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Abstract: In recent years, Smart City Infrastructures (SCI) have become famil-
iar whereas intelligent models have been designed to improve the quality of
living in smart cities. Simultaneously, anomaly detection in SCI has become a
hot research topic and is widely explored to enhance the safety of pedestrians.
The increasing popularity of video surveillance system and drastic increase in
the amount of collected videos make the conventional physical investigation
method to identify abnormal actions, a laborious process. In this background,
Deep Learning (DL) models can be used in the detection of anomalies found
through video surveillance systems. The current research paper develops an
Internet of Things Assisted Deep Learning Enabled Anomaly Detection Tech-
nique for Smart City Infrastructures, named (IoTAD-SCI) technique. The aim
of the proposed IoTAD-SCI technique is to mainly identify the existence of
anomalies in smart city environment. Besides, IoTAD-SCI technique involves
Deep Consensus Network (DCN) model design to detect the anomalies in
input video frames. In addition, Arithmetic Optimization Algorithm (AOA)
is executed to tune the hyperparameters of the DCN model. Moreover,
ID3 classifier is also utilized to classify the identified objects in different
classes. The experimental analysis was conducted for the proposed IoTAD-
SCI technique upon benchmark UCSD anomaly detection dataset and the
results were inspected under different measures. The simulation results infer
the superiority of the proposed IoTAD-SCI technique under different metrics.
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1 Introduction

Video surveillance systems have been widely installed in the recent years for monitoring the crowd
at public places. The video information generated by such systems is complex, huge and in different
formats while Traditional manual analysis to label abnormal events in such data is challenging and
time-consuming in nature. Thus, a smart surveillance scheme and a hotspot of Computer Vision
(CV) applications and researches are immediately required to detect and recognize anomalies [1].
But localization and anomaly detection remain a challenge in smart video surveillance. However,
considerable development has occurred in the recent years in terms of behavior modeling, anomaly
measuring, and feature extraction. One of the primary challenges in anomaly detection is that the
description of the anomaly is indeterminate in almost all real-time surveillance videos. Generally, an
event that is considerably distinct from general event is classified as anomaly. In other terms, anomalies
are determined as common events rather than details of themselves or classifications [2]. An event
which is anomalous in one scene (people running) may not be necessarily anomalous in another
scene. This is because the common event in another scene might include the person running, while the
initial scene does not. Thus, anomaly is composed of inadequate similarities and sizes to be efficiently
modelled. Essentially, anomaly detection for crowd scenes has an innovation detection that is called a
one-class, semi-supervised learning problem [3]. This is because the training data of the current dataset
comprises of common events, where the information to be confirmed has abnormal as well as normal
events. Fig. 1 illustrates the structure of smart city.

Figure 1: Smart city infrastructure

Several CV methods that depends upon work, have been presented earlier. These methods focus
on the operation including scene learning, data acquisition, behavioural learning, feature extraction,
activity learning, etc [4]. The main objective is to calculate the operation that includes video processing
model, anomaly predictive approach, scene detection, human behavior learning, vehicle prediction,
multiple camera-based challenges and schemes, vehicle observation, traffic observation, activity
examination, etc. Now, anomalous prediction is considered as a sub-region of behavioral learning in
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the captured visual scene [5]. The availability of video captured in public places has led to anomalous
prediction and the simulation of video analysis. Furthermore, anomaly prediction methods understand
to differentiate the normal behavior through training. Any important changes that deviate from
common behavior are considered as anomalous. Sudden dispersion of people from a crowd, presence
of vehicles on pathways, jaywalking, person fainting when walking, U-turn of vehicles at red signals
and signal bypasses at a traffic junction are some of the instances of anomalies [6]. Recently, Deep
Learning (DL) method has attained an outstanding achievement in a number of CV methods that
include object detection and classification since the application depends upon supervised learning.

