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Abstract: In real communication systems, secure and low-energy transmit
scheme is very important. So far, most of schemes focus on secure transmit
in special scenarios. In this paper, our goal is to propose a secure protocol
in wireless networks involved various factors including artificial noise (AN),
the imperfect receiver and imperfect channel state information (CSI) of
eavesdropper, weight of beamforming (BF) vector, cooperative jammers (CJ),
multiple receivers, and multiple eavesdroppers, and the analysis shows that
the protocol can reduce the transmission power, and at the same time the safe
reachability rate is greater than our pre-defined value, and the analysis results
are in good agreement with the simulation results. In this letter, the minimal
transmit power is modeled as a non-convexity optimization that is general
difficult. Our method is to transform it into a two-level non-convex problem.
The outer is a univariate optimization that can be solved by the golden search
algorithm. The inner is a convex optimization solved by using the CVX. The
solutions are further used to improve the confidentiality rate of the system,
and reduce the transmit power of the system and resource consumption in
terms of the imperfect CSI. Simulations show the efficiency and robustness of
the proposed protocol.

Keywords: Secure transmission; MISO system; imperfect CSI; BF vector;
convex optimization

1 Introduction

Physical Layer Security (PLS) has received extensive attention in ensuring the security of data
transmission. The main goal of PLS in applications is to ensure the secrecy of messages,which
transmitted by legitimate receivers [1]. This is achieved by reducing the signal-to-noise ratio (SNR)
of the eavesdropper. One method is to add AN to the legal signal [2–4]. Cooperative relay (CR) is
useful in the secure transmit of CR-assisted multi-antenna systems. CR can act as a jammer and
expand the interference range [5–7]. At the same time, the status information of the channel should
also be considered. It is difficult to obtain accurate CSI because of the time-varying characteristics
of the channel. Some schemes have studied robust and secure transmit with imperfect CSI [8–12].
There are two kinds of protocols with uncertain CSI. One is uncertain on one side, that is, only the
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status information of the eavesdropper or receiver is unknown [13–15]. The other is uncertain on both
sides, which mean the CSI of both parties is completely unknown [16–19]. In addition to the secrecy
performance, the power consumption of the system is also considered [20–25]. Reference [25] gives the
best solution for spectral efficiency and energy consumption issues in 5G communications.

Our motivation comes from the fact that most of cooperative interferences only consider one or
a few factors, while the actual factors are not involved in applications, such as imperfect receiver and
imperfect CSI of eavesdropper, cooperative jammer, multiple Receivers, and multiple eavesdroppers.
In this article, we propose a secure transmit protocol by considering all these factors, which provide a
more reliable model for complex networks. The main consideration is coordinated interference, which
ensures the confidentiality of the receiver CSI (RCSI) and the eavesdropper CSI (ECSI) under the
imperfect premise. At the same time, we will reduce the power required to transmit the signal. Due
to the bounded error of CSI, we propose a robust and secure transmit scheme in the MISO downlink
network. To further improve the security performance, we also use multi-antenna auxiliary jammers.
The main contributions made in this paper are as follows:

(1) Aiming at imperfect RCSI and ECSI, we propose a robust transmit scheme for the eavesdrop-
ping model with multi-receiver-eavesdroppers in multicast. We evaluate the minimum transmit power
of the transmitter and the CR to meet the transmit reliability and confidentiality, that is, the minimum
secrecy rate in the worst case is still greater than what is required to ensure the secure transmission.

(2) We introduce a slack-variable logarithm and semi-definite slack (SDR) to simplify the transmit
power optimization, which is due to the non-convexity of the optimization problem involved. At the
same time, the Lagrange duality is used to obtain the analytical formula of the constraint conditions.
The non-convex problem further becomes a two-level optimization. The external is a univariate
optimization, which is solved by using the golden search algorithm. The inner layer is a semi-definite
programming (SDP) problem which will be resolved by CVX.

