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Abstract: Human object interaction (HOI) recognition plays an important
role in the designing of surveillance and monitoring systems for healthcare,
sports, education, and public areas. It involves localizing the human and
object targets and then identifying the interactions between them. However,
it is a challenging task that highly depends on the extraction of robust and
distinctive features from the targets and the use of fast and efficient classifiers.
Hence, the proposed system offers an automated body-parts-based solution
for HOI recognition. This system uses RGB (red, green, blue) images as
input and segments the desired parts of the images through a segmentation
technique based on the watershed algorithm. Furthermore, a convex hull-
based approach for extracting key body parts has also been introduced.
After identifying the key body parts, two types of features are extracted.
Moreover, the entire feature vector is reduced using a dimensionality reduc-
tion technique called t-SNE (t-distributed stochastic neighbor embedding).
Finally, a multinomial logistic regression classifier is utilized for identifying
class labels. A large publicly available dataset, MPII (Max Planck Institute
Informatics) Human Pose, has been used for system evaluation. The results
prove the validity of the proposed system as it achieved 87.5% class recognition
accuracy.

Keywords: Dimensionality reduction; human-object interaction; key point
detection; machine learning; watershed segmentation

1 Introduction

Recognizing how humans interact with other humans and objects in their surroundings can be
crucial for several applications, including crowd monitoring [1], surveillance [2], healthcare [3], sports
[4], behaviour monitoring [5], smart homes [6], e-learning [7], people counting [8], human tracking
[9], and event detection [10]. This makes human activity recognition (HAR) [11], human-human
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interaction (HHI) recognition [12], and human-object interaction (HOI) recognition trending topics
in computer vision and artificial intelligence (AI) fields. The scope of this research, however, is limited
to HOI recognition. Although researchers have developed many well-performing HOI recognition
systems in the recent past, the task remains challenging and still has room for improvement. Moreover,
the use of vision [13], wearable [14], and depth sensors [15] has made it easier for modern HOI
recognition systems to attain robustness and high-performance rates even with complex datasets.

This paper proposes an extensive yet reliable system for HOI recognition in social environments.
The system entails that all RGB images are pre-processed using gamma correction and bilateral
filtering techniques. Then, the desired silhouettes are segmented from the images. Using those silhou-
ettes, 12 key body points are identified. This step is followed by the feature extraction phase, which
involves mining two distinctive feature descriptors including ORB (oriented FAST (Features from
Accelerated Segment Test) and rotated BRIEF (Binary Robust Independent Elementary Features))
and the Radon transform. Then the feature vector is reduced using the t-SNE (t-distributed stochastic
neighbor embedding) dimensionality reduction technique. Finally, the interactions are classified using
multinomial logistic regression. A large publicly available dataset, the MPII (Max Planck Institute
Informatics) Human Pose Dataset, was used for experimentation purposes.

The main contributions of this paper include:

• Combining a commonly used super-pixel segmentation technique with a new region merging
algorithm to extract accurate human silhouettes from RGB images.

• Proposing a simple yet effective way of detecting key body points on human silhouettes.
• Designing a high-performance recognition system based on the Radon transform and ORB

feature descriptors.

The rest of the paper is organized as follows: Section 2 elucidates and analyses the research work
relevant to the proposed system. Section 3 describes the overall methodology of the system, which also
involves an extensive pre-classification process. Section 4 describes the dataset used in the proposed
work and proves the robustness of the system through different experiments. Section 5 concludes the
research and notes some future works.

2 Related Work

For the past few years, researchers have been working actively on HOI recognition systems [16].
Apart from RGB images, they have also investigated their systems’ behaviours using depth images [17],
depth videos [18], and RGB+D (red, green, blue, depth) videos [19]. In most cases, the entire images are
used directly as input, and features are extracted from them. This approach is simple and especially
useful when the goal is to identify multiple HOI interactions in a single image. However, another
approach is to extract human and object pairs from the images and mine their features separately.
Moreover, the additional steps of posture estimation [20] and human body part detection [21] for
improved feature extraction [22] are also common. This approach yields more accurate results since
the object and human features provide additional contextual information. Therefore, the related work
can be categorized into image-based and instance-based HOI recognition systems.

