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Abstract: Accumulated temperature, which is now widely used in agronomy,
is an important ecological factor to the growth of plants, but few relative
studies have been found on the vegetation area of floodplain grasslands
in Poyang Lake. This research used the classification and regression tree
(CART) to classify normalized vegetation area index derived from MODIS
LAI (Moderate Resolution Imaging Spectroradiometer Leaf Area Index)
images from 2008 to 2014, according to different climate indexes, such as
mean daily air temperature (n), accumulated temperature (jw), daily maximum
temperature (g), daily minimum temperature (d), accumulative precipitation
(j), water level (s) and average water level for 20 days preceding (a). The results
showed that: (1) The accumulated temperature and the 20-day average WL
(water level) were found to have the greatest impact on variation in wetland
vegetation area, and they both dominated the classification process twice; (2)
Two classification thresholds of accumulated temperature were 790°C and
1784°C, approximately corresponding to the beginning of April and mid-
May; (3) 790°C could also be used as a threshold to select remote sensing
images to analysis the annual variability of vegetation, i.e. while accumulated
temperature is lower than 790°C, remote sensing images of similar accumu-
lated temperature rather than similar date should be selected from different
years for comparison. We also found that, effects of different hydrological
factors on area of floodplain grasslands showed stage characteristics: (1) From
January to March, water level changes slowly with less rainfall, as a result,
the 20-day average WL which can interpret the hydrologic characteristics
smoothly showed significant importance in this stage; (2) While entering
April, intense rainfall make accumulative precipitation to be the dominating
factor of classification; (3) From late April to mid-May, in condition of
accumulative precipitation higher than 405 mm, daily water level is of most
importance, because to the flood recession process as well as rapid water level
fluctuations.
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1 Introduction

Poyang Lake is one of the largest river-connected lakes located on the middle and lower reaches
of the Yangtze River. Influenced by upstream flows from five rivers named Gan River, Xin River, Fu
River, Rao River and Xiu River, and jacked by downstream flow from Yangtze River, Poyang Lake
undergoes dramatic intra-annual fluctuations, of which the water level changes from 8 to 22 meters,
creating and maintaining the floodplain grasslands (one kind of wetlands) on a large scale [1-4]. The
grasslands mainly composed by dominant species, such as Carex cinerascens, Phalaris arundinacea,
Phragmites australis, etc., are habitats and spawning grounds of macrobenthos, phytoplankton and
fish during high water-level periods, and can provide hibernacle for migratory birds during low water-
level periods. As a result, the ecological values of grasslands in Poyang Lake are very important
and well recognized [5,6]. So far, studies relevant to Poyang Lake floodplain grasslands have mainly
focused on the relationships between water regimes and wetland vegetation, and the results show that
hydrologic factors associated to water-level fluctuations, such as daily water level, frequency, amplitude
and lasting time of fluctuations are the main driving factors leading to the distribution of wetland
plant communities [2,4,7-10]. This conclusion is highly consistent to the formation mechanisms of
floodplain grasslands from both ecology and geography [11]. Meanwhile, other researchers have
studied the impact of soli nutrients, seed bank, soil microorganism, etc., on wetland vegetation in
order to disclose the importance of edaphic factors as complements to hydrologic factors [12-15].

Besides edaphic factors and hydrologic factors, climatic factors are supposed to play the same
important role in plant grow processes. Accumulated temperature, which is now widely used in agron-
omy [16-21], is an important ecological factor to the growth of plants, especially in the germination
process, but few studies on the relationship between accumulated temperature and the vegetation area
of wetlands have been found in Poyang Lake. However, in past decades, researches on other wetlands
have showed that temperature is the main driving factor during vegetation growth period in wetlands of
northwestern China such as Zoigé [22], and have proved accumulated temperature to be of significant
importance to normalized differential vegetation index of wetlands in sand soli areas of southern
China [23,24]. The relationships between accumulated temperature and the aboveground biomass were
also revealed in wetlands of Northern China [25]. Nevertheless, the applicability of these conclusions
to Poyang Lake should be verified in further studies. Meanwhile, in recent years, MODIS images have
become more and more important in vegetation distribution researches in Poyang Lake [6,7], and
models such as power function model with enhanced vegetation index were developed to calculate
vegetation biomass [3]. However, while analyzing the vegetation successions or fluctuations in long
time series, scholars are inclined to select remote sensing images according to the principle of similar
date from different years to compare the annual variability of vegetation [9,26]. This selecting principle
is supposed to be inapplicable when there are significant gaps between accumulated temperatures from
different years. This study used the classification and regression tree (CART) to classify normalized
vegetation area index derived from MODIS LAI images from 2008 to 2014, according to different
climate indexes and hydrologic indexes, in order to verify the important contribution of accumulated
temperature to vegetation distribution area during vegetation growth period from spring to summer,
and may assist in making decisions regarding wetland management, as well as providing a new
principle to select remote sensing images for compare wetland vegetation area changes among different
years.