The current research work develops an Internet of Things Assisted Deep Learning Enabled
Anomaly Detection Technique for Smart City Infrastructures, abbreviated as (IoTAD-SCI) technique.
The proposed IoTAD-SCI technique involves the design of Deep Consensus Network (DCN) model
to detect the anomalies in input video frames. In addition, Arithmetic Optimization Algorithm (AOA)
is implemented to fine tune the hyperparameters of DCN technique. Moreover, ID3 classifier is
also utilized to classify the identified objects under different classes. The experimental analysis was
conducted for IoTAD-SCI technique upon benchmark UCSD anomaly detection dataset and the
results were inspected under different measures.

2 Related works

Li et al. [7] proposed an anomaly detection model and video anomaly event feature. At first, dense
optical flow of video was attained and the data of optical flow was converted into histogram features
of the optical flow. Next, the space-time cube of video was created using space-time relation of the
video. At last, sparse depiction technique was utilized to model the entire procedure. Font et al. [8]
used real-time information from smart cities of Barcelona to identify typical attacks and simulate
WSN as and when required. Next, the researchers compared the commonly-utilized anomaly detection
methods that disclose such attacks. The algorithm was evaluated under distinct necessities on access
network data.

Alrashdi et al. [9] presented an Anomalous Detection-IoT (AD-IoT) method i.e., a smart anoma-
lous detection-based RF-ML method. The presented method was able to identify the compromised
IoT devices in distribution fog nodes efficiently. To estimate the presented method, the study employed
current datasets to demonstrate the accuracy of the algorithm. Chackravarthy et al. [10] introduced
a NN approach as well as a Hybrid Deep Learning method to analyze the video stream data.
The presented method was capable of identifying and assessing the criminal activities quickly. This
sequentially reduced the manual workload on supervisors. While the method was executed through
smart city framework, it also allowed one to an adaptable and efficient crime detection method.

Kang et al. [11] introduced an NN-based model which integrates the idea of AUC using Multi-
Instance Learning (MIL) model. The authors created MI-AUC method which forecasts high anomaly
scores for anomalous segments. Moreover, sparsity and temporal smoothness limitations were also
employed in this study from loss function for effective anomalous detection. Chen et al. [12] designed
an architecture-based bi-directional prediction that forecasts a similar target frame by both forward
and backward predictive subsystems, correspondingly. Next, the loss function is formulated on the
basis of bi-directional predictive frame and real-time target frame. Additionally, an anomaly score
assessment model-based sliding window system was presented in this study that focuses on the
foreground of predictive error map.

Ullah et al. [13] developed an effective deep feature-based intelligent anomaly detection method.
In the presented method, the spatiotemporal features were initially extracted from a sequence of frames
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by passing everyone to a pre-trained CNN method. The feature extracted from the series of frames is
beneficial in terms of capturing anomalous actions. Next, the extracted deep feature is passed onto
multilayer Bi-LSTM method that could precisely categorize the ongoing normal or anomalous events
in complicated surveillance scenes.

3 The Proposed Model

In current study, an effective IoTAD-SCI technique is developed to identify the presence of
anomalies in smart city environment. The proposed IoTAD-SCI technique involves the design of DCN
technique to detect anomalies in input video frames. Followed by, AOA is applied to fine tune the
hyperparameters of DCN technique whereas ID3 classifier is utilized to classify the identified objects
under different classes.

3.1 Object Detection Using DCN Model

In initial stage, DCN model is applied for the identification of objects that exist in input video
frame. DCN has an analogous structure alike RetinaNet [14]. It makes use of Feature Pyramid
Network (FPN) for feature extraction at different scales from ResNet-50 mainstream by following
squeeze-and-excite method for the residual. In order to detect smaller objects, higher-resolution
variants of FPN is employed in this study. It is utilized for Leaky ReLU activation function and group
normalization. The feature extraction maps, at all the scales, are transmitted to Centroid Proposal
Network (CPN). In comparison with Region Proposal Network (RPN) that predicts the bounding
boxes, CPN forecasts a subset of centroids v′ with respective confidence score (v′). When compared
with RetinaNet, CPN does not share the weight at all the scales to capture distinct representations.
This is because each image within the microscopy data sets has a similar magnification. Like RPN in
RetinaNet, anchor is utilized in this study as prior, but with a distinct configuration.

