of this study.

3.1 Dataset Description

The dataset Hassaan et al. [35] has been used to evaluate and train the RN-21CNN model. The
dataset was created on an X-ray Medical Imaging from patients of different ages varies from 18 to
35 years, at Al-Huda Digital X-ray Lab, Multan, Pakistan. The dataset contains a total of 193 X-ray
images including 111 fracture images and the rest are normal. The dataset is manually annotated by
orthopedics who have more than 10 years of experience. The sample wrist cracks X-ray images are
shown in Fig. 1.

Figure 1: Graphic sample of a male’s wrist radiograph (a) crack wrist, and (b) normal

3.2 Data Pre-Processing

Images that are collected as samples are of various sizes. So, images were re-scale to 150 × 150
resolutions. For a better training process, data normalization was performed. As a result, the dataset
is set to be fixed size of resolution and feed to the residual network-based CNN model for the training
process. To avoid overfitting, we expand the size of a dataset at the time of training by applying various
types of data augmentation techniques such as lateral and posterior flip, rotation, zoom and width, and
height shift. After applying data augmentation techniques, a total of 1544 wrist cracks X-ray images
(including 888 fracture images and 656 images are normal) are used for training, validation and testing
the model. The graphical representation of the augmented sample images is shown in Fig. 2.

3.3 RN-21CNN Model

Initially, the concept of classification of wrist cracks medical imaging task under consideration to
manage the appropriate design and development of the RN-21CNN model. Normally, the features
used in X-rays imaging include shape, texture, spatial relationship, and target color. The basic
difference in wrist crack type is wrist texture feature, so, normally researchers select features that
are local to describe images. Though texture is a simple and instinctive graphical concept and a lot
of research studies have not shown the common definition of the textures available [36,37]. We have
designed the architecture of the RN-21CNN model shown in Fig. 3. The RN-21CNN model has been
built on a network called a residual network. In mathematical statistics, the residual network contains
the variation between predicted and real values. By presenting the residual thought to eliminate the
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identical portion, therefore underline the slight variations, let our model emphasize learning these
small replacements. Researchers have revealed that this technique [38–40] resolves the issue that fitting
effects become poor as neural network layers increases. Hence convoluted by a series of 21-layers
and after pre-processing the network’s input is adjusted to a 150 × 150 image block. Then in the
Convolutional layer, we choose a filter size of 1 × 1 and 3 × 3. We now use a convolution portion
smaller than 5 × 5 and 7 × 7 and the rectified linear unit (ReLU) function to achieve more non-linear
activation. By this means, we easily can make sure that every neuron is minor sufficiently trained to
the input’s accessible field to record local texture features related to preferred output. Though the
earlier Convolutional network performance as well, in this situation the whole network could not get
exact output. Due to its small size and excessive dimensionality reduction, several of the data that is
intensely associated with the objective is straightforwardly ignored by earlier Convolutional networks.
As a result, we have given a residual network-based CNN model to ensure that the native network’s
objective is maintained and that the image’s size aim is decreased.

Figure 2: Sample images after applying data augmentation; (a) original; (b) lateral flip; (c) posterior
flip; (d) rotation; (e) zoom; (f) width shift

Figure 3: RN-21CNN architecture for the classification of patient’s wrist crack

Standards of increasing the convolution are presented in Fig. 4. As a result, increasing the convo-
lution supports increases the receptive area of the Convolutional section, which prevents considerable
damage to the feature map’s resolution. After each convolution layer, a batch normalization layer is
added to ensure that non-linear input value modification occurs in the sensitive input area, avoiding
the issues of gradient vanishing caused by increasing training and architectural complexity. The result
of the preceding convolution layer is followed by the global average pooling layer, which calculates the
average of all feature maps. The number of feature maps in the resultant layer is equal to the number of
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feature maps in the preceding layer, and it can include two entirely associated layers. There are 2 nodes,
the first layer contains 128 nodes and the second node is known as the classification layer. Before the
global pooling layer, we have appended a dropout layer to avoid overfitting the model with a parameter
adjusted to 0.5. When the training process is modified and unavoidable units rely on detailed inputs,
it randomly ends half of the neurons [38].

