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Abstract: Water is a vital resource. It supports a multitude of industries,
civilizations, and agriculture. However, climatic conditions impact water avail-
ability, particularly in desert areas where the temperature is high, and rain is
scarce. Therefore, it is crucial to forecast water demand to provide it to sectors
either on regular or emergency days. The study aims to develop an accurate
model to forecast daily water demand under the impact of climatic conditions.
This forecasting is known as a multivariate time series because it uses both the
historical data of water demand and climatic conditions to forecast the future.
Focusing on the collected data of Jeddah city, Saudi Arabia in the period
between 2004 and 2018, we develop a hybrid approach that uses Artificial
Neural Networks (ANN) for forecasting and Particle Swarm Optimization
algorithm (PSO) for tuning ANNs’ hyperparameters. Based on the Root Mean
Square Error (RMSE) metric, results show that the (PSO-ANN) is an accurate
model for multivariate time series forecasting. Also, the first day is the most
difficult day for prediction (highest error rate), while the second day is the
easiest to predict (lowest error rate). Finally, correlation analysis shows that
the dew point is the most climatic factor affecting water demand.

Keywords: Water demand; forecasting; artificial neural network; multivariate
time series; climatic conditions; particle swarm optimization; hybrid algorithm

1 Introduction

Water is a precious resource for sustaining life on our planet. Currently, countries suffer from
challenges in the availability of freshwater, as its availability may reach 44% of the global land area
by the end of the century [1]. Water scarcity due to climate change caused pressure on governments
to supply water to urban, industrial, and agricultural sectors. Studies have indicated that climate
change will constitute a major limitation on urban water demand and will increase by 80% in 2050
[2]. The Food and Agriculture Organization of the United Nations (FAO) indicated that an increase in
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evaporation and a decrease in soil moisture can affect freshwater availability especially in arid regions
[1]. Therefore, many researchers have focused on studying the impact of climate change [3–5].

The Kingdom of Saudi Arabia is the largest country in the Arabian Peninsula. It is located in
the continent of Asia. It has a warm and dry desert climate with high temperatures above 50 degrees
and an average rainfall of 114 ml per year [6]. Also, it suffers from a lack of water resources such
as rivers and lakes. Since the United Nations classified Saudi Arabia as a country suffering from
water scarcity, providing water to various sectors, as the demand increased by 70% from 2007 to 2018,
constitutes a major challenge. So, to supply water, the government resorted to desalinating sea water. In
1970s, the first seawater desalination plant was established in Al-Jubail [6]. Now, it reaches 32 stations
distributed on the eastern and western coasts of the century. Therefore, the Saline Water Conversion
Corporation was classified as the largest corporation in the world for the production of desalinated
water [7]. However, water desalination has negative effects on the environment, such as the emission of
harmful gases into the air, as well as the consumption of 25% of fuel, which has an economic impact
on the country [8]. Therefore, there is a need to accurately predict the amount of water demand under
the arid climatic conditions in order to help the government to supply water to all sectors either in
normal or emergency situations and to preserve the environment as well as the economy.

Forecasting can be classified into two types. The former is the short-term type. Its range is from one
day to two weeks. The latter is the long-term type. Its range is longer than one year [9]. Also, forecasting
can be classified either into univariate or multivariate. Univariate time-series forecasting is predicting
the future based on one variable. While multivariate one depends on more than one variable to predict
future values. Techniques used for forecasting can be divided into two classes: traditional techniques
such as Autoregressive Integrated Moving Average (ARIMA), ineffective when dealing with large data
or predicting multivariate time series [10], and Machine Learning (ML) techniques such as ANN, used
for prediction, classification, recognition . . . etc. [11]. ANN is one of the most widely used techniques
for forecasting because of its fault tolerance and its ability to deal with non-linear and complex data.
Besides, ANN can be generalized after completing their training [12,13].