For every spatial location in a 2D grid, Na = 17 anchors are employed in overall that involves 8
anchors at a length of 0.5 pixels, 8 anchors with a length of one pixel, and one anchor without any
offset. The anchor vector is rotated thus they are able to cover a unit disk. The ith anchor ai ∈ R

2 is
employed to the i − th predicted vector, v′

i ∈ R
2:

vi = s
(
v′

i + ai

) + pos
(
v′

i

)
(1)

Whereas pos(v′
i) represents the spatial location from the grid and s signifies a scaling factor to

standardize the distribution of v′
i. Therefore, every probable anchor in anchor configuration is included

in each position of the grid [15]. In order to encourage the network to favor the matching anchor, the
confidence score P(v′

i) of larger regression value for the magnitude of v′
i is penalized so as to compute

the confidence score of vi. The network regresses the offset vector from this position. So, both anchor
and spatial position are combined in the grid assisted individual neuron, since they emphasize the
forecasting of smaller offset of centroid position:

P(vi) = P(v′
i)e

− ln(2)‖v′i‖ (2)

For mathematical reason, CPN predicts the logit (logarithm of odds) x′
i = Logit(P(v′

i)) ∈ R rather
than forecasting the confidence score directly, P(v′

i) ∈ R
[0,1]. Therefore, the normalization in (2) is

implemented in logit space yield where the normalized logit xi ∈ R:
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∥∥∥v′j
∥∥∥) (3)

3.2 Hyperparameter Tuning Using AOA

In order to proficiently adjust the hyperparameters of DCN model, AOA is utilized. AOA
is stimulated on the basis of basic arithmetic operators used in mathematics. In line with other
optimization algorithms, AOA mainly operates on two searching processes namely, exploration and
exploration [16], depending upon the arithmetic operators like −, +, ∗, and/. Initially, AOA produces
a collection of N solutions (agent). And every individual solution indicates a solution for the applied
problem. Therefore, the solution or agent indicates X population which is given below:

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,j x1,n−1 x1,n

x2,1 · · · x2,j · · · x2,n

· · · · · · · · · · · · · · ·
...

...
...

...
...

xN−1,1 · · · xN−1,j · · · xN−1,n

xN,1 · · · xN,j xN,n−1 xN,n

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

Then, the fitness values of all the solutions are determined to identify the optimal solution,
Xb. Afterward, based on Math Optimizer Accelerated (MOA) value, AOA conducted exploration or
exploitation process. Subsequently, MOA is upgraded using the Eq. (5):

MOA(t) = Min + t ×
(

MaxMOA − MinMOA

Mt

)
(5)

where Mt signifies the maximum iteration count. MinMOA and MaxOA signify the lower and higher
values of the accelerated function, correspondingly. Also, both multiplication (M) and division (D)
can be utilized at the time of exploration, as given below.

Xi,j(t + 1) =
{

Xbj ÷ (MOP+ ∈) × ((UBj − LBj) × μ + LBj), r2 < 0.5
Xbj × MOP × ((UBj − LBj) × μ + LBj), otherwise

(6)

where e indicates the least integer, UBj and LBj denote the maximum and minimum bounds of the
searching region at jth dimension. μ = 0.5 indicates the control function. Besides, Math Optimizer
(MOP) is represented as follows

MOP(t) = 1 − t1/α

M1/α

t

(7)

α = 5 denotes the dynamic variable in determining the accuracy of the exploitation process after
several rounds of operations. In addition, add operator (A) and subtract operator (D) can be utilized
to perform AOA exploitation process [17].

xi,j(t + 1) =
{

Xbj − MOP × ((UBj − LBj) × μ + LBj), r3 < 0.5
Xbj + MOP × ((UBj − LBj) × μ + LBj), otherwise

(8)



386 CMC, 2022, vol.73, no.1

where r3 indicates an arbitrary number in the range of zero and one. Then, the agent update procedure
is carried out using AOA operators. The process involved in AOA is shown in Algorithm 1.