The rest of the paper is organized as follows. Section 2 introduces the system model. In Section 3,
we establishes the problem formulationand model the robust transmit power as a non-convex mini-
mization problem. The two-level optimization algorithms will be applied to solve the present problem.
Section 4 contributes the simulation that shows the efficiency of the proposed schemes while last
section concludes the paper.

2 System Model

Before introducing the system model, we introduce the parameter symbols used in this paper
and their meanings, as shown in Tab. 1. The matrix is indicated in bold capital letters. Vectors are
represented in bold lowercase letters.

Table 1: Notions used in this paper

Notation Description

tr(A) The trace of matrix A
A−1 The inverse of matrix A
AH Hermitian transpose of matrix A
‖A‖ Euclidean norm of matrix A

(Continued)
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Table 1: Continued
Notation Description

C
N The spaces of N-dimensional complex vectors

H
N N × N Hermitian matrix

E (A) A’s expectations
Q � 0 (Q � 0) Q is a positive semidefinite (definite) matrix
vec (A) A column vector by stacking all the elements
CN (c, Q) Circularly symmetric complex distribution with

mean vector c and covariance Q
⊗ Kronecker product
rank (A) The rank of the matrix A

We consider anassisting jammer (AJ)-assisted MISO system as shown in Fig. 1. Alice sends
message to multiple receivers Bob1, . . . , Bobl.The AJ sends AN (here, Gaussian noises will be used
in what follows) for the secure transmit by confusing Keavesdroppers Eve. Due to limited feedback,
assume that Alice knows the imperfect CSI of each receiver and eavesdropper. The channel estimation
error � is bounded. The receiver is equipped with an antenna, Eves as same as the receiver. The total
number of antennas for the transmitter and assisting jammer is denoted as Nt and Nj, respectively.

Figure 1: System model for secure transmit with assisting jammer

The signal from the transmitter is expressed by x = ws, which denotes the receiver’s data stream
with E [|s|2] = 1. Let w ∈ C

Nt denote the beamforming (BF) vector of the signal. Let z ∈ C
Nt be AN

generated by AJ, that is, z ∼ CN (0, Q),Q � 0.

Let nl ∼ CN
(
0, σ 2

b,l

)
and nk ∼ CN

(
0, σ 2

e,k

)
denote the standard complex Gaussian noises for Bobl

and Evek [26], respectively. Denote gb,l ∈ C
Nj and ge,k ∈ C

Nj as the channels from AJ to Bobl and Evek,
respectively. The signals received by Bobl and Evek are respectively given by

yb,l = hb,lx + gb,lz + nb,l, (1a)

ye,k = he,kx + ge,kz + ne,k, (1b)
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where hb,l ∈ C
Nt and he,k ∈ C

Nt denote the channel vectors from Alice to Bobl and Evek, respectively,
l ∈ L �= {1, · · · , L}, and k ∈ K �= {1, · · · , K}. It is assumed that all channels are independent. The
SINRs of channels are respectively expressed as

SINRb,l (w, Q) = hb,lwwHhH
b,l

gb,lQgH
b,l + σ 2

b,l

(2a)

SINRe,k (w, Q) = he,kwwHhH
e,k

ge,kQgH
e,k + σ 2

e,k

(2b)

3 Optimal Beamforming Schemes
3.1 Channel Mismatch

In this section, we consider the imperfect CSI. The wireless channels of Alice and AJ are estimated
in the quadratic form. Therefore, for Alice, its channel modeling [27] is given by

Hb,l = E
[
hb,lh

H
b,l

] = H̃b,l + �h,b,l = h̃b,lh̃
H

b,l + �h,b,l (3a)

He,k = E
[
he,kh

H
e,k

] = H̃e,k + �h,e,k = h̃e,kh̃
H

e,k + �h,e,k (3b)

where H̃b,l and H̃e,k are defined by

H̃b,l = H̃b,lH̃
H

b,l (4a)

H̃e,k = H̃e,kH̃
H

e,k (4b)

which are the estimated channel covariances in quadratic form, �h,b,l and �h,e,k are the CSI errors from
Alice to Bobl and Evek, respectively, and l ∈ L, k ∈ K.