Figure 4: Three various dilated rates separate setting corresponding to (a) 3 × 3 dilated rate of 1
with convolution kernel, it is same as standard convolution operation, (b) 5× 5 convolution kernel
with a dilated rate of 2, and (c) 3 × 3 dilated rate of 4 with convolution kernel, the accessible field is
corresponding to a 9 × 9 standard convolution kernel

For the learning and understanding of a very complex and non-linear task, the activation task
plays a vital role in the model of a neural network. As we know, the activation function presents the
non-linear features to neurons, permitting the neural network to randomly estimate any non-linear
function and can meaningfully influence the rate of convergence by selecting the activation function.
The use of ReLU was demonstrated to reduce computational costs in comparison with the classical
sigmoid alternatives and to prevent gradient vanishing [39–41]. Thus, reducing the over-fitting issue,
the result caused by the ReLU of several neurons to be zero is mostly remarkable, which increases
system sparsity and decreases the interdependence of the parameter. In this research study, for the
activation of each of the convolutional layers, we have used the ReLU function. The first dense layer
is used to activate the standard ReLU for the completely connected network layer, and a sigmoid is
used to squeeze the 2D result into a probability distribution of classification.

3.4 Training Process of RN-21CNN Method

To reduce the cross-entropy loss purpose, we have applied Adam Optimizer [42] in this research
study. Adam optimizer process is an addition of stochastic gradient descent process that repeatedly
upgrades the weights of neural network dependent on training statistics. Unlike the conventional
stochastic gradient descent (SGD) process, Adam Optimizer plans an autonomous adjustable rate of
learning for various factors by computing the first sequence moment estimates and second sequence
moment estimates of the gradient. The loss function value of cross-entropy represents the gap between
the real outcome and the predictable outcome and the immensity of the worth straight reflects the
proximity of their possible distribution. After relevant experimental tests, we have set the parameter
as the default value to use the Adam optimizer parameter settings. In the initial stage of the model, for
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performing the patient’s wrist crack classification task, In the Wrist X-ray data set, we transfer pre-
trained weight parameters to the existing neural network model. In addition, we have carried out the
weight update with slight batch data, and the batch size is set to 64. On verification set, while model
accuracy no longer increases, the rate of learning is decreased by 10 times and when the performance
of the model is not shown in 20 epoch, the rate of learning will be decreased.

3.5 Methodology

The main framework of this research study is presented in Fig. 5. and consists of three major
steps: preprocessing, feature engineering, and transfer learning model [43–45]. Firstly, the authors
have applied the preprocessing procedures and recognized the ROI, then fragmented the dataset into
three sets by a ratio of 70%, 10%, and 20% for the training, validation, and testing, respectively.
After this, we have applied the data augmentation techniques that have been discussed earlier in the
data preprocessing section. The main objective behind the expansion of the dataset was avoiding the
model from over-fitting [46–49]. All of the transfer learning classifiers weights were pre-trained on
near about 1.3 M natural photographs of 1000 objects classes from the ILSVR database [12]. We also
transformed the last classification layer of every pre-trained model of CNN with an individual neuron
of sigmoid function [50] that outcomes the estimated probability that an applied input image is normal
or fractured. We have also set the size of wrist radiographs to 224 × 224 for VGG-16 and VGG-19
and 299 × 299 for Inception V3 and ResNet-50 on every input to make it suitable and feed them to
every single pre-trained model of CNN. The input image size of the RN-21CNN model is 150 × 150
resolutions. The layers of the RN-21CNN models utilized by feature classifiers take its direct preceding
layer’s output as data, and its output layer is associated as a contribution to the succeeding layers. The
feature selectors classifier comprises conv2 × 2, 64; conv2 × 2, 128; conv3 × 3, 256, conv3 × 3, 512,
2 × 2 size of the max-pooling layer, and a softmax activator among them. The convolution layer’s final
output and max-pooling methodologies are associated into 2-D planes called feature maps. From all
these models, when extracting the feature vector, the top convolutional blocks weight is frozen and the
output containing the result of the final convolutional block is associated with the new features vector
classifier. The feature classifier has positioned at the last layer of the model and it is only an Artificial
Neural Network (ANN) utilized by dense layer [47–50].

Figure 5: Framework for the classification of wrist cracks
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To attain the computations procedure like other classifiers, this feature classifier needs a single
vector. Therefore, the feature vectors classifier’s resultant value is changed into a 1-D feature and this
method is called “flattening”. Moreover, the convolution method’s final output layer is flattened to
develop a single extended vector for the last dense layer to make use of in its concluding classification
due to sigmoid operations. Additionally, between the dense layers and activation process, the softmax
classifier is placed and was used to address the classification issues. By using binary cross-entropy
loss, the loss function was calculated. To identify the optimal hyperparameters like learning rate, batch
size, etc., we have also applied a grid search. Based on the initial learning rate (like 0.05 and 0.1 for
models with random selections), all of the layers of the pre-trained model were fine-tuned by using
a “stochastic gradient descent” (SGD) optimizer with the momentum of 0.9. The learning rate was
reduced by a factor of 0.1 after twenty epochs. To avoid overfitting, early stopping of epochs was
performed with the maximum execution of 500 epochs. For the RN-21CNN model, we have used a
batch size of 64.