Algorithm 1: Pseudocode of AOA
Input: Initialize parameters α, control function N and maximal iterations Mt.
Determine the agent’s initial value Xii = 1, . . . N·
while (t < Mt) do
Determine the fitness of all agents
Compute optimal agent Xb.
Upgrade the MOA and MOP

for i = 1 to N do
for j = 1 to Dim do

Upgrade: r1, r2, and r3 values
if r1 > MOA then

Exploration procedure
Upgrade Xi.

else
Exploitation procedure

Upgrade Xi.
end if

end for
end for

t = t + 1
end while
Display the optimal agent (Xb).

3.3 ID3 Based Classification Model

Once the objects are detected in input frame, ID3 classifier is applied to classify the objects as either
anomalies or non-anomalies. Id3 method selects the testing features by comparing and calculating their
data gains. Here, S represents the subset of data instances. Assume the class attribute C has m distinct
values that denote m distinct class label, Ci(i = 1, 2, . . . , m). Here, Si represents the number of samples
from class Ci(i = 1, 2, . . . , m). The predicted number of data required to classify S is shown below.

I(S1, S2, . . . , Sm) = −
m∑

i=1

pi log2 pi (9)

Here, pi implies the probability of samples in S that belongs to the class Ci. I(S1, S2, . . . , Sm) shows
the average amount of data needed to identify the class label for each sample in S [18].

Consider A attribute has v distinct values {a1, a2, . . . , aν} from the trained data set, S. When A
represents a nominal attribute, the attributes split S to v subset as {S1, S2, . . . , Sν}, where Sj indicates
the subsets of S in which the samples in Sj have the similar attribute value aj on A. But, the sample in
Sj might have distinct class labels. Consider Sij to represent a set of samples with class label being Ci in
the subsets of {Sj|A = aj, j ∈ 1, 2, . . . , ν, Sj ∈ S} whereas attribute A = aj. The required data amount
of attribute A splits the trained data set S which is estimated as follows.

E(A) =
ν∑

j=1

(
(s1j + s2j + . . . + smj)

s
× I(s1j, s2j, . . . , smj)) (10)
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The less data amount needed; the more purity of sub-data set is.

I(s1j, s2j, . . . , smj) = −
m∑

i=1

pij log2(pij) (11)

While pij denotes the probability of samples in Sj that belongs to the class Ci. I(s1j, s2j, . . . , smj)

implies the average number of data required to identify the class labels for each instance in Sj. The
data gain of A is determined as follows.

InfoGain (A) = I (S1, S2, . . . , Sm) − E (A) (12)

viz., the number of new data needed minus the number of original data needed. Choose the attributes
with maximal InfoGain (A) as testing attributes that are allocated as internal node in a decision tree.
In this method, the required amount of data to classify the samples is minimal.

4 Experimental Results and Discussion

The experimental analysis was conducted upon the proposed IoTAD-SCI technique using UCSD
dataset [19]. In this study, two testbeds namely, Test007 and Test005 were used for simulation and these
datasets comprise a total of 360 frames with 12 s duration. Fig. 2 demonstrates the sample test images
with ground truth of the anomalies that exist in the image.

Figure 2: (Continued)
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Figure 2: Sample images (a and c) ground truth (b and d)

Fig. 3 visualizes the outcome of the proposed IoTAD-SCI technique on test image. From the
figure, it can be understood that the presented IoTAD-SCI technique identified the presence of two
anomalies namely ‘bicycle and truck’ in an efficient manner.