Seeking performance enhancement, many studies combined neural networks with other algo-
rithms in the pre-processing phase or in the post-processing one, or for hyperparameters tuning
[14–18]. Hyperparameter tuning is the process of enhancing a model’s performance to avoid overfitting
and excessive variation [19]. It poses a great challenge to researchers and developers. Tuning them
manually through Trial and Error, depends on the researcher’s experience. Wrong parameter tuning
can cause a model inaccuracy. In fact, the parameter adjustment fluctuates the accuracy of the
classification from 32.2% to 92.6% [20]. Instead of using Trial and Error, many techniques were
used such as Grid search and PSO. In Grid search, researchers specify the minimum and maximum
ranges, and the algorithm searches all possible combinations. But this consumes a long-time to find the
optimal hyperparameters [21]. PSO which is a nature-inspired algorithm constitutes a good alternative.
It is widely used to find the optimal hyperparameters since it is fast, easy to implement and can
converge to a global optimum [22]. Haider et al. [23] presented an open-source package to select the
optimal parameters using a PSO, named as “Package for parameters Selection using Particle Swarm
Optimization (PSPSO).” This package selects the optimal number of neurons in hidden layers. It also
specifies the learning rate, the optimal optimizer used to update weights, and the activation function
in hidden and output layers. It supports four models. One of these models is Multilayer Perception
(MLP), which is the most popular type of ANN used for forecasting [9]. However, one limitation of this
package is that it is not dedicated to time series forecasting. Also, it does not support cross-validation
for evaluating the prediction. Finally, it is built to be used only for classification and regression.
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The above problems prompted us to improve the performance of ANN and select the optimal
hyperparameters to build an accurate model that can be used for forecasting water demand while
taking into account the climatic conditions in Jeddah city, Saudi Arabia. So, the main objectives of
our research are:

• Selecting optimal hyperparameters for MLP using PSO.
• Evaluating time series forecasting using walk-forward validation.
• Forecasting water demand in Jeddah city (while taking into account the climatic conditions)

using the proposed hybrid model PSO-ANN.

The remainder of this paper is structured as follows: Section 2 presents the literature review.
Section 3 describes the methodology. Section 4 presents the results and discussion. And finally, Section
5 provides conclusions.

2 Literature Review

Many researchers have examined the impact of climate change on water demand. They used
various models such as Global Circulation Models (GCMs). In [24,25], the GCMs have been used
for long-term forecasting (up to 2100). The result showed that rising temperature highly affects
water demand. The disadvantages of these models are that they are expensive and high complex
[26]. Al-Juaidi et al. [27] used the Water Evaluation and Planning system model (WEAP) to predict
water needs in Jeddah City, Saudi Arabia. But tuning WEAP model is very difficult because it
contains a large number of parameters [28]. Chowdhury et al. [29] forecasted crop water demand
in Al-Jouf city of Saudi Arabia under the impact of climatic conditions in the long-term. They
used CROPWAT software which is recommended by FAO. However, the software is designed to
calculate and forecast only crop water consumption. It is not highly accurate and needs adjustment
and calibration to get adequate forecasts [30]. Rasifaghihi et al. [15] used Bayesian techniques and
clustering to deal with a limited dataset. They found that temperature and precipitation have a high
impact on water demand. In the study [31], the Autoregressive (AR) model has been used to forecast
and the Singular Spectrum Analysis (SSA) to improve accuracy. Huntra et al. [32] used two models. The
former is ARIMA model for univariate time series forecasting (water consumption). The latter is the
Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) for multivariate
time series forecasting (water consumption under the impact of the climatic conditions). The result
showed that the average temperature and the dew point have a high impact on water demand. The
previous traditional methods mentioned above have the disadvantage of not handling non-linear data.
The dataset must be preprocessed to make it stationary by removing seasonality and trend. This pre-
processing step is optional in ML techniques, but it could be helpful in increasing performance.

Nowadays, ANN is widely used for forecasting. Al-Ghamdi et al. [10] forecasted water demand
in Jeddah city of Saudi Arabia using MLP in the short-term. The hyperparameters are tuned by a grid
search algorithm. In the study [33], MLP has been compared with six other models for the short-term
prediction of water needs while taking into account the climatic conditions. Results showed that MLP
provides the best performance. Also, Narvekar et al. [34] used MLP to predict changes of climatic
conditions in the short-term. Oyebode [35] discussed the importance of data pre-processing and its
capability to improve the model performance while forecasting water demand under the impact of
climatic conditions and population. MLP is efficient for both short-term and long-term forecasting.
Ajbar et al. [36] found that the temperature is the highly affecting factor on water consumption
while predicting of municipal water production in touristic Mecca city, Saudi Arabia using neural
networks. Finally, Alotaibi et al. [26] forecasted rainfall and temperature in the Qassim region, Saudi
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Arabia. They used the ANN, GCMs and adaptive neuro-fuzzy inference system (ANFIS) models
for comparing the performance. They used GCMs because is useful for predicting the impact of
greenhouse gas emission scenarios. GCMs were developed by the Intergovernmental Panel on Climate
Change (IPCC) rather than ANN and ANFIS. The ANN and ANFIS used historical data for
prediction. Alotaibi et al. [26] found that ANN results were relatively similar to GCMs’ ones. They
found also that temperature will increase in the future.