3.6 Performance Evaluation

The evaluation of the viability of the transfer learning models was completed on the independent
testing data in the K cross-validation fold (K = 5). We concisely evaluated and noticed the performance
of the models on the testing set by calculating their sensitivity (also known as recall), accuracy (Acc),
ROC, specificity (SP), and recall (R). Eqs. (1)–(4) given below represents accuracy, sensitivity, f1-score,
and specificity values:

Acc = tp + tn
(tp + tn + fp + fn)

(1)

R = tp
tp + fn

(2)

SP = tn
tn + fp

(3)

F1−Score = 2 ∗ (
SP ∗ R
SP + R

) (4)

To calculate the performance of a binary classifier, the confusion matrix (CM) is applied on the set
of wrist radiographs test data for which the true or correct values are known. True Positive (TP) and
False Positive (FP) represent the value of classified images correctly and incorrectly respectively. In the
same way, True Negative (TN) and False Negative (FN) contains the value of correct and incorrect
examples of images. The Curve of AU (ROC) was also calculated.

4 Results and Discussions

In this section, we have discussed the details about the implementation of the method, the selected
evaluation approach, and the experimental outcomes of the present study.

4.1 Experimental Setup

CNN-based pre-trained models’ evaluation on wrist crack database depends on trained validation
test wrist crack. We trained the RN-21CNN model for the study on the training set of the dataset, to
observe the diagnostics performance of the model, hyper-parameters are fine-tuned, on the validation
part of a dataset, and after that test, the set is implemented for the evaluation of classification accuracy.
To calculate the four metrics, for example, sensitivity, specificity, accuracy, and f1-score, the confusion
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matrix technique is applied. The RN-21CNN model’s AUC is also strategized to notify the effect of
the model by comparing it with four famous architectures, particularly utilized for a finding of disease
from clinical imaging The DL algorithms used in this experiment, including the RN-21CNN method,
are implemented using the Keras structure, and the techniques that do not involve convolutional
networks are coded in Python. Each experiment on a workstation has been conducted with 16GB
GPU NVIDIA Ge-force GTX 1080Ti and 32 GB RAM on Microsoft Windows 10 Operating system.

4.2 Visualizing Test Outputs

To enhance our understanding of its performance, now the RN-21CNN model is visualized.
Fig. 6. shows the partial filter outcome feature maps visualizations of the 1st convolutional layer of
the RN-21CNN model. It will be noticed that the Convolutional layer has the capability for edge
detection and their various belongings acquire the fundamental edge modes. Additionally, a feature
map partial output of the max-pooling layer in the visualization network is shown in the Convolutional
layer visualization (Fig. 5). After that, visual results of partial result feature maps of an added layer of
primary bottleneck design and the final bottleneck design will be shown.

Figure 6: Partial visualization outcomes of the RN-21CNN method: (a) the conv layer, (b) the max-
pooling layer, (c) the added layer of the first bottleneck design module, (d) the last adding layer
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4.3 Results Analysis

The evaluation methods for wrist X-ray image classification are based on a trained validation
test system. On the training dataset, we trained our model by fine-tuning the hyperparameters for
evaluating the RN-21CNN model, and then we applied the test set to the model. Based on the
confusion matrix, we have used five metrics to evaluate the model’s performance in binary tasks:
precision, f1-score, recall, and the accurate calculation of overall classification. Fig. 7. shows the
training loss and accuracy validation of the RN-21CNN model to epochs. The 500 epochs were
executed for the CNN model. The maximum obtained accuracy for training was 0.99, and that for
validation was 0.95.

Figure 7: Training loss and accuracy validation of RN-21CNN model

For the correct classification of wrist cracks vs. normal wrist, these values indicate that our model
learning rate is sound. The training loss was 0.021, and the validation loss was 0.026. The different
performance metrics were measured for the effectual diagnosis of wrist cracks for the evaluation of
the model. The confusion matrix of the RN-21CNN classifier and four pre-trained models are shown
in Figs. 8 and 9., respectively. There were 77 normal wrists and 77 wrist cracks images in the test set.
Actual cases are set along rows and the predicted ones are set along with columns in the confusion
matrix.