Figure 3: Anomaly detected image

Tab. 1 provides the results of detection analysis accomplished by IoTAD-SCI technique on
Test004 testbed. The results indicate that the presented IoTAD-SCI technique effectually identified all
the anomalies with maximum accuracy. For instance, on 142 frames, IoTAD-SCI technique identified
anomalies [1,2] with accy values such as 99.69% and 99.68% respectively. Likewise, on 146 frames,
the presented IoTAD-SCI technique recognized the anomalies 1 and 2 with accuracy values such as
99.08% and 98.99% correspondingly. Moreover, on 179 frames, the proposed IoTAD-SCI technique
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categorized the anomalies [1,2] with accy values such as 99.86% and 99.78% respectively. At last, on
180 frames, IoTAD-SCI technique identified the anomalies [1,2] with accy values such as 99.76% and
99.91% correspondingly.

Table 1: Accuracy of anomalies in Test004 sequences

Frame number Anomaly 1 Anomaly 2

142 99.69 99.68
146 99.08 98.99
147 99.83 99.80
148 99.75 99.82
150 99.73 99.80
178 99.76 99.84
179 99.86 99.78
180 99.76 99.91

A brief comparative anomaly detection analysis was conducted between the proposed IoTAD-
SCI technique and other methods and the results are shown in Fig. 4. The outcomes report that
the proposed IoTAD-SCI approach achieved effectual outcomes under all the frames. For instance,
with 142 frames, IoTAD-SCI technique offered a high accuracy of 99.69% whereas DLAD, RSCNN,
FRCNN, and MDT techniques obtained the least accuracy values namely, 99.37%, 98.49%, 93.21%,
and 81.39%. Concurrently, with 180 frames, the proposed IoTAD-SCI technique achieved an increased
accuracy of 99.84%, whereas DLAD, RSCNN, FRCNN, and MDT techniques reached low accuracy
values such as 99.19%, 99.14%, 86.08%, and 85.84% respectively.

Figure 4: Accuracy analysis of IoTAD-SCI technique under test004 testbed

Fig. 5 highlights the ROC analysis results achieved by IoTAD-SCI technique on test004 testbed.
The figure reports the enhanced anomaly detection outcomes of IoTAD-SCI technique with an
increased ROC value of 99.9452.
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Figure 5: ROC analysis of IoTAD-SCI technique under test004 testbed

Tab. 2 offers the results of detection analysis accomplished by IoTAD-SCI approach on Test007
testbed. The results indicate that the proposed IoTAD-SCI technique effectually identified all the
anomalies with maximum accuracy. For instance, on 040 frames, IoTAD-SCI methodology identified
the anomalies [1,2] with accy values such as 98.47% and 98.47% correspondingly. Besides, on 075
frames, IoTAD-SCI algorithm recognized the anomalies [1,2] with accy values being 96.49% and
96.59% correspondingly. Furthermore, on 135 frames, the proposed IoTAD-SCI technique catego-
rized the anomalies [1,2] with the accuracy values such as 99.75% and 99.67% respectively. Eventually,
on 180 frames, IoTAD-SCI approach identified the anomalies 1 and 2 with accy values such as 89.68%
and 89.65% correspondingly.

Table 2: Accuracy of anomalies in Test007 Sequences

Frame number Anomaly 1 Anomaly 2

040 98.47 98.47
051 98.95 99.09
075 96.49 96.59
106 88.99 89.00
123 99.56 99.86
135 99.75 99.67
158 95.89 95.84
180 89.68 89.65

A detailed comparative anomaly detection analysis was conducted upon IoTAD-SCI approach
against other techniques and the results are shown in Fig. 6. The outcomes demonstrate that the
proposed IoTAD-SCI system produced effective outcomes under all the frames. For sample, with
042 frames, the presented IoTAD-SCI technique offered a high accuracy of 98.47%, whereas DLAD,
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RSCNN, FRCNN, and MDT techniques attained the minimal accuracy values namely, 97.52%,
94.62%, 89.98%, and 85.17% respectively. In addition, with 180 frames, IoTAD-SCI approach offered a
maximum accuracy of 89.67%, whereas DLAD, RSCNN, FRCNN, and MDT methodologies reached
low accuracy values such as 88.58%, 83.65%, 81.65%, and 80.88% correspondingly.