The remainder of this paper is organized as follows. Section 2 describes the materials and methods.
Next, Sections 3 and 4 demonstrate the research results and discussion in detail, respectively. Finally,
Section 5 presents the conclusions.
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2 Materials and Methods
2.1 Study Area

Poyang Lake which is located on the south shore of Middle and Lower Yangtze River, is the largest
freshwater lake as well as an important ecological function protected areas in China. The lake basin is
lying between 28°22' North latitude to 29°45 North latitude, and between 115°47" East longitude to
116°45 East longitude. When flood season comes, inflowing water from Five Rivers (Gan River, Fu
River, Xin River, Rao River and Xiu River) enhances the lake level so that all floodplain grasslands are
submerged to form a vast lake; in water-recession seasons, lake level declines and lake water recedes
into main channels to expose the marshlands, with the result that the lake surface shrinks almost to a
meandering river [27]. The study area of this research work is Poyang Lake basin, which can be divided
into two different parts: the shallow southern part with many affiliated small lakes to receive upstream
water from Five Rivers, and the deep northern part mainly composed of the downstream main channel
connected to Yangtze River. Because Poyang Lake is placed in the subtropical monsoon climate zone,
the annual average temperature is about 17°C, and the annual average precipitation is about 1600 mm,
of which approximate three quarters occur in period from April to September [3,26]. The study area
is shown in Fig. I:
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Figure 1: Map of study area

2.2 Data Sources
2.2.1 Vegetation Data
This study used MODIS LAI with a temporal resolution of 8 days and a spatial resolution of

500 meters. MODIS LAI time series data from 2008 to 2014 were selected, and for each year 24
scenes images were taken from January to June. As a result, a total number of 168 scenes images from
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seven years were processed in ARCGIS 10.2. All of remote sensing images used in the paper were then
transformed to the same projected coordinate system (UTM_Zone_50N), and geographic coordinate
system (GCS_WGS_84). The range of valid values of leaf area index were from 0 to 100, and the filling
value was 255. Then, the method of extraction of raster data value was used to calculate the floodplain
grasslands vegetation area.

2.2.2 Hydrologic and Climate Data

The hydrologic data from Xingzi station, Wucheng (Xiu River) station and Wucheng (Gan
River) station were selected for calculating the mean daily water level as a representative of the
water level of Poyang Lake. The climate data were taken from nearby Nanchang weather station,
including mean daily air temperature, daily maximum temperature, daily minimum temperature and
daily precipitation. Accumulated temperature and accumulative precipitation were calculated from the
above-mentioned indexes.

2.3 Methods

Classification and regression tree (CART) is a powerful mathematical model for predicting
susceptibility to harm, measuring marginality of the system, and guiding normative analysis of actions
to enhance well-being through reduction of risk [28]. The mechanism of the CART model is to separate
the data into two subsets so that the records in each subset are more homogeneous than that in the
previous one. It is a recursive process—each of the two subsets is then split again, and the process
will repeat until a homogeneity criterion is reached. The ten-fold cross validation method was used in
following pruning process to get the value of the cost complexity (CP), which represents the complexity
cost per terminal node for the tree. The fewer value of CP means the fewer number of terminal
nodes [29-36]. In this study, we used the CART model to determine the strongest ecological factors
that affects the vegetation areas of floodplain grasslands, and to find the critical threshold of the
selected ecological factors. The dependent variable was normalized vegetation area index derived from
MODIS LAI images and the independent variables were comprised of different climate indexes, such
as mean daily air temperature (n), accumulated temperature (jw), daily maximum temperature (g),
daily minimum temperature (d), accumulative precipitation (j), daily water level (s) and average water
level for 20 days preceding (a). The classification and regression tree model were processed using R
software.