Suppose that h̃b,l is complex Gaussian variable [10], that is, h̃b,l ∼ CN
(
0, ξb,l

)
, g̃b,l ∼ CN

(
0, ξb,l

)
.

Assume that the uncertainty is bounded in the uncertainty region of the ellipsoid [27,28] that can be
modeled as

Hb,l
�=

{
�h,b,l|�h,b,l ∈ H

N, H̃b,l + �h,b,l � 0, a1 ≤ 1
}

(5a)

He,k
�=

{
�h,e,k|�h,e,k ∈ H

N, H̃e,k + �h,e,k � 0, a2 ≤ 1
}

(5b)

where a1 and a2 are defined as

a1 = tr
(
�h,b,lDh,b,l�h,b,l

)
, a2 = tr

(
�h,e,kDh,e,k�h,e,k

)
(6)

Dh,b,l (or Dh,e,k) depends on CSI, which is from Alice to Bobl (or Evek). Both of them are known.
Especially, Dh,b,l and Dh,e,k can be decomposed into as follows [27]:{

Dh,b,l = D̂
H

h,b,lD̂h,b,l

Dh,b,l � 0
,
{

Dh,e,k = D̂
H

h,e,kD̂h,e,k

Dh,e,k � 0
(7)

Similarly, from Eqs. (3a) and (3b), we get the channel model of AJ as follows:

Gb,l = E
[
gb,lg

H
b,l

] = G̃b,l + �g,b,l = g̃b,lg̃
H

b,l + �g,b,l (8a)

Ge,k = E
[
ge,kg

H
e,k

] = G̃e,k + �g,e,k = g̃e,kg̃
H

e,k + �g,e,k (8b)



CMC, 2022, vol.73, no.1 1867

where G̃b,l and G̃e,k are defined by

G̃b,l = h̃e,kh̃
h

e,k (9a)

G̃e,k = g̃e,kg̃
H

e,k (9b)

which are the estimated channel covariances in the quadratic form,�g,b,l and �g,e,k are CSI errors from
AJ to Bobl and to Evek, respectively, and l ∈ L, k ∈ K. Let g̃b,l ∼ CN

(
0, ξb,l

)
and g̃e,k ∼ CN

(
0, ξe,k

)
.

Similar to Eqs. (5a) and (5b), we have

Gb,l
�=

{
�g,b,l|�g,b,l ∈ H

N, G̃b,l + �g,b,l � 0, a3 ≤ 1
}

(10a)

Ge,k
�=

{
�g,e,k|�g,e,k ∈ H

N, G̃e,k + �g,e,k � 0, a4 ≤ 1
}

(10b)

where A3 and A4 are defined as follows

a3 = tr
(
�g,b,lDg,b,l�g,b,l

)
, a4 = tr

(
�g,e,kDg,e,k�g,e,k

)
(11)

Dg,b,l, and Dg,e,k can be decomposed as follows{
Dg,b,l � 0

Dg,b,l = D̂
H

g,b,lD̂g,b,l

,

{
Dg,e,k � 0

Dg,e,k = D̂
H

g,e,kD̂g,e,k

(12)

3.2 Robust Transmit Power Minimization

The present problem is to minimize the transmit power, while the guarantee the minimum transmit
secrecy rate. Here, the estimation error of CSI is considered. For the worst case of secrecy capacity,
according to the principle of power minimization, the optimization function after adding AN is
given by