However, improving ANN’s performance poses a great challenge for researchers and developers.
Hence, they try to use hybrid models, as we mentioned in Section 1. Al-Zahrani et al. [37] studied
the effectiveness of the hybrid model for forecasting daily domestic water consumption under the
impact of climatic conditions in Al-Khobar city, Saudi Arabia. They used a hybrid ML model (General
Regression Neural Network (GRNN)) with the traditional model which are AR, Moving Average
(MA) and Autoregressive Moving Average (ARMA). Also, Zubaidi et al. [38] implemented a hybrid
model that uses Lighting Search Algorithm (LSA) for hyperparameters’ tuning and MLP for water
consumption prediction under the impact of climate variations. Then, they compared their model
with the PSO-ANN and Gravitational Search Algorithm (GSA-ANN). Results showed that LSA-
ANN provides the highest performance with an R2 equal to 0.96. Also, the results showed that the
maximum temperature is the highest valuable parameter affecting experimentations. However, LSA
has some limitations. It has a low convergence. Besides, it can easily be down into a local optimum [39].
In the study [40], a new model has been designed for forecasting is a Backtracking Search Algorithm
(BSA) and ANN, called BSA-ANN. Then, BSA-ANN was compared with the Crow Search Algorithm
(CSA). The result showed that BSA-ANN outperformed the CSA-ANN. However, BSA like the
previous LSA is easy to down into a local optimum and has a low convergence [41]. PSO-ANN is
extensively used for forecasting. It can be used to predict the surface settlement caused by tunnel
excavations [42]. Also, it can be used to forecast the water level to reduce floods’ effects [43]. Besides,
PSO-ANN can be useful in energy especially in wind power prediction [44]. Results showed that the
hybrid PSO-ANN is reliable, effective, and improves the model’s performance.

In summary, a multitude of models were used to forecast water demand. Only in the study [38],
PSO has been used to select hyperparameters of ANN. They determine only the optimal number of
neurons in hidden layers and the learning rate. However, five hyperparameters have been specified in
the PSPSO package [23]. But PSPSO presents some limitations as mentioned in the previous section
(i.e., did not support time series and cross-validation). Therefore, we improve the PSPSO to forecast
multivariate time series and evaluate the forecasting using walk-forward validation. Tab. 1 summarizes
the models used for predicting water demand and their limitations.

Table 1: Summary of water demand forecasting models and their limitations

Ref. Model used Limitations

[24] GCMs. These models are expensive and high
complex.

[25] GCMs. These models are expensive and high
complex.

[27] WEAP. It contains a large number of parameters
which causes difficult tuning of its optimal
parameters.

(Continued)
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Table 1: Continued
Ref. Model used Limitations

[29] CROPWAT software -It can only be used to predict crop water.
-It is not highly accurate.
-It is needs adjustment and calibration to get
adequate forecasts.

[15] Bayesian techniques and cluster. Using for a limited data set.
[31] AR and SSA. Using for univariate time series forecasting.
[32] ARIMA, ARIMAX. Do not deal with non-linear.
[10] ANN. Tuning of hyperparameters based on grid

search.
[33] Comparison ANN with six

models.
Tuning of hyperparameters based on trial and
error.

[34] ANN. Tuning of hyperparameters based on trial and
error.

[35] ANN. Tuning of hyperparameters based on trial and
error.

[36] ANN. Tuning of hyperparameters based on trial and
error.

[26] ANN, ANFIS and GCMs. -Tuning ANN’s hyperparameters based on
trial and error.
-ANN cannot be used for forecasting
emission scenario.