Figure 6: Accuracy analysis of IoTAD-SCI technique under test007 testbed

Fig. 7 demonstrates the ROC analysis graph generated by IoTAD-SCI approach upon test007
testbed. The figure reveals the improved anomaly detection outcomes of IoTAD-SCI approach with
a maximum ROC of 99.9452.

Figure 7: ROC analysis of IoTAD-SCI technique under test007 testbed

Figs. 8 and 9 show the average anomaly detection outcomes of the presented IoTAD-SCI
technique against recent methods on two testbeds. The figure reports that the proposed IoTAD-
SCI technique has the ability to effectively identify the anomalies on both testbeds. For instance,
with Test004 testbed, IoTAD-SCI technique reached a high average accuracy value i.e., 99.70%
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whereas DLAD, RSCNN, FRCNN, and MDT techniques obtained low average accuracy values such
as 99.22%, 98.84%, 86.60%, and 81.27% respectively. Similarly, with Test007 testbed, the proposed
IoTAD-SCI technique reached an increased average accuracy of 96%, whereas DLAD, RSCNN,
FRCNN, and MDT techniques achieved low average accuracy values namely, 95.01%, 91.84%,
88.34%, and 84.03%.

Figure 8: Average accuracy analysis results of IoTAD-SCI technique under test004 testbed

Figure 9: Average accuracy analysis results of IoTAD-SCI technique under test007 testbed

Finally, running time analysis was conducted between the proposed IoTAD-SCI system and the
existing models and the results are shown in Tab. 3 and Fig. 10 [20–22]. The results demonstrate that
the presented IoTAD-SCI technique required minimal running time compared to other techniques.
For instance, with Test004 testbed, the IoTAD-SCI technique offered a minimum running time
of 10.159 s, whereas DLAD, RSCNN, FRCNN, and MDT techniques demanded the maximum
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running times such as 10.825, 12.355, 12.403 and 12.463 s respectively. At the same time, with Test007
testbed, the proposed IoTAD-SCI technique produced a low running time of 10.504s, whereas DLAD,
RSCNN, FRCNN, and MDT techniques attained a maximum running time of 11.043, 11.480, 11.876
and 12.000 s respectively. Based on the results and discussion made above, it can be understood that
the proposed IoTAD-SCI technique is superior compared to existing techniques.

Table 3: Running time analysis results of IoTAD-SCI technique against existing methods

Running time (sec)

Methods Test004 Test007
IOTAD-SCI 10.159 10.504
DLAD Model 10.825 11.043
RSCNN 12.355 11.480
FRCNN Model 12.403 11.876
MDT Model 12.463 12.000

Figure 10: Running time analysis of IoTAD-SCI technique with recent algorithms

5 Conclusion

In current study, an effective IoTAD-SCI technique has been developed to identify the presence
of anomalies in smart city environment. The proposed IoTAD-SCI technique involves the design of
DCN technique to detect the anomalies from input video frames. Followed by, AOA is applied to
fine tune the hyperparameters of DCN technique whereas ID3 classifier is utilized to classify the
identified objects under different classes. The experimental analysis results of IoTAD-SCI technique
against the benchmark UCSD anomaly detection dataset were inspected under different measures.
The simulation outcomes infer the superiority of the proposed IoTAD-SCI technique under different
metrics compared to other recent approaches. As a part of future work, IoTAD-SCI technique can be
realized in real time environment.
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