3 Results
The result of ten-fold cross validation is shown in Fig. 2.

The result of the ten-fold cross validation method shows that the cost complexity (CP) should be
set at 0.0288, with the X-val equal to 0.8436. Finally, a CART model with the highest accuracy and
low complexity (as low as possible) can be attained in the pruning process when CP equals to 0.0288.
The final CART tree is shown in Fig. 3.
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Figure 2: The cost complexity and X-val of the CART tree
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Figure 3: The final CART tree
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The final CART tree has thirteen nodes, seven of which are terminal nodes, such as node 7, node
8, node 9, node 10, node 11, node 12 and node 13. The mean value of the dependent variable (y), the
number of cases (the number of scenes images sorted in to this node) and the percentage of the number
of cases are labeled on each node. The sorting parameters of non-terminal nodes and the threshold
value, which are used as quantitative sorting criterions, are marked under them to display the following
further classification processes. In general, the sorting parameter of root node (node 1) represents the
strongest environmental factor that affects the vegetation area of floodplain grasslands.

In this study, the sorting parameter of node 1 is accumulated temperature, and the number of
cases distributed to the two child nodes, which are named node 2 and node 3, are almost the same.
The threshold of accumulated temperature is 790°C. When accumulated temperature is equal or lower
than 790°C, the vegetation area is smaller with the average normalized vegetation area index (y) equal
to 0.4, and when accumulated temperature is higher than 790°C, the vegetation area is larger with
the average y equal to 0.635. In further classification, the average water level for 20 days preceding is
proved to be the sorting parameter of node 2. The threshold is 7.92 m, while the lower average water
level for 20 days preceding means the larger area of floodplain grasslands. In the classification of node
3, accumulative precipitation shows its dominant function, of which the threshold is 405 mm. When
the accumulative precipitation is equal or heavier than 405 mm, the average y is 0.802, which is the
secondary largest among all nodes; when the accumulative precipitation is lighter than 405 mm, the
average y is 0.585. The sorting parameter of node 4 is daily water level, of which the mechanism is easy
to understand: higher water level covers a broad area and many meadows are submerged.

Accumulated temperature and average water level for 20 days preceding are both revealed to be
the sorting parameter once again in following classifications of node 5 and node 6. The threshold of
accumulated temperature at node 5 is 1784°C, approximately corresponding to Mid-May, while the
threshold of 790°C approximately corresponds to early April. Different time may induce different
mechanism, which will be discussed in detail in next section. However, accumulated temperature
and average water level for 20 days preceding are the strongest environmental factors that affect the
vegetation area of floodplain grasslands, while the effects of accumulative precipitation and daily water
level are of moderate importance. Other indexes, such as mean daily air temperature, daily maximum
temperature and daily minimum temperature, are not involved in the CART tree, meaning that they
have trivial effects on the classification of wetland area.

4 Discussion
4.1 The Mechanism of Accumulated Temperature Thresholds in Water Level Rising Process

The threshold of accumulated temperature at root node is 790°C, approximately corresponding
to early April, and the threshold of threshold of accumulated temperature is 1784°C, approximately
corresponding to Mid-May. The lake level rising process is shown in Fig. 4. The annual water level
rising process are comprised of three or more independent water level rising stages. The first rising stage
often occurs in early March, corresponding to the ninth scene of MODIS images which are taken every
eight days. In this stage, the lake level rises slowly, with the total increasing amplitude equal to 1-2 m.
Then the water level keeps stable until early April, corresponding to the thirteenth scene of MODIS
images. The second water rising stage, usually caused by the heavy rainfalls from upstream areas in the
watershed during late spring and early summer, often occurs in Mid-April, resulting in rapid water level
uplift. The following water level fluctuations are dependent on the persistent condition of upstream
rainfalls. In some year with low accumulative precipitation, such as 2008, 2010, 2011, flood recession
process occurs until Mid-May, corresponding to the eighteenth scene of MODIS images. In contrast,
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in some years with high accumulative precipitation, such as 2012-2014, the water level keeps rising in
the whole second stage. The third rising stage often occurs in late May, corresponding to the nineteenth
scene of MODIS images. In this stage, there is a rapid and significant promotion in water level, resulting
in continuous uplift of lake surface.
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Figure 4: The water level rising process in Poyang Lake