Q1: min
w,Q�0

tr
(
wwH + Q

)
(13a)

s.t., min
l∈L,k∈K

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
�g,b,l ∈ Gb,l

�hb,l ∈ Hb,l

Rb,l − max
�g,e,k ∈ Ge,k

�h,e,k ∈ He,k

Re,k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≥ Rs, ∀l, ∀k (13b)

tr
(
wwH + Q

) ≤ Pmax (13c)

where Rs is the pre-defined target secrecy rate. In the model, the secrecy rate is evaluated by the
difference between the minimum secrecy capacity of the receiver and the maximum secrecy capacity
of the eavesdropper. So, the secrecy rate obtained in the optimization is the minimum secrecy rate of
the system. In our setting, the minimum secrecy rate should also be higher than the target secrecy rate.
To simplify the secrecy capacity function, we introduce β is used as a slack variable. The optimization
problem Q1 is equivalently written into

Q2: min
w,Q�0

tr
(
wwH + Q

)
(14a)

s.t. min
�g,b,l ∈ Gb,l

�hb,l ∈ Hb,l

(
Rb,l − log β

) ≥ Rs, ∀l, (14b)
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max
�g,e,k ∈ Ge,k

�h,e,k ∈ He,k

Re,k ≤ log β, ∀k (14c)

tr
(
wwH + Q

) ≤ Pmax (14d)

where log (·) denotes the base-2 logarithmic function.

According to Shannon’s formula, the achievable secure rate of Bobl and the Evek can be
represented as

Cb,l = log

⎛
⎝1 +

tr
((

H̃b,l + �h,b,l

)
wwH

)
tr

((
G̃b,l + �g,b,l

)
Q

)
+ σ 2

b,l

⎞
⎠ (15a)

Ce,k = log

⎛
⎝1 +

tr
((

H̃e,k + �h,e,k

)
wwH

)
tr

((
G̃e,k + �g,e,k

)
Q

)
+ σ 2

e,k

⎞
⎠ (15b)

From Eqs. (14b), (14c), (15a) and (15b), we can obtain

Q3: min
w,Q�0

tr
(
wwH + Q

)
(16a)

s.t. min
�g,b,l ∈ Gb,l

�hb,l ∈ Hb,l

(
1 + tr

(
wHb,lwH

)
tr

(
Gb,lQ

) + σ 2
b,l

)
≥ β2RS , ∀l (16b)

max
�g,e,k ∈ Ge,k

�h,e,k ∈ He,k

(
1 + tr

(
wHe,kwH

)
tr

(
Ge,kQ

) + σ 2
b,l

)
≤ β, ∀k (16c)

tr
(
wwH + Q

) ≤ Pmax, ∀k (16d)

The Q3 is still non-convex problem. We resort to the idea of SDR to deal with Q3. Define W =
wwH . It follows that W � 0, rank (W) = 1. By regardless of the constraint rank (W) = 1, Q3 is
written into

Q4: min
w,Q�0

tr (W + Q) (17a)

s.t. min
�g,b,l∈Gb,l

(
tr

(
Gb,lQF1

)) + min
�hb,l∈Hb,l

(
tr

(
WHb,l

)) ≥ −F1, ∀l (17b)

max
�h,e,k∈He,k

(
tr

(
WHe,k

) + max
�g,e,k∈Ge,k

tr
(
Ge,kQF2

)) ≤ −F2, ∀k (17c)

tr (W + Q) ≤ Pmax (17d)

where F1 = 1 − 2Rsβ and F2 = 1 − β

Due to the semi-definite constraints in Eqs. (17b) and (17c), it is difficult to solve the problem Q5.
To solve this problem, we firstly transformed into a convex form to get an accurate form. It can be
stated as the following proposition.
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Proposition 1: For � ∈ H
N and two complex Hermitian matrices B and D = DHD, we have

max
D � 0
tr (�B�) ≤ 1

tr (�B) = 2φ (B, D) (18)

where φ is a function defined by

φ (B, D)
�=

∥∥∥(
I ⊗ D̃

) (
I ⊗ D + DH ⊗ I

)−1
vec (B)

∥∥∥ (19)

Its maximum is achieved when � is given by

�opt =
(

I ⊗ D̃ + DH ⊗ I
)−1

vec (B)∥∥∥(
I ⊗ D̃

) (
I ⊗ D + DH ⊗ I

)−1
vec (B)

∥∥∥ (20)

where I is the identity matrix.

