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Abstract: As an innovative theory and technology, quantum network coding
has become the research hotspot in quantum network communications. In
this paper, a quantum remote state preparation scheme based on quantum
network coding is proposed. Comparing with the general quantum remote
state preparation schemes, our proposed scheme brings an arbitrary unknown
quantum state finally prepared remotely through the quantum network, by
designing the appropriate encoding and decoding steps for quantum network
coding. What is worth mentioning, from the network model, this scheme is
built on the quantum k-pair network which is the expansion of the typical
bottleneck network—butterfly network. Accordingly, it can be treated as an
efficient quantum network preparation scheme due to the characteristics of
network coding, and it also makes the proposed scheme more applicable to the
large-scale quantum networks. In addition, the fact of an arbitrary unknown
quantum state remotely prepared means that the senders do not need to know
the desired quantum state. Thus, the security of the proposed scheme is higher.
Moreover, this scheme can always achieve the success probability of 1 and
1-max flow of value k. Thus, the communication efficiency of the proposed
scheme is higher. Therefore, the proposed scheme turns out to be practicable,
secure and efficient, which helps to effectively enrich the theory of quantum
remote state preparation.

Keywords: Quantum remote state preparation; quantum network coding;
quantum k-pair network

1 Introduction

In 2000, quantum remote state preparation (RSP) was first proposed by Lo [1]. RSP enables
the senders to prepare known states for remote receivers with the assistance of entangled resources
[2,3] and classical communications [4,5]. With so many years of development, RSP has already made
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significant advances in theories [6–8] and applications [9–11]. In these researches, respect to the
different target state, such as Bell state [12], GHZ state [13], W state [14], cluster state [15] and so on,
various kinds of RSP schemes have been proposed. In addition, respect to the different implementation
techniques, such as deterministic RSP [16], joint RSP [17] and controlled RSP [18], several schemes
have also been proposed.

However, with the development of quantum communication and the requirement for multi-user’s
quantum communication, point-to-point communication mode will necessarily toward to the direction
of network communication. Thus, the research of RSP over the quantum network have become
a meaningful task. In quantum network communications, as a breakthrough technology, quantum
network coding (QNC) can effectively improve the quantum communication efficiency and quantum
network throughput as compared to the traditional technology of routing. Since the first QNC scheme
proposed by Hayashi et al. [19] in 2006, a series of QNC schemes have been put forward in theories
[20–23] and applications [24–26] over the past decade. By QNC, the intermediate nodes are allowed
to encode the received information and ultimately the destination nodes can recover the original
unknown quantum state by decoding. Therefore, it is reasonable to believe that if combining RSP and
QNC, the problem of quantum state preparation over quantum networks can be solved effectively.

In this paper, a novel RSP scheme based on QNC is proposed. This scheme is assisted by the
resource of prior entanglement and classical communication, and the specified encoding or decoding
operations are performed at the corresponding nodes. In terms of the quantum state, an arbitrary
unknown quantum state possessed by the source nodes are finally prepared at the sink nodes; in terms
of the success probability, this scheme can always achieve the success probability of 1; in terms of
the network model, the quantum k-pair network as an expansion of the typical bottleneck network—
butterfly network [27–29] in QNC is constructed to propose the scheme. Thus, the proposed scheme
can effectively improve the communication efficiency and is more applicable to the scenarios of large-
scale quantum networks, which can enrich the theory of quantum remote state preparation over
quantum network.

The remainder of this paper is organized as follows. In Section 2, preliminaries including notations,
quantum k-pair network, quantum operators and quantum measurements are presented. In Section 3,
the specific RSP scheme based on QNC is proposed. In Section 4, the performance analyses including
correctness, security, practicability and achievable rate region are discussed. At last, some concluding
remarks are given in Section 5.

2 Preliminaries
2.1 Notations

The following notations will be used throughout this paper:

⊕: The addition module d; ⊗: The tensor product of vector space.

C
d: The d-dimension complex field; Zd: The integer ring with respect to addition ⊕ module d.

σx: The Pauli operator over 2-dimension space; X/R: The Pauli operator over d-dimension space.