2.1 Image-based HOI Recognition Systems

The image-based approach has been extensively employed in the past [23]. Jin et al. [24] have
performed human-object interaction (HOI) recognition without localizing objects or identifying
human poses. They have called it detection-free HOI recognition. They used a pre-trained image
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encoder and LSE-Sign (log-sum-exp sign) loss function. Since they used an imbalanced dataset with
multiple labels, they normalized gradients over all the available classes in a Softmax format. Moreover,
Girdhar et al. [25] proposed that focusing on humans and their parts is not always useful. In some cases,
using the background and context can also be helpful. Hence, they suggested the use of attention maps.
Their attentional pooling module is a trainable layer that can be replaced by a pooling operation in
any standard convolutional neural network (CNN).

Gkioxari et al. [26] argued that multiple cues in an image can reveal the interaction being
performed. While a person’s clothes and poses are important, the scene also provides an additional
source of information. Hence, they exploited contextual cues to build a strong HOI recognition system.
They adapted a region-based convolutional neural network (RCNN) to use more than one region
for classification and called it R∗CNN. They achieved high accuracy by jointly training the action-
specific models and the feature maps. Shen et al. [27] used zero-shot learning to accurately identify the
relationship between a verb and an object. Their system lacked a spatial context and was tested on a
simple verb-object pair. However, these methodologies were represented by complex features and the
systems had very high time complexity.

2.2 Instance-based HOI Recognition Systems

Various researchers have employed the instance-based approach for identifying human-object
interactions in the past few years [28]. Khalid et al. [29] incorporated semantics in scene understanding.
After pre-processing the input images, the authors segmented the humans and objects involved in the
given interactions. Euclidean distance transform was used to obtain the human skeleton and then
human joints were extracted from the skeleton. The authors also obtained elliptical human models via
GMM (Gaussian mixture model) and utilized the CRF (conditional random field) model to label the
pixels of human body parts. Moreover, Yan et al. [30] proposed an HOI recognition system based on
a multi-task neural network. They offered a digital glove called “WiseGlove” to detect hand motions.
The system employed YOLO (you only look once) v3 to detect objects and a deep convolutional
network in order to identify the interactions. For experimentation, the authors utilized both RGB
and skeletal data to achieve a good recognition rate. But the dataset only had eight action classes.
Moreover, their system was only able to work with a few pre-defined objects.

Wang et al. [31] proposed the use of interaction points for recognizing human-object interactions.
They posed HOI as a key point detection problem. They used a fully-convolutional approach to detect
the human-object interactions. The predicted interaction points were used to localize and classify the
interaction. Gkioxari et al. [32] detected the human, verb, and object triplets by localizing humans
through their appearance and objects through action-specific density. They used two RGB datasets
to prove the validity of their system. Similarly, Li et al. [33] proposed a 3D pose estimation system
and a new benchmark named “Ambiguous-HOI”. They used 2D and 3D representation networks to
mine features. Moreover, a cross-modal consistency task and joint learning structure were used to
represent humans and objects. They performed extensive experiments on two datasets to prove the
efficiency of their system. Ghadi et al. [34] used the instance-based approach to design a gait event
classification system that detected events on the basis of various features including periodic and non-
periodic motion, motion direction and flow, rotational angular joints, and degrees of freedom.

3 Proposed Method

This section describes the framework of the proposed HOI recognition. Fig. 1 provides an
overview of the system architecture. All RGB images were pre-processed. Gamma correction was
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used for image normalization and bilateral filtering for noise removal. The pre-processed images were
segmented into foreground and background. The obtained foreground contains the desired human
and objects. For key point detection, binary human silhouettes were employed. Then, two kinds of
features were mined. From full-body silhouettes, ORB features were extracted and from key body
points, Radon transforms were obtained. Both features were concatenated and further t-SNE was
applied to reduce the dimensionality of the obtained feature vector. Finally, a multinomial logistic
regression classifier was used for classification. The following subsections explain each stage of the
framework in detail.