Proposition 2: For � ∈ H
N and two complex Hermitian matrices B and D = DHD, we have

min
D � 0
tr (�B�) ≤ 1

tr (�B) = −2φ (B, D) (21)

where its minimum is achieved when � is given by

�opt = −
(
I ⊗ D + DH ⊗ I

)−1
vec (B)∥∥∥(

I ⊗ D̃
) (

I ⊗ D + DH ⊗ I
)−1

vec (B)

∥∥∥ (22)

Proof : See Appendix A.

By using Proposition 2 for the left side of the inequality (17b) and Proposition 1 for the left side
of the inequality (17c), we have Proposition 3.

Proposition 3: The optimization problem Q4 is transformed into

Q5: min
W�,Q�0,β

tr (W + Q) (23a)

s.t. tr
(

WH̃b,l

)
− 2φ

(
W, Dh,b,l

) + tr
(

QG̃b,lF1

)
− 2φ

(
QF1, Dg,b,l

) ≥ F1, ∀l (23b)

tr
(

WH̃e,k

)
− 2φ

(
W, Dh,e,k

) + tr
(

QG̃e,kF2

)
− 2φ

(
QF2, Dg,e,k

) ≤ −F2, ∀k (23c)

tr (W + Q) ≤ Pmax (23d)

Proof: See Appendix B.

Note that Q5 is still non-convex, because the existence of the slack variable. Fortunately, for a
fixed β, it is a convex SDP problem. Thus, the problem Q5 is reconstructed as a two-layer optimization
problem. The first layer is a successive approximation problem with slack variables β. while the inner
is the convex SDP problem. Hence, Q5 will be transformed into

Q6: min
β

f (β) (24a)

s.t.1 ≤ β ≤ 1 + Pmax min
l∈L

tr
(
Hh,b,l

)
(24b)

where f (β) is a function of β, Q6 has an optimal solution when β is fixed.
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Proposition 4: β is defined in [1, 1 + Pmaxτ ], where τ = minl∈L tr
(

H̃b,l

)
.

Proof: From the inequality (16c) and positive semi-definite matrices W, Q, Gg,e,k, we can get

tr
(
wHh,e,kwH

)
tr

(
Gg,e,kQ

) + σ 2
b,l

≥ 0

It follows that β ≥ 1.

The upper bound of β can be proved as follows:

β ≤ 1 + min
l ∈ L, �h,b,l ∈ Hh,b,l

�g,b,l ∈ Gg,b,l

tr
(
Hh,b,lW

)
σ 2

b,l + tr
(
Gg,b,lQ

) (25a)

≤ 1 + min
l∈L

tr
(

H̃h,b,lW
)

σ 2
b,l + tr

(
G̃g,b,lQ

) (25b)

≤ 1 + Pmax min
l∈L

tr
(

H̃h,b,l

)
(25c)

Here, the inequality (25a) comes from the inequality (16b) and the fact that Rs may be negative.
The inequality (25b) is from the inequality of tr (W) ≤ Pmax and Eq. (4a) when Q = 0 and σ 2

b,l = 1.
This has completed the proof.

Now, in order to obtain the optimal value of β , we use the one-dimensional search variables
method to calculate. Since the inner-level problem is a convex SDP, which will be solved by the CVX
[29]. The outer layer problem for a fixed β is solved by using the golden search method [30]. In
summary, we obtain a specific algorithm to solve Q6 as shown in Algorithm 1:

Algorithm 1: to solve Problem Q6
Input: Rs, a0, b0, Pmax, ε.