Figure 8: Confusion matrix of our RN-21CNN model
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Figure 9: Transfer learning methods of Confusion Matrix

For Vgg16, among 77 wrist crack cases, the detection rate of the model is 67 cases and misclassified
10 of the cases as normal. The exact class label of the model’s prediction of all normal cases for Vgg19,
the detection rate of model is 72 cases and misclassified 5 of the cases as normal among 77 wrist crack
cases. The exact class label predicated by ResNet is of 69 wrist crack cases and misclassified 8 of the
cases as normal. The prediction rate of Inception V3 is 65 wrist crack cases and misclassified 12 cases
as normal. For the RN-21CNN model, among 77 wrist crack cases, the model detected all of the 77
cases and misclassified 0 cases as normal. The evaluation matrices accuracy, recall, precision, and F1
score of classifiers for each class (normal wrist vs. wrist cracks) are presented in Tab. 1, and the visual
representation is shown in Fig. 10. The Vgg-16 score on accuracy is 86%, the precision rate is 84.2%,
the sensitivity rate is 89.4%, and the achieved F1 score is 86.7%. The Vgg-19 score for accuracy is
76%, the precision rate is 73%, the sensitivity rate is 89.4% and the F1 score is 75%. The accuracy rate
achieve by ResNet 50 is 81%, the precision rate is 78%, the sensitivity rate is 84% and the F1 score is
80%. The Inception V3 accuracy score is 65%, the precision rate is 63%, the sensitivity rate is 68% and
the F1 score is 64%. And ultimately RN-21CNN model achieved an accuracy rate of 97%, precision
rate of 95%, sensitivity is 100%, and 97% F1-Score.

Table 1: Comparison of RN-21CNN method with four pre-trained classifiers

Model Accuracy Specificity Sensitivity F1-Score AUC
VGG 16 86% 84.2% 89.4% 86.72% 90%
VGG 19 76% 73% 78% 75% 82%
Inception V3 65% 63% 68% 64% 57%
ResNet 50 81% 78% 84% 80% 88%
RN-21CNN 97% 95% 100% 97% 99%

The classification of the sample images by the proposed system as fractured or normal images is
shown in Fig. 11.

4.4 Comparison with State of the Art

Tab. 2 shows the comparison of our proposed model with different state-of-the-art classifiers in
terms of many parameters such as accuracy, sensitivity, specificity, F1-score, and AUC as demonstrated
our proposed model achieved significant results as compared to the prior state of the art.
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Figure 10: The output of RN-21CNN model, vgg16, vgg19, resnet50, and inception in terms of
evaluation matrices

Figure 11: Test data predictions of a normal and fractured wrist

Table 2: Comparison of RN-21CNN model with state-of-the-art classifiers

Classifiers Accuracy Specificity Sensitivity F1-Score AUC

CNN [25] 91% 80% 87% 83% 96%
CNN [4] 50% 73% 67% 70% 87%
CNN [7] 93% 85% 81% 83% 91%

(Continued)
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Table 2: Continued
Classifiers Accuracy Specificity Sensitivity F1-Score AUC

Inception-v3 [9] 93% 90% 88% 89% 95%
CrackNet [50] 88% 87% 89% 87% 93%
RN-21CNN 97% 100% 95% 97% 99%