Figure 1: A general overview of the proposed HOI system

3.1 Image Pre-Processing

All RGB images in the dataset have been pre-processed using gamma correction and bilateral
filtering techniques. The results of these two stages are shown in Fig. 2. Pre-processing the images
at this initial stage helps in improving the overall performance of the system. Both techniques are
discussed in detail in the following subsections.

Figure 2: Results of image pre-processing. (a) original image, (b) image after gamma correction, and
(c) smooth image after applying BLF

3.1.1 Image Normalization

Image normalization is used to improve the contrast of an image by adjusting its pixel intensity
values. For normalizing images in the proposed system, gamma correction has been used. This
technique controls the overall brightness of an image. Several images in the used dataset look either
bleached out or too dark. Gamma correction, also known as the Power Law transform, improves the
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quality of such images. The output gamma-corrected images O have been obtained from the input
images I through Eq. (1):

O (x) = I(xi)
1
G (1)

where G is the gamma value that can shift the image pixels towards the higher values if set less than 1.
This means that the resultant image will appear darker. However, if the gamma value is greater than
1, the image will appear lighter. A gamma value of 1 will not affect the input image.

3.1.2 Noise Removal

To improve image quality and remove noise, a bilateral filter (BLF) has been applied. A BLF
smoothens the given images while preserving the edges of all the involved objects. The bilateral filter
replaces the intensity value of each pixel x of the original image I with a weighted intensity value
obtained from the neighboring pixels. The range kernel fr soothes differences in the intensity values
and the spatial kernel gs flattens the differences in coordinates. The resultant smooth image Ifil,
obtained after applying the bilateral filter, can be defined using Eq. (2).

I fil (x) = 1
Wp

∑
xi∈�

I(xi)fr (‖I(xi) − I (x)‖)gs (‖xi − x‖) (2)

3.2 Image Segmentation

Image segmentation refers to the process of dividing an image into multiple segments, also known
as super-pixels. Segmenting out various objects in an image is important for scene understanding
[35]. After pre-processing the images, image segmentation has been applied and desired silhouettes
have been extracted. The watershed algorithm has been used for super-pixel segmentation. It is a
classic algorithm for segmentation and is especially useful when the goal is to segment touching or
overlapping objects. It is a region-based method that decomposes an image completely by assigning
each pixel either to a region or a watershed.

As shown in Fig. 3, the watershed algorithm divides the given image into super-pixels. To extract
the desired silhouette, a super-pixel merging technique similar to the one proposed by Xu et al. [36]
has been used. According to this technique, similar and adjacent super-pixels are merged to form
bigger super-pixels on the basis of similarity until the desired number of super-pixels is obtained. Four
types of features are extracted from each super-pixel: mean, covariance, SIFT (scale-invariant feature
transform), and SURF (speeded-up robust features). The similarity of any two adjacent super-pixels
is determined on the basis of the difference between the values of these features.

Figure 3: Results of image segmentation. (a) original image, (b) image after super-pixel segmentation,
(c) merged super-pixels, and (d) extracted silhouette
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3.3 Key Body Point Detection

After extracting the full-body silhouette, 12 key body points have been identified using an
approach similar to the one suggested by Dargazany et al. [37] in Algorithm 1. The segmented
silhouette has been converted into a binary silhouette first and then its contour has been obtained.
Then a convex hull has been drawn around the contour. Points on the convex hull that were also part
of the original contour have been obtained. Only five such points have been chosen. Furthermore, an
additional point has been obtained by finding the centroid of the contour. Using the obtained 6 points,
6 additional key points have also been found. The method of finding these additional points is simple:
the mid-point of any two key points has been found and a point on the contour lying closest to the
obtained mid-point has been stored as an additional key point. Each step of the process is shown in
Fig. 4.