1 Use golden search method to solve Q7 to obtain an optimal solution β∗ = ai + bi

2
2 Q6 is solved by getting the optimal values of W∗, Q∗

z , P∗ using β∗.
3 Output: the optimal solution

(
W∗, Q∗)

4 Simulation Results

This section provides numerical results to verify the performances of the proposed transmit
scheme. The main setups are shown in Tab. 2.

Table 2: Simulation parameters

Notation Description Value

Nt = Nj Number of antennas 4
σ 2

b,l = σ 2
e,k The covariance matrix of the AN signal 1

Pmax Total system power {10 dB, 30 dB}
αb The parameter of Bobs ‘channel uncertainty {0.05, 0.08, 0.1, 0.15}
αe The parameter of Eves’ channel uncertainty {0.002, 0.05, 0.1, 0.15}
ξb,l, ξe,k The covariance matrix of the channel {0.02, 1}
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The channel uncertainty is given in the following form.:

Dh,b,l = I
γ 2

h,b,l

, Dg,b,l = I
γ 2

g,b,l

(26a)

Dh,e,k = I
γ 2

h,e,k

, Dg,e,k = I
γ 2

g,e,k

(26b)

γh,b,l = ‖H̃b,l‖αb, γg,b,l = ‖G̃b,l‖αb (26c)

γh,e,k = ‖H̃e,k‖αe, γg,e,k = ‖G̃e,k‖αe (26d)

Figs. 2 and 3 show the relationships between Rs, P, R and αb. Fig. 2a presents the actual total
transmit power in terms of the target secrecy rate and αe. We set ξb,l = ξe,k = 1. It shows that the total
transmit power increases as αe increases. Moreover, as the uncertainty of the Eve’s channel increases,
the proposed BF scheme requires a higher total transmit power in order to ensure Rs target secrecy rate.
From Fig. 2b, the achievable secrecy rate in the worst case is higher than the target secrecy rate, which
satisfies the secrecy requirement of the system in Eq. (13b). In addition, although Fig. 2b shows that
the larger the αe, the larger the actual secrecy rate when the target secrecy rate takes a certain value,
which does not seem to be true. However, when we compare the actual secrecy rate, the consumed
power P jointly, as shown in Fig. 3, a reasonable explanation can be obtained. As its shown in Fig. 3,
the larger αe is, the smaller the achievable secrecy rate is obtained in the system with the same power.
This is because in the present scheme, the power is related to the target secrecy rate, while the achievable
secrecy rate in the worst case and the power are correlated. So, the larger the channel uncertainty is, the
lower the system secrecy performance is. Fortunately, this can be overcome by increasing the transmit
power Pmax.

Figure 2: (a) Actual average total transmit power vs. the pre-defined target secrecy rate. (b) Worst-case
achievable secure rate vs. the target secrecy rate Rs for different αe. Here, L = 3, K = 4, αb = 0.02, and
Pmax = 30 dB

Fig. 4 shows the system channel capacity and transmit power with random 100 independent
experiments. There are more than 90% channels which satisfy the target secrecy rate and the power
requirements. This shows that the proposed scheme should be applicable in piratical channels.
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Figure 3: The worst-case achievable secrecy rate vs. actual average total transmit power different αb

with L = 3, K = 4, αb = 0.02 and Pmax = 30 dB

Figure 4: (a) Number of occurrences in terms of actual average total transmit power P with random
100 independent experiments. (b) Number of occurrences in terms of worst-case achievable secrecy
ratewith random 100 independent experiments. Here, L = 3, K = 4, αb = αe = 0.05, Pmax = 30 dB and
Rs = 2 bit/s/Hz

Now, we compare the present schemes with previous schemes to show its performances. We mainly
consider the LD system model in ref. [23] and CVaR and BTiE in ref. [31], while other schemes may not
be consistent with the communication model in this paper or have inconsistent optimization objectives,
so no more schemes are selected for comparison.The transmit power and achievable secrecy rate in
worst case will be simulated.