[37] ANN, AR, MA, ARMA Tuning ANN’s hyperparameters based on
trial and error.

[38] LSA-ANN, PSO-ANN. -LSA has a low convergence and can easily
down into a local optimum.
-Using PSO-ANN to select only the optimal
number of neurons in hidden layers and the
learning rate.

[40] BSA-ANN. BSA has a low convergence and can easily
down into a local optimum.

[23] PSO to tune four models (MLP,
SVM, XGBoost and GBDT).

Does not support time series forecasting and
walk-forward validation.

[42–44] PSO-ANN. Are not designed for predicting water
demand (but used in surface settlement, wind
power . . . ).

Our work PSO-ANN. The model is designed for time series
forecasting using MLP but does not support
other tasks such as regression or other
algorithms such as a Recurrent Neural
Network.
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3 Methodology

Two main parts can be found in our methodology. It starts with data collection, analysis, and
pre-processing. Then, ends by multivariate time series forecasting using PSO-ANN.

3.1 Data Collection

We collect water consumption data in Jeddah city, Saudi Arabia, from the General Directorate of
Water in Jeddah (from 2004 to 2018). Also, we collect climatic conditions data from the National Aero-
nautics and Space Administration (NASA) [45]. We consider precipitations, wind speed, humidity,
dew point, surface pressure, maximum temperature (max), average temperature (avg), and minimum
temperature (min). Then, we split the data into three sets based on their chronological order, not
randomly. In fact, the values in the time series are interdependent. The first one is for training and
contains 70% of the rows. The second is for validation and contains 15% of rows. And the last set is
for testing and contains 15% of rows.

3.2 Data Analysis and Pre-Processing

Here, we analyze the data set of water demand and climatic conditions using Box-Whisker plot. It
provides more information about the dataset such as the spread of data, outliers and median values.
For water, in Fig. 1a, the median values show an increase over years. The spread shows some variability.
Also, earlier years are quite different from later ones. Moreover, there are outliers. However, Fig. 1b
shows that the median values and the spread of data appear reasonably stable for each month. For
climatic conditions (see Fig. 1a) the median values and the spread of all climate parameters except
precipitation appear reasonably stable for each year. But in Fig. 1b, we note that the median is constant
in most climatic factors and slightly different in wind speed. The spread is apparent in the box, rising
in specific months and decreasing in other ones for all climate parameters. However, it does not show
any information about precipitation due to its scarcity in Jeddah city.

Figure 1: Box-Whisker plot for water demand and climatic conditions (a) yearly data plot and (b)
monthly data plot

Then, we determine the most climate factors correlated with water using Spearman’s correlation.
Spearman’s correlation is useful to find non-linear relationships [46]. As shown in Fig. 2, the dew point
is the most correlated factor with water. Then, temperatures (max, min, avg) are in the second rank.
Also, there is a slight correlation between humidity and water. In this study, we use the dew point and
temperatures (max, min, avg) as the most influential factors in water demand.
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Then, we analyze the data. It is useful in time series to analyze the data set to learn more about
it in order to make any pre-processing needed. The pre-processing aims to improve the model’s
performance. In this stage, we perform three operations. The first operation is to make our time-
series stationary. The second operation is to normalize the inputs and the third one is to make it as a
supervised learning. Most of the time series are non-stationary. They have trend and seasonality. In ML
techniques, it is preferable to remove trend and seasonality to improve the model’s performance. In this
paper, we remove February 29 (leap years). Then, we remove the trend using differencing. Finally, we
remove seasonality by subtracting the day from the same day in the previous year. As shown in Fig. 3,
climatic parameters contain systematic seasonality for each year in dew point and temperatures but
don’t have any trend. Fig. 3 shows also that the water demand increases over years (it has a trend),
but the seasonal pattern is not clear. Because, the line plot doesn’t show the seasonal pattern in water
demand, we use seasonal subseries plot to clearly view the seasonality. As shown in Fig. 4, the water
has slightly the seasonal pattern.