As described above, the threshold of 790°C corresponds to the thirteenth scene of MODIS images,
and the 1784°C corresponds to the eighteenth scene of MODIS images. They represent respectively the
initiation of the second and the third water rising stages as shown in red circles in Fig. 4. As a result,
the mechanism of accumulated temperature thresholds in water level rising process can be described
as follows: (1) In January and February, the accumulated temperatures are too low to have significant
ecological impacts on plant growth. That is to say, although the water level is suitable, the accumulated
temperature cannot dominate the classification process according to theoretical principle of itself
before the first water rising stage. Other researches in Zoigé wetlands [22] also found similar results,
and there was low correlation between accumulated temperature and plant growth when accumulated
temperature is very low. (2) The beginnings of the second and the third water rising stages are also the
ends of the first and the second rising stages. In the first rising stage, the lake level rises slowly, and the
total increasing amplitude is small (1-2 m). The water rising process has little effect on the vegetation
area calculated from MODIS images. As a result, accumulated temperature becomes the dominant
ecological factor in this period. In the second rising stage, although the total increasing amplitude
is large, flood recession process usually occurs until Mid-May in some years, and the accumulated
temperature is high enough to have normal functions. Consequently, the accumulated temperature
turns to the sorting parameter in classifications of node 5. (3) After the end of May, the lake level
increases continually with the coming of rainy season, and the importance of accumulated temperature
declines. Finally, the hydrologic factors become dominant factors of classification.

4.2 A New Criterion to Select MODIS Images for Vegetation Area Comparison between Different
Years

In order to verify the mechanism of accumulated temperature in water rising process discussed
above, and to provide a new criterion to select MODIS images for vegetation area comparison
between different years, a paired sample t-test should be carried out. 2008 was taken as datum
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year, and accumulated temperature gradients were set at 70°C, 250°C, 700°C, 1300°C and 1700°C
(considering suitable intervals, two thresholds, and the availability of adjacent remote sensing images),
corresponding to the second, eighth, twelfth, sixteenth and eighteenth scene of MODIS images
respectively. MODIS images were then selected according to both similar date (scene number) and
similar accumulated temperature from 2009-2014 to form ten different time series. The vegetation
area of grasslands was calculated and normalized. The ten different time series were denoted as five
T series (T2, T8, T12, T16, T18) and five JW series (JW70, JW250, JW700, JW1300, JW1700). The
results of paired sample t-test were shown in Tab. 1.

Table 1: Results of paired sample t-test

Paired difference

Num Paired 95% Confidence t df Sig. (two-
sample interval sided)

Average Standard Standard Lower Upper

deviation error limit limit
1 T2-JW70 1.857 4.375 1.654 —2.189  5.903 1.123 6 0.304
2 T8-JW250  29.143 22.169 8.379 8.64 49.646 3478 6  0.013"
3 T12-JW700 116.286 124.511 47.061 1.133 231.439 2471 6 0.048"
4 T16-JW1300 7.571 12.218 4.618 —-3.729  18.871 1.64 6 0.152
5 T18-JW1700 2.857 5.014 1.895 —1.78 7.495 1.508 6 0.182

Significant differences were found in paired series of T8-JW250 (sig. = 0.013) and T12-JW700 (sig.
= 0.048), meaning that the results of vegetation area comparison showed significant different in late
February and late March, between traditional criterion of selecting remote sensing images according
to similar date and new criterion of selecting remote sensing images according to similar accumulated
temperature. In contrast, there is no significant differences in paired series of T2-JW70 (sig. = 0.304),
T16-JW1300 (sig. = 0.152) and T18-JW1700 (sig. = 0.182), indicating that the effects of applying two
different criterions were nearly the same in early January, the end of April and mid-May.