Algorithm 1: Key Point Detection
Input: segmented silhouettes
Output: KeyBodyPoints (kp1, kp2, kp3 . . . kp12)
contour← Getcontour(silhoutte)
Convex hull← DrawConvexhull(contour)
%detecting first 5 key points%
for point on convexhull:

if point in contour:
KeyBodyPoints.append(point)

%detecting 6th key point%
Center← GetContourcenter(contour)
KeyBodyPoints.append(Center)
%detecting additional 6 key points%
LE ← FindMidpoint(KeyBodyPoints [0], KeyBodyPoints [1])
lelbow ← Findclosestpointoncontour (LE)
RE ← FindMidpoint(KeyBodyPoints [2], KeyBodyPoints [1])
relbow ← Findclosestpointoncontour (RE)
LH ← FindMidpoint(KeyBodyPoints [3], KeyBodyPoints [1])
lhip ← Findclosestpointoncontour (LH)
RH ← FindMidpoint(KeyBodyPoints [4], KeyBodyPoints [1])
rhip ← Findclosestpointoncontour (RH)
LK ← FindMidpoint(KeyBodyPoints [3], KeyBodyPoints [5])
lknee ← Findclosestpointoncontour (LK)
RK ← FindMidpoint(KeyBodyPoints [4], KeyBodyPoints [5])
rknee ← Findclosestpointoncontour (RK)
KeyBodyPoints.append(lelbow, relbow, lhip, rhip, lknee, rknee)
return KeyBodyPoints (kp1, kp2, kp3 . . . kp12)
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Figure 4: Results of key point detection. (a) segmented human silhouette, (b) silhouette contour, (c)
convex hull around the silhouette, (d) convex hull vertices lying on the contour, (e) 6 detected key
points, and (f) 12 extracted key points

3.4 Feature Extraction

The proposed system uses two types of features: ORB and Radon transform. The details and
results of these features are described in the following subsections.

3.4.1 Full Body Features–ORB

Oriented FAST and rotated BRIEF (ORB) [38] is a fast and robust feature detector. It uses the
FAST (Features from Accelerated Segment Test) keypoint detector for key point detection. Moreover,
it is a modified version of the visual descriptor BRIEF (Binary Robust Independent Elementary
Features). ORB is scale and rotation invariant. Moments of a patch can be defined using Eq. (3).

mpq =
∑

xpyqI (x, y) (3)

where p and q are the intensity values of the image pixels at x and y locations respectively. With these
moments, the centre of mass can be found using Eq. (4).

C = m10

m00

,
m01

m00

(4)

The orientation of the patch is given by Eq. (5).

θ = atan (m01, m10) (5)

Fig. 5 shows the results of applying an ORB feature descriptor to the extracted silhouettes.
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Figure 5: Results of applying an ORB feature descriptor. (a) skiing class–human silhouette (left) and
its key feature points detected by ORB (right) and (b) golf class–human silhouette (left) and its key
feature points detected by ORB (right)

3.4.2 Key-Point Features–Radon Transform

Various types of transforms have been used as feature descriptors in the past including Gabor [39]
and Fourier transforms [40]. The proposed system uses the Radon transform. The Radon transform
maps from the Cartesian rectangular coordinates (x, y) to polar coordinates (ρ, θ). The resulting
projection is the sum of the intensities of the pixels in each direction. The Radon transform R(ρ, θ)
of an image f(x, y) can be obtained as follows:

R (ρ, θ) = ∞∫
−∞

∞∫
−∞

f (x, y) δ (ρ − xcosθ − ysinθ) dxdy (6)

where

ρ = xcosθ + ysinθ (7)

Fig. 6 shows the radon transforms taken with respect to various key body points. A 30x0 window
has been drawn around each key point and the radon transform of the obtained image window has
been obtained.

Figure 6: Radon transforms taken with respect to key points. (a) a window around the right elbow key
point (left) and its radon transform (right) and (b) a window around the left hip key point (left) and
its radon transform (right)
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After extracting the two types of features, these are concatenated. The result is a high-dimensional
feature vector. Algorithm 2 gives steps of the feature extraction and concatenation process.