Figure 2: Spearman’s correlation

The next step is the normalization of inputs. We use the min-max method because it provides high
performance. Further details about normalization can be found through the reference [10]. Then,
we convert our time series into a supervised learning dataset. The observations of time series are
interdependent. We used a sequence of past observations (X) to forecast sequence values (Y) [47].
Then, we use the value (Y) as input for the next prediction and so on, as shown in Eq. (1). So, we
divide the dataset into the sequence of inputs (called input layer) and sequence of outputs. In this
paper, we forecast next week so the sequence of output is seven values.

Y = f (X) (1)
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Figure 3: Line plot of water demand and climatic conditions

Figure 4: The seasonal subseries plot of water demand

3.3 Artificial Neural Network (ANN)

Artificial Neural Networks are based on brain-inspired principles. In fact, ANN is able to analyze
and extract complex non-linear relationships. ANN is very useful to solve complex problems such as
forecasting. In forecasting, three models are extensively deployed. These models are MLP, Recurrent
Neural Network (RNN) and Radial Basis Function Neural Network (RBF) [9].

In this work, we used MLP to predict water demand. The architecture (as shown in Fig. 5) and
hyperparameters (as shown in Tab. 2) can be trained using a backpropagation algorithm. In this
algorithm, the input training pattern is fed-forward, errors are calculated and backpropagated, and
the synapses are weighted accordingly [48,49]. The backpropagation algorithm is useful for learning
complex and large-scale problems [50]. During training, the amount controlling weight update is called
the learning rate (η). The structure of MLP contains three layers. It contains the input, the hidden and
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the output layers. The output layer has seven neurons to predict the next 7 days (as called multi-step
time series forecasting).

Figure 5: The structure of MLP

Table 2: ANN hyperparameters

Parameters Value

# Neurons in input layer Estimated by trial & error
# Neurons in output layer 7 neurons
#Neurons in hidden layer Estimated by PSO within the range [20,60]
Hidden Activation Function Estimated by PSO within the range [relu, sigmoid]
Output Activation Function Estimated by PSO within the range [relu, linear]
Type of optimizer Estimated by PSO using various types (i.e., adam . . . )
Learning rate Estimated by PSO within the range [0.1,0.7]
Batch size 25
Number of epochs 1000

Then, we select the best activation function. The most common type of activation function used
in hidden layers is sigmoid. Another common type is the Rectified Linear Unit (ReLU). The most
common types of activation function used in the output layer are the ReLU and linear (see Fig. 6).

Figure 6: The activation functions for hidden and output layers

Also, we select the best optimizer (i.e., adam, adamax . . . ) and the η used for adjusting weights
of the synapses. Training is repeated till a certain number of iterations (example: 1000 epochs) and
stopped when the model’s performance cannot be improved or reaches a minimum error. Finally, we
evaluate the final model using walk-forward validation. It predicts one step and evaluates the result
against the known value using RMSE, then it stores for the next prediction. This process will be
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repeated finishing all the testing data. Although its computational cost is high because it moves one
step through the time series, it is robust for time series forecasting [47]. The output ŷ of MLP model
can be calculated by Eq. (2).

ŷ = f (b +
n∑

k=1

wkxk) (2)

where, f (.) is the activation function, b is the bias, w are weights (w1, . . . , wn) and x are inputs from 1
to n neurons (x1, . . . , xn). The weight is updated using optimization techniques (i.e., adam) and the η.
To evaluate the performance of a model, we use RMSE metric calculated as in Eq. (3):

RMSE =
√√√√1

n

n∑
x=1

(yx − ŷx)2 (3)

where, n is the number of historical data (x index varying from 1 to n), yx is the actual value and ŷx is
the forecasted value.

3.4 Particle Swarm Optimization (PSO)

In 1995, Kennedy and Eberhart presented a particle search algorithm that mimics the behavior of
fish and birds [51]. There are several candidates for the optimal solution, each of which is driven by
individual search (cognitive search) and global search (social search) to minimize the error function
shown in Eq. (4).

min f (x) (4)

Each particle has a position denoted by xiεRn, i = 1, .., n, where n is the number of particles. Also,
it has a velocity denoted by viεRn. Finally, each particle has a fitness value to evaluate its quality. So,
during the search process and over each iteration (t), particles move according to Eq. (5).

xi
(t+1)

= xi
(t) + vi

(t+1)
(5)

where, x denotes the position of particles. i denotes the number of particles. t is the current iteration.
The velocity vi

(t+1)
is adjusted according to Eq. (6).

vi
(t+1)

= ωvi
(t) + C1r1(pi

(t) − xi
(t)) + C2r2(gi

(t) − xi
(t)) (6)

where,

• ω is inertia weight, the common value is: ω = 0.7298,
• C1 and C2 are cognition learning factor and social learning rate, respectively. The common value

is: C1 = C2 = 1.49618,
• r1 and r2 are uniformly random numbers in [0,1],
• pi

(t) and gi
(t) are the best personal and global solutions, respectively.