Based on above findings, we present a reasonable interpretation: In January, the average accu-
mulated temperature keeps low and grows slowly until early February, and the increment is about
123°C in thirty days. In this situation, there is no significant difference between time series selected
according to accumulated temperature and other time series selected according to date, because
accumulated temperature is too low to affect vegetation ecologically. When accumulated temperature
grows to 250°C, which is enough to have normal ecological functions, significant differences can be
found between time series selected according to different criterions. This situation lasts until late
March, when the accumulated temperature grows to 700°C. 700°C is set according to threshold
of 790°C, because there is no suitable scene of MODIS images around 800°C. Besides, the sig.
grows from 0.013 in February to 0.048 in late March, indicating that the gaps between paired series
selected according to different criterions are narrowed and the importance of accumulated temperature
decreases with the water level rising process. As a result, we draw a reasonable conclusion that 790°C
could also be used as a threshold to select remote sensing images to analysis the annual variability
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of vegetation, i.e. while accumulated temperature is lower than 790°C, remote sensing images of
similar accumulated temperature rather than similar date should be selected from different years for
vegetation area comparison. Although there is no significant difference between time series selected
according to accumulated temperature and series selected according to date in T2-JW70 period, we
strongly recommend that the criterion of accumulated temperature should be applied because it is
more efficient, and there is no need for changes until April.

However, when the accumulated temperature grows to 1700°C, there is no significant difference
between time series selected by different criterions. In contrast, we have found the dominant function of
accumulated temperature in classification at node 5, with accumulated temperature threshold equal to
1784°C. The rational explanation is as follows: Prerequisites of node 5 are accumulative precipitation
> 405 mm and daily water level < 17.2 m. Accumulative precipitation more than 405 mm usually
occurs after late April, and daily water level lower than 17.2 m means the possible flood recession
processes. To sum up, the threshold of 1784°C only have dominant function in classification under
certain hydrologic conditions (possible flood recession processes from late April to mid-May), rather
than under universal conditions, and cannot be used as a generally applicable threshold of selecting
MOIDS images.

4.3 The Effects of Hydrologic Factors

Previous researches have revealed the impact of hydrological factors, such as daily water level,
average water level for 20 days preceding, accumulative precipitation and so on, but there are few
studies focusing on the different action mechanisms of those hydrological factors. The CART used
in our research have revealed the small differences between the influences of hydrological factors.
When the accumulated temperature is less than 790°C, corresponding to periods before April, the
dominant sorting parameter is the 20-day average WL. This is consistent with results of Dai and other
researchers, and close to reality in spring [2,5,11,28]. The reason may be related to the time span
of hydrological indexes. From January to March, water level changes slowly with low rainfall, and
hydrological indexes with longer time span (the 20-day average WL) could give a better description
of the integral characteristics of this period. When the accumulated temperature is more than 790°C,
corresponding to periods after April, the heavy rainfalls from upstream areas in the watershed during
late spring and early summer caused a quick uplift of lake level. In this period, it is also reasonable
that the accumulative precipitation becomes the sorting parameter of classification because the less
rainfall means the greater area of emerged marshlands after April. In situations when accumulative
precipitation is adequate (more than 405 mm), the daily water becomes the dominant factor of
classification, because the time span of daily water is short, and suitable to describe the rapid water
level fluctuations caused by the possible flood receding processes as well as the occasional and non-
continuous rainfalls before entering the rainy season.

5 Conclusions

This research used the classification and regression tree (CART) to classify normalized vegetation
area index derived from MODIS LAI images from 2008 to 2014, according to different climate factors,
such as mean daily air temperature (n), accumulated temperature (jw), daily maximum temperature
(g), daily minimum temperature (d), accumulative precipitation (j), water level (s) and average water
level for 20 days preceding (a). According to the results of CART, we found that: (1) The accumulated
temperature and the 20-day average WL were most important on variation in wetland vegetation area,
and they both dominated the classification process twice; (2) Classification thresholds of accumulated
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temperature were 790°C and 1784°C separately, approximately corresponding to the beginning of
April and mid-May; (3) 790°C could also be used as a threshold to select remote sensing images
to compare vegetation area among different years, i.e. while accumulated temperature is lower than
790°C, remote sensing images of similar accumulated temperature rather than similar date should be
selected from different years for comparison. We also found that, the effects of several hydrological
factors mentioned in previous researches on area of floodplain grasslands showed stage characteristics:
(1) Before April, water level changes slowly with less rainfall, as a result, the 20-day average water
level which can interpret the integral hydrologic characteristics showed significant importance in this
period; (2) When entering April, heavy rainfall make accumulative precipitation to be the dominating
factor of classification; (3) From late April to mid-May, in condition of accumulative precipitation
higher than 405 mm, daily water level is of most importance, because of the rapid water level
fluctuations due to the possible flood receding process as well as the occasional and non-continuous
rainfalls before entering the rainy season.
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