Algorithm 2: Feature Extraction
Input: S: extracted silhouettes, KP: key body points
Output: combined FeatureVector (f1, f2, f3 . . . fn)
FeatureVector←[]
for i in range(len(S)):
ORB ← GetORBdescriptor(S[i])
FeatureVector.append(ORB)

for i in range(len(KP)):
Radon ← GetRadonTransform (S, i)
FeatureVector.append(Radon)
end

end
return FeatureVector (f1, f2, f3 . . . fn)

3.5 Dimensionality Reduction

After extracting the two types of features from all the images, they have been concatenated and
added as descriptors of each interaction class. However, this results in a very high dimensional feature
vector. Therefore, dimensionality reduction has been applied. For this purpose, the t-distributed
stochastic neighbor embedding (t-SNE) technique [41] has been utilized. First, it constructs a proba-
bility distribution over pairs of high-dimensional objects. Objects similar to one another are assigned
higher probabilities while lower probabilities are assigned to dissimilar objects. In this case, the density
of all the points (xj) is measured under that Gaussian distribution, which is then renormalized. This
gives a set of probabilities (Pij) for all the points as shown in Eq. (8).

pj|i =
exp

(
−∣∣∣∣xi − xj

∣∣∣∣2
/2σ 2

i

)
∑

exp
(−||xi − xk||2

/2σ 2
i

) (8)

Next, it defines another probability distribution over the points in the low-dimensional map.
This time, it uses a student t-distribution with one degree of freedom instead of using a Gaussian
distribution. This t-distribution is also known as the Cauchy distribution, as shown in Eq. (9). In this
way, the second set of probabilities (Qij) in the low dimensional space is obtained.

qij = (1 + ∣∣∣∣yi − yj

∣∣∣∣2
)

−1

∑
(1 + ||yk − yl||2

)
−1 (9)

Then, KL (Kullback-Liebler) divergence, given by Eq. (10), is used to measure how close or far the
obtained probability distributions are. The higher the value of the KL divergence, the farther the two
distributions are from one another. A KL divergence of 0 means that the two distributions in question
are identical.

KL(P||Q) =
∑pij

log
pij

qij

(10)
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Finally, gradient descent is used to minimize the KL cost function. This optimization results in a
map that shows the similarities between the high-dimensional inputs.

3.6 Interaction Recognition

For interaction recognition, multinomial logistic regression [42] has been employed. It is an
extension of binary logistic regression that is capable of classifying more than two categories of
the dependent variables. For a given set of independent variables, multinomial logistic regression
predicts the probabilities of the different possible outcomes of a dependent variable that is categorically
distributed. As shown in Fig. 7, it computes a value yi for various features xi. Then, it calculates the
softmax scores of different features of a given interaction using Eq. (11).

S (y) = eyi∑n

j=1 eyj
(11)

Figure 7: An overview of the layers in a multinomial logistic regression classifier

Using the softmax scores, it computes the cross-entropy loss as shown in Eq. (12).

D (S, L) = −1
n

n∑
i=1

S(yi).log(S (yi)) (12)

4 Performance Evaluation

This section briefly discusses the dataset that has been used for HOI recognition, the results
of three different experiments that have been conducted to evaluate the proposed system, and its
comparison with some recent state-of-the-art HOI recognition systems.

4.1 Dataset Description

The MPII Human Pose dataset [43] has been used to test the efficiency of the proposed system.
It is a benchmark, commonly used for the evaluation of human pose estimation and is one of the
most frequently used datasets for evaluating HOI recognition systems. It includes almost 25 K images
containing over 40 K people performing around 410 various human activities. The activity label for
each class has been provided. Images corresponding to eight of these classes are shown in Fig. 8.
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Figure 8: Sample images from MPII dataset. (a) mowing lawn, (b) skiing, (c) horseback riding, (d)
skateboarding, (e) bicycling, (f) golf, (g) rope skipping, and (h) ride surfboard

4.2 Experimental Settings and Results

The system has been trained and evaluated using Python (3.7) on a system having Intel Core i7
with 64-bit Windows-10. The system has a 16 GB RAM (random access memory) and 5 (GHz) CPU.
To evaluate the performance of the proposed system, the LOSO (leave one subject out) cross-validation
method has been employed. The performance of the proposed key-point detection technique has also
been evaluated on eight randomly chosen classes of the above-mentioned dataset.

4.2.1 Experiment I: Class Recognition Accuracies

The results of classification with eight randomly chosen classes of the MPII dataset have been
shown in terms of a confusion matrix in Tab. 1. It is observed during experimentation that different
interactions with the same objects are often confused with each other.