Tab. 3 represents PSO’s hyperparameters used in our work. In this study, we try the model’s
effectiveness using population (size = 20) and number of iterations (50).
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Table 3: PSO’s hyperparameters

Parameters Type

Inertia weight: ω 0.7298
Learning coefficients: C 1 and C 2 1.49618
Population size 20
Number of iterations 50

3.5 Multivariate Time Series Forecasting Using PSO-ANN

In this section, a mapping between PSO and ANN is established. As mentioned before the multi-
step forecasting of time series can be modeled using MLP. The MLP model defined in Eq. (2) can be
mapped to PSO. Hence, the vector’s position is defined according to Eq. (7):

xi = [f (.)i
1 , f (.)i

2 , ni, wi, ηi] (7)

where, f (.)1 : is the activation function of the hidden layer. f (.)2 : is the activation function of the
output layer. n is the number of neurons in the hidden layer and η is the learning rate. The best
optimization w is responsible for adjusting weights. The quality of these particles is evaluated according
to the fitness function defined in Eq. (8).

f (xi) =
n∑

z=1

(
y (z) − ŷ (z)

)2
(8)

where, ŷ (z) is calculated according to Eq. (9):

ŷ(z) = f (i)(b +
n(i)∑
k=1

w(i)
k x(i)

k ) (9)

Fig. 7 shows steps followed to predict water needs under the impact of climatic conditions using
PSO-ANN. These steps can be detailed as follows:

1. Load the data of water demand and climatic conditions from 2004 to 2018.
2. Pre-process the dataset (make it stationary, remove leap year, normalize, and convert time series

to a supervised learning).
3. Implement the naïve approach to compare its results with those obtained in PSO-ANN.
4. Specify PSO’s hyperparameters (Tab. 3).
5. Specify MLP’s hyperparameters (i.e., number of epochs in Tab. 2).
6. Assign t = 1 for the first iteration.
7. Initialize particles randomly (Tab. 2 and Eq. (7))
8. Evaluate each particle according to equations Eqs. (8) and (9), then update the personal best

(pi
(t)) for each particle and the global best (gi

(t)) for the entire population.
9. Increment the iteration: t = t + 1.

10. Update the position of each particle using Eqs. (5) and (6).
11. Update activation functions, the number of hidden neurons, η, and w.
12. Compute the fitness function for each particle using Eqs. (8) and (9).
13. Compare the current fitness function to its previous. If the current is improved, then set pi

(t) =
xi

(t).
14. Determine and update the global best particle in the swarm (gi

(t)).
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15. Repeat from step (9) until reaching the max iteration, then output the (gi
(t)) as the best solution.

Figure 7: The methodology of multivariate time series forecasting

4 Results and Discussion

For implementation, we used Python language. In the following subsections, we show results
after making our series stationary, results of naïve forecasting, and results of multivariate time series
forecasting using PSO-ANN.

4.1 Making Our Series Stationary

As mentioned in Sub-Section 3.2, we firstly determine the most climate factors correlated with
water demand using Spearman’s correlation. The result shows that the dew point is the most factor
affecting water demand, then min, avg and max temperature by 0.155, 0.151, 0.137 and 0.144
respectively, as shown in Fig. 2. Then we make our time series stationary by removing trend from
water demand and seasonality from climatic conditions (see Fig. 8). Now, our time series is ready to
be modeled.