Fig. 5a shows a comparison between the present scheme and its in ref. [23] for one receiver and
one eavesdropper. In Fig. 5a, the present scheme costs less power than the LD scheme when the system
secrecy rate is less than 4.4 provided that the secrecy rate in the worst case reaches the target. However,
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when the achievable secrecy rate is larger than 4.4, we get converse result. So, when the system secrecy
rate is less than 3.8, the present scheme is better than its in ref. [23] to guarantee both the secrecy and
power consumption Fig. 5b shows the comparison between the present scheme and the two approaches
in ref. [31] for one receiver and multiple eavesdroppers. In both models, the simulations are completed
with the same total transmit power of Pmax = 30 dB. Here, ξb,l = ξe,k = 0.002. In Fig. 5b, the present
scheme achieves the bettersecrecyperformance when three schemes have the same transmit power.
Hence, these results show when both power loss and achievable secrecy rate are involved, our transmit
scheme is better than both schemes in refs. [23,31]. Other parameter effects and performance indicators
were not considered in this simulation, but it is worth considering.

Figure 5: (a) Achievable secrecy rate vs. average transmit power with L = 1, K = 1 (b) Average transmit
power vs. achievable secrecy rate with L = 1 and K = 3

5 Conclusion

In this paper, we investigate the robust transmit BF design for MISO wiretapping channels with
the imperfect CSI and the minimum transmit power. The covariance-based CSIs of both legitimate
receivers and eavesdroppers are imperfect, where the CSI error is restricted to the ellipsoidal model.
The communication models are assisted by AJs. We jointly optimized the covariance of the interference
signal generated by the auxiliary node and the beamforming vector of the source node in the AJ-
assisted system. The SDR method is firstly used to approximate the present non-convex optimization.
We then obtained the equivalent tractable semi-infinite constraints by using the Lagrange duality.
This transforms the original non-convex optimization into a two-level optimization with univariate
optimization in the outer layer and convex SDP in the inner layer. Simulation results show the present
scheme is better than previous schemes. This provides an efficient transmit scheme in practical systems.
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Appendix A.

It can be verified that the convex problem (18) satisfies Slater’s conditions [27]. Hence the
strong duality holds between (18) and its dual problem, i.e., they have the same objective value. The
Lagrangian of (18) can be written as

L (�, λ) = tr (�A) − λ (�D� − 1) > 0 (27)

λ is the dual variable corresponding to the inequality constraint. Differentiating (27) with respect
to � and setting the derivative to zero, we have
∂L (�, λ)

∂�
= A − λ� − λ�D = 0 (28)

After applying the identity vec (BXC) = (
CT ⊗ B

)
vec (X), we have the following equality

λvec (�) = Mvec (A) , M = (
I ⊗ C + CT ⊗ I

)−1
(29)

The Lagrangian dual function for the problem (18) can be written as

L = 2λtr
(
�D�H

) − λ
(
tr

(
�D�H

) − 1
) = λtr

(
�D�H

) + λ
(1)= 2λ (30)

http://cvxr.com/cvx
http://cvxr.com/cvx
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where tr
(
�D�H

) = 1 if it is in the optimum point, therefore, step 1 in the above formula holds. Due

to � = �H , D = D∼HD̃, we can get
∥∥∥D̃�

∥∥∥2

= 1, through vec (BXC) = (
CT ⊗ B

)
vec (X), we can get

follow equality:∥∥∥D̃�

∥∥∥2

=
∥∥∥(

I ⊗ D̃
)

vec (�)

∥∥∥ = 1 (31)

By combining Eqs. (29) and (31) we can get the value of λ:

λ = λ

∥∥∥D̃�

∥∥∥2

=
∥∥∥(

I ⊗ D̃
)

Mvec (A)

∥∥∥ (32)

By combining Eqs. (30) and (32), we can get

max tr (�B) = 2
∥∥∥(

I ⊗ D̃
) (

I ⊗ C + CH ⊗ I
)−1

vec (A)

∥∥∥ (33)

As a result, we proved Proposition 1 and the optimal �, denoted by �opt which completes the
proof.