Table 1: Confusion matrix showing recognition accuracies over 8 classes of MPII dataset

Classes ML Skiing HR SB BS Golf RS RD

ML 0.88 0.05 0 0.02 0 0 0.04 0.01
Skiing 0.04 0.82 0 0.05 0 0.02 0.03 0.04
HR 0 0.04 0.89 0.02 0.05 0 0 0
SB 0.03 0 0 0.92 0 0 0 0.05
BS 0 0.03 0.05 0 0.85 0.04 0.03 0
Golf 0.03 0.03 0 0.03 0 0.87 0.04 0
RS 0.04 0 0 0 0.03 0.05 0.86 0.02
RD 0.03 0.02 0 0.04 0 0 0 0.91

Mean Recognition Accuracy Rate = 87.5%

Note: ML= moving lawn, HR= horseback riding, SB=skateboarding, BS=Bicycling, RS= rope skipping, RD= ride surfboard.
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4.2.2 Experiment II: Precision, Recall, and F1 Scores

Tab. 2 shows the precision, recall, and F1-scores for eight classes of the MPII dataset. The results
demonstrate that the proposed HOI system is able to recognize the various complex interactions with
high precision. Eqs. (13)–(15) have been used to obtain the precision, sensitivity, and F1 scores of all
the interaction classes for each dataset respectively.

Precision = True Positive
True Positive + False Positive

(13)

Sensitivity = True Positive
True Positive + False Negative

(14)

F1 score = 2 (Precision × Recall)
(Precision + Recall)

(15)

Table 2: Precision, recall and F1 scores over 8 classes of MPII dataset

Classes Precision Recall F1 score Classes Precision Recall F1 score

ML 0.89 0.88 0.88 BS 0.86 0.85 0.85
Skiing 0.83 0.82 0.82 Golf 0.85 0.87 0.86
HR 0.88 0.89 0.88 RS 0.88 0.86 0.87
SB 0.91 0.92 0.91 RD 0.92 0.91 0.91

Mean Precision= 0.877 Mean Recall= 0.875 Mean F1 Score= 0.825

4.2.3 Experiment III: Key Point Detection Rates

This section discusses the detection rate of the key point detection algorithm proposed in the
system. For this, the (probability of correct keypoint-head) PCKh@0.5 metric has been used. It is
used to measure the accuracy of the localization of the body joints with the matching threshold as
50% of the head segment length. In PCKh, a joint is said to be detected correctly if the predicted joint
location is within a certain threshold from the true joint location. Tab. 3 shows the PCKh scores of the
12 detected joints on 8 classes of the MPII dataset as well as the average joint detection rate.

Table 3: Key point detection rates for 8 classes of MPII dataset

Body
parts

HOI Classes
ML Skiing HR SB BS Golf RS RD Mean

Head 95.21 92.34 89.3 92.56 98.02 96.01 93.12 91.06 93.45
Right Elbow 86.23 89.03 83.34 90.11 92.45 91.08 92.35 90.21 89.35
Left Elbow 90.29 88.09 92.12 91.34 94.62 94.12 92.2 87.02 91.23
Right Hand 86.45 90.51 91.63 88.04 96.45 97.02 90.56 86.81 90.93
Left Hand 92.34 92.16 92.21 91.57 95.23 92.75 87.14 91.66 91.88
Torso 94.32 93.12 95.06 89.86 96.23 95.12 89.03 92.32 93.13
Right Hip 87.62 88.12 90.02 87.24 94.13 92.06 95.35 93.73 91.03

(Continued)
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Table 3: Continued
Body
parts

HOI Classes
ML Skiing HR SB BS Golf RS RD Mean

Left Hip 89.32 92.15 89.09 90.13 94.27 93.03 92.42 95.72 92.02
Right Knee 90.09 92.39 94.03 86.12 92.16 94.37 90.24 92.45 91.48
Left Knee 92.43 94.23 92.09 89.25 95.09 94.45 92.76 90.03 92.54
Right Foot 89.03 90.26 87.16 93.23 94.77 90.31 86.09 91.12 90.25
Left Foot 86.26 92.15 90.9 96.46 91.03 92.04 84.03 91.32 90.52