4.5 Discussions

The above experimental works illustrate that the RN-21CNN model is expressively trained on
wrist cracks texture feature, and our model recognizes the region of crack accurately. Our method has
quality medical diagnostics accuracy in the area of radiographs in the comparison to classification
performance of other CNN models, having an accuracy of 97%. The results of the RN-21CNN have
been duly verified by the orthopedic of Al-Huda digital X-ray laboratory. We have also discussed here
the effectiveness of CNN-based pre-trained models in detecting normal and wrist cracks using X-
ray imaging. Pre-trained models like VGG 16, VGG 19, Inception V3 and ResNet 50 were trained
on a moderate-sized dataset with an image resolution of 224 × 224 for VGG 16 and VGG 19, and
for Inception V3 and ResNet 50, the image resolution is set to 299 × 299 pixels. A cross-entropy loss
function was used to train all four well-known pre-trained models, as well as the RN-21CNN model for
classifying wrist cracks X-ray imaging in this study. In Tab. 1, the comparative screening performances
of all pre-trained models tested are presented. It is examined that the fine-tuning of the VGG 16 model
with pre-trained weights achieved the notable performance, with the highest AUC of 90%, specificity
of 84.2%, sensitivity of 89.4%, and accuracy of 86%. The performances of the other contenders’
methodology of transfer learning procedures with pre-trained loads were marginally degraded. The
VGG 19 model score a high AUC of 82% (specificity of 73%, sensitivity of 78%, and accuracy of 76%)
as compared to Inception V3 and ResNet 50. The lowest performance was produced by the Inception
V3 model with an AUC of 57%, specificity of 63%, the sensitivity of 68%, and accuracy of 65%.
Additionally, as compared to other transfer learning classifiers, the RN-21CNN model has produced
the finest classification accuracy of 97%. Generally, the overall binary problems of classification did
not influence by the selection of pre-trained (CNN) architecture. When the number of CNN layers
increases for the specific binary diagnostics dilemma, these networks did not perform significantly.
This research study contains 193 X-ray Images for training, collected from the “Wrist X-ray” dataset
[35]. Additionally, these X-ray Images were expanded for more training and variability purpose. These
medical images were generated randomly via pixel and spatial level image transformations like rotation
and scale shifting of the X-ray Images. The pre-trained model’s common denunciation in the workflow
of medical imaging is that they often have to face problems in classification because of huge target
domain divergence. In this dataset, annotated by the radiologists, all medical images were labeled
manually. By fine-tuning the model using a small set of marked radiographs datasets, we observed
that severe effects of domain deviation can be alleviated when moving data from a source domain to
a target domain. Leading towards the model’s faster training and performance, this CNN is based
on a pre-trained process that attains the mutual patterns of both domains. The diagnostic accuracy
of our designed model, according to output generated by CNN is 97%, the f1-score is 97%, and the
AUC of 99%. The RN-21CNN model has performed substantially in the classification process of wrist
cracks as compared with other CNN-based pre-trained models. We have provided the comprehensive
illumination that why prior arts show unsatisfactory diagnostics performance, the outputs generated
by the different classifiers presented in Figs. 8. and 9., and in conjunction with the investigation of
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the nature of wrist crack medical imaging classification task. Initially, the four familiar radiographs
classifiers comprise deep networks and final convolutional layers have reduced the feature map of
spatial resolution which limits the model’s classification accuracy. Furthermore, the parameters used
to fine-tune the algorithms have an impact on the model’s diagnostics performance, such as the choice
of an appropriate activation function, loss function, learning rate, data augmentation measures, and
other required hyperparameters settings. Through the analysis of experimental outputs, it is shown that
the RN-21CNN model of classifying wrist cracks medical imaging has added significant output in the
assistance of diagnostics medical images. The RN-21CNN model is more capable for the findings of the
patterns of irregularities and extracting the discriminative sequences in classifying wrist cracks from
medical imaging samples that achieved the highest accuracy output of 97%. The analysis demonstrates
that the RN-21CNN model has added significant outcomes in assisting the medical clinicians in
identifying wrist cracks and also comparing them with the previous studies. The output (see Tab. 2)
achieved by [4,7,25] for the classification of wrist cracks is 91% (CNN), 50% (CNN), and 93% (CNN)
respectively. Our method is more capable as compared to the state-of-the-art classifiers in classifying
wrist cracks and achieved an accuracy of 97%. The results produced by the

5 Conclusion

In this study, we have presented an automated diagnostic tool to classify Wrist radiographs
into regular and fractured. Orderly to understand the wrist tissues actual texture features, network
architecture is designed by us with residual structures. This network has 21 Convolutional layers,
which are followed by two dense layers and ReLU activation. The training process performed by
Adam optimizer and dilated convolutions is used to minimize the cross-entropy loss function. While
keeping up the depth of the model, the RN-21CNN model strategy is capable to evade the deficiency of
highlight space information caused accordingly. Additionally, to break the issue of lacking information
and to accelerate neural network training, we have utilized transfer learning. The wrist cracks
database of radiographs, our method elaborates classification presentation higher to preceding art.
We will continue to apply our approach and strategy to medical imaging analysis based on MRI and
computed tomography (CT) in future research to improve our approach and strategy. Simultaneously,
the technique can furthermore be appraised for the extension to those areas that are economically
underdeveloped to support the growth of telemedicine training and to enhance the local medical
imaging diagnosis level.
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