The proof of Proposition 2 is similar to that of Proposition 1.

Appendix B.

Use Proposition 2, Eqs. (3a) and (5a) for the left side of the inequality (17b)

min
�g,b,l∈Gb,l

(
tr

(
Gb,lQF1

)) = min
�g,b,l∈Gb,l

(
tr

(
G̃b,lQF1 + �g,b,lQF1

))

= tr
(

QG̃b,lF1

)
− 2φ

(
QF1, Dg,b,l

)
(34a)

min
�h,b,l∈Hb,l

(tr(WHb,l)) = min
�h,b,l∈Hb,l

(tr(W̃Hb,l + �h,b,lW))

= tr(W̃Hb,l) − 2φ(W, Dh,b,l) (34b)

The above equation holds when �g,b,l and �h,b,l takes the following optimal values:

�g,b,l|opt =
(
I ⊗ Dg,b,l + DH

g,b,l ⊗ I
)−1

vec (QF1)∥∥∥(
I ⊗ D̃g,b,l

) (
I ⊗ Dg,b,l + DH

g,b,l ⊗ I
)−1

vec (QF1)

∥∥∥ (35a)

�h,b,l|opt =
(
I ⊗ Dh,b,l + DH

h,b,l ⊗ I
)−1

vec (W)∥∥∥(
I ⊗ D̃h,b,l

) (
I ⊗ Dh,b,l + DH

h,b,l ⊗ I
)−1

vec (W)

∥∥∥ (35b)

Similarly, using Proposition 1 and Eqs. (3b) and (5b), from the inequality (17c) we get

max
�h,e,k∈He,k

(
tr

(
WHe,k

)) = max
�h,e,k∈He,k

(
tr

(
WH̃e,k + W�h,e,k

))
= tr

(
WH̃e,k

)
− 2φ

(
W, Dh,e,k

)
(36a)

max
�g,e,k∈Ge,k

(
tr

(
Ge,kQF2

)) = max
�g,e,k∈Ge,k

(
tr

(
G̃e,kQF2) + �g,e,kQF2

))
= tr

(
QG̃e,kF2

)
− 2φ

(
QF2, Dg,e,k

)
(36b)

Eqs. (36a) and (36b) holds when �h,e,k and �g,e,k take the following optimal values:

�h,e,k|opt = −
(
I ⊗ Dh,e,k + DH

h,e,k ⊗ I
)−1

vec (W)∥∥∥(
I ⊗ D̃h,e,k

) (
I ⊗ Dh,e,k + DH

h,e,k ⊗ I
)−1

vec (W)

∥∥∥ (37a)
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�g,e,k|opt = −
(
I ⊗ Dg,e,k + DH

g,e,k ⊗ I
)−1

vec (QF2)∥∥∥(
I ⊗ D̃g,e,k

) (
I ⊗ Dg,e,k + DH

g,e,k ⊗ I
)−1

vec (QF2)

∥∥∥ (37b)

Thus we can transform inequality (17b) and inequality (17c) into the following form:

tr
(

WH̃b,l

)
− 2φ

(
W, Dh,b,l

) + tr
(

QG̃b,lF1

)
− 2φ

(
QF1, Dg,b,l

) ≥ F1, ∀l (38a)

tr
(

WH̃e,k

)
− 2φ

(
W, Dh,e,k

) + tr
(

QG̃e,kF2

)
− 2φ

(
QF2, Dg,e,k

) ≥ −F2, ∀k (38b)

Combining optimization problem Q4 with inequalities (38a) and (38b) , we can obtain optimiza-
tion problem Q5.
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