Mean part detection rate = 91.48%

4.2.4 Experiment IV: Comparison with Other Systems

This section shows that the proposed system performs much better than many other state-of-the-
art systems. Open pose [44] is a real-time approach for 2D pose estimation of multiple people in an
image. It uses part affinity fields (PAFs) to detect key human body parts. It achieves high accuracy and
real-time performance regardless of the number of persons in the image. CU-Net [45] is a coupled U-
Nets approach that connects semantic blocks of pairwise U-Nets so that information can flow more
efficiently and feature reuse is possible across U-Net pairs. Human Pose Estimation [46] proposes
a detection-followed-by-regression CNN cascade architecture that is useful for learning body part
relationships and spatial context. The first part of the proposed cascade generates heat maps of part
detection. The second part performs regression on these heat maps. Stacked Hourglass Networks
[47] is a convolutional network architecture comprising successive pooling and up-sampling layers.
It processes features across all scales and consolidates them to obtain various spatial relationships
associated with the human body. Efficient FPD [48] (fast pose distillation) is a model training method
for small pose CNN networks in a knowledge distillation fashion. Pose IV [49] is a single-person
pose estimation technique that uses a CNN architecture based on the recently proposed Efficient
Nets. It uses a multi-scale feature extractor and detection blocks based on mobile inverted bottleneck
convolutions. Fig. 9 includes the pose estimation accuracies of these models on the MPII human pose
dataset and proves that the proposed system outperforms them. These accuracies have been taken
directly from the above-mentioned papers.

5 Discussion

The proposed system is a simple yet efficient HOI solution that can be used in real-world
applications including security, surveillance, assisted living, sports, and e-learning. The system has
been tested on both raw and pre-processed images and the results show that the processed images
yield better results than raw images. This additional information results in accurate classification and
this step also plays the most significant role in enhancing the performance of the proposed system.
The evaluation section demonstrates how well the proposed system performs.

However, the proposed system has its limitations. Firstly, the system is tested only on RGB images.
Evaluation of RGB+D image and video datasets can further validate the system as many researchers
have achieved better results using RGB+D data. Moreover, the key point detection algorithm has
its limitations, especially in images with self-occluded and deformed body parts since the proposed
algorithm assumes a standard body shape while extracting the key points. Fig. 10a shows an example
image in which the right foot is in front of the left thigh. Moreover, since the right foot is not in its
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usual position, two key points have been detected on the left foot. This also leads to the incorrect
detection of the right hip and left knee. The left hip is detected correctly but is occluded by the right
foot. Fig. 10b shows an example of a human whose left hand is in front of her torso. Therefore, the
left hand is not detected through the convex hull. However, the left elbow is detected instead. Since the
algorithm finds the elbows by calculating the mid-points of the hands and the head, a point slightly
lower than the left shoulder is detected as the left elbow in this case. Moreover, the woman’s feet are
hidden or missing in the original image. Therefore, the convex hull detects the two knees as the two
feet. This becomes a problem when obtaining the two hip joints lying mid-way between the head and
the two feet. In this case, the two hip joints are incorrectly identified on the torso and the two knee
joints are identified on the hips.
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Figure 9: Comparison of mean recognition accuracy of different recent methods over HOI datasets

Figure 10: Limitations of the proposed key detection algorithm. (a) Deformation and self-occlusion–
original image (left) and detected key points (right) and (b) self-occlusion and hidden parts-original
image (left) and detected key points (right)

6 Conclusion and Future Works

This article proposes an efficient system for the recognition of complex human-object interactions
in a social environment. The RGB images are pre-processed using gamma correction and bilateral
filtering techniques and then the desired human and object pairs are segmented from the images using
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the watershed algorithm with an additional super-pixel merging step. Next, 12 key body points are
detected on the extracted silhouette. Two kinds of features are obtained: ORB and Radon transform.
A dimensionality reduction technique, t-SNE, reduces the size of the full feature vector. Finally, logistic
regression classifier is used to label the interactions. The proposed system is compared with other state-
of-the-art systems to demonstrate that it outperforms them. The proposed system should be applicable
to many real-life applications including security systems, human-robot interactions, assisted living, and
online learning.

The authors wish to work on RGBD datasets and test new and improved classifiers to achieve
better performance in the future. Moreover, employing deep learning techniques is also one of our
future works.
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