4.2 Results of Naïve Forecasting

Naïve forecasting is usually used as a baseline for performance’s evaluation. It can be very helpful
for improving the proposed model. So, we do three experiments for forecasting the next seven days. We
evaluate the forecasting for each day separately and also over all days. Our three experiments used the
last day prior (one past day is called daily), the prior week (seven past days is called weekly), and the
same week for the last year (seven past days of the last year is called week-yearly). This step is helpful
to determine the best number of inputs used for forecasting. Tab. 4 and Fig. 9 show results of naïve
forecasting. Tab. 4 shows that, in the first row, we obtain the best performance for all days. Also, the 1st

day provided accurate forecasting rather than other days. As shown in Fig. 9, the error of week-yearly
is very large, but there is a similarity between daily and weekly. The error rate is similar on the 7th day.
Also, we consider for the daily curve that the 1st day is the accurate day for forecasting, unlike the 5th

day, which is the worst one.
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Figure 8: Line plot for our time series after making it stationary

Table 4: RMSE of Naïve forecasting

Input 1st 2nd 3rd 4th 5th 6th 7th All days

daily 14.3 17.2 17.0 18.1 19.2 19.1 18.3 17.5
weekly 19.9 18.3 16.1 17.8 17.3 17.3 18.3 17.9
week-yearly 23.2 21.1 21.1 24.9 21.8 21.9 25.9 22.9

Figure 9: Naïve forecasting



1378 CMC, 2022, vol.73, no.1

4.3 Results of Multivariate Time Series Forecasting Using PSO-ANN

Tab. 5 shows a comparison between the naïve approach and PSO-ANN. The performance’s
prediction has been improved from 17.5 to 11.6. The second day is the easiest day to predict (lowest
error), while the first day is the most difficult day to predict (highest error).

Table 5: Comparison between the naïve approach and PSO-ANN

Model 1st 2nd 3rd 4th 5th 6th 7th All days

RMSE in Naïve approach 14.3 17.2 17.0 18.1 19.2 19.1 18.3 17.5
RMSE in PSO-ANN 14.4 9.7 12.0 10.4 10.5 11.8 11.8 11.6

The line plot for RMSE using naïve and PSO-ANN is shown in Fig. 10. The RMSE of the 1st

day closes in both models. For the following days, the error using the naïve approach increases over
time, whereas it decreases when using PSO-ANN. As shown in the PSO-ANN curve, the 1st day has
the highest error while the 2nd day has the lowest error and can be considered the accurate day for
forecasting. Then, the error increases again on the 3rd day and decreases in the following two days.
Finally, it increases and becomes stable during the last two days.

Figure 10: Comparison between the naïve approach and PSO-ANN forecasting

Hence, we use PSO-ANN to predict daily water needs while considering the impact of climatic
conditions. Fig. 11 depicts the number of days used on training, validation, testing, and prediction.
However, Fig. 12 illustrates a zoomed-in view of the testing and prediction. It indicates that prediction
values are closely following testing values.

We can conclude that the PSO-ANN’s performance is effective. Hence, our hybrid model can be
generalized to be used in a multitude of multivariate time series problems. This work used PSO to tune
ANN’s hyperparameters instead of using a traditional grid random search algorithm.
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Figure 11: PSO-ANN forecasting

Figure 12: A zoomed-in view of PSO-ANN forecasting

5 Conclusion

Throughout our work, we developed a hybrid model for forecasting daily water needs while
considering climatic conditions. The historical data was collected in the period (2004–2018) in Jeddah
city, Saudi Arabia. Then, we study the relationship between water demand and climatic conditions
using Spearman’s correlation. After that, we pre-processed the multivariate time series in order to
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make it stationary by removing trend and seasonality. We used the min-max for normalization and
converted it to supervised learning. Then, we used ANN for forecasting the future, PSO for tuning
ANN’s hyperparameters and the naïve approach for comparison. Finally, we provided the hybrid
model called PSO-ANN to predict water needs under the impact of climatic conditions. Walk-forward
validation has been used for evaluating PSO-ANN. Results showed PSO-ANN is an accurate model
and reliable for forecasting. In fact, PSO-ANN outperformed the naïve approach. The RMSE in PSO-
ANN is equal to 11.6 while it is equal to 17.5 in the naïve approach. Also, results showed that the
RMSE on the first day is the biggest, while the RMSE on the second day is the smallest. Finally,
results showed that the dew point is the most climatic condition affecting water demand. Future work
can investigate other extensively used techniques such as genetic algorithm or any other evolutionary
algorithms for ANN’s hyperparameters tuning.
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