2.2 Quantum K-Pair Network

Let us consider a directed acyclic graph (DAG) G = (V,E), where V is the set of nodes and E is the
set of edges that connect pairs of nodes in V . K pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk) constitute a
subset of V . Next, a directed acyclic network (DAN) N is deemed a quantum network if it comprises
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a DAG G and the edge quantum capacity function c : E → Z
+. The quantum k-pair network N

explored herein is shown in Fig. 1.
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Figure 1: Quantum k-pair network N

In this figure, the solid lines represent the quantum physical channels and the arrows indicate the
transmission direction of the quantum information. Let H = C

d denote a Hilbert space. According to
the task of the quantum RSP and QNC, one needs to make a quantum state |�〉S1,...,Sk

∈ H⊗k supported
on the source nodes s1, . . . , sk (in this order) remotely prepared at the sink nodes t1, . . . , tk (in this order)
through N , under the condition that c(e) ≡ 1, e ∈ E, i.e., each edge of N can transmit no more than
one qudit state over H. For i ∈ {1, 2, . . . , k}, each quantum register Si is possessed by the source node
si, while the quantum register Ti is possessed by the sink node ti. A RSP scheme based on QNC over
the quantum k-pair network refers to the corresponding protocol, which contains certain quantum
operations for all nodes in V that enable the above preparation to be accomplished successfully.

2.3 Quantum Operators

Firstly, let us introduce the controlled-X operation on a d-dimension quantum system H = C
d,

which is written as follows:

�XA→B := ∑
r∈Zd

|r〉〈r|A ⊗ X r
B, (1)

where X |i〉 = |i ⊕1 mod d〉 is an analogue of the unitary Pauli operator σx on qubits [30,31]. Based on
this, for ∀t ∈ Zd, the quantum operation constructed by performing t times the controlled-X operation
in d-dimension quantum system H = C

d is also presented here, defined as

�X t
A→B := ∑

r∈Zd

|r〉〈r|A ⊗ X rt
B . (2)

Then, another quantum operation named controlled-R operation on d-dimension quantum
system H = C

d is also presented here, defined as

�RA→B :=
d−1∑

i=0

|i〉〈i|A ⊗ Ri
B, (3)

where R|i〉 = |i − 1 mod d〉 is the reverse transformation of X on qudits.
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2.4 Quantum Measurements

In the quantum system H = C
d, quantum Fourier transform F is a unitary transformation that

transforms the computing basis states {|k〉}k∈Zd
to the Fourier basis as

|wk〉 = F |k〉 = 1√
d

d−1∑

l=0

e2πιkl/d|l〉, (4)

where ι2 = −1, F = 1√
d

d−1∑
l,k=0

e2πιkl/d|l〉〈k|. Thus, the basis states {|wk〉}k∈Zd
are called quantum Fourier

basis and the quantum measurement in Fourier basis is called quantum Fourier measurement [21,22].
Quantum Fourier measurement is usually used to measure a single-particle state over H = C

d.

In the quantum system H = C
d, the Bell states (EPR pair) are represented as follows:

|φ(M1, M2)〉 = 1√
d

d−1∑
j=0

e2πιjM1/d|j, j ⊕ M2〉, M1, M2 ∈ Zd. (5)

Hence, the basis states {|φ(M1, M2)〉}M1,M2∈Zd
are called the Bell basis, and the quantum measure-

ment in the Bell basis is called the Bell measurement. In general, Bell measurement is typically used to
jointly measure a two-particle state over H = C

d.

3 A Quantum Remote Preparation Scheme Based on Quantum Network Coding
3.1 Protocol Specification

Suppose that the arbitrary k-qudit quantum state originally possessed at the source nodes s1, . . . , sk

or desired to be prepared at the sink nodes t1, . . . , tk is written as

|�〉S =
∑

x1,...,xk∈Zd

αx1,...,xk
eιθx1,...,xk |x1〉S1

⊗ · · · ⊗ |xk〉Sk
, (6)

where all the amplitude coefficient αx1,...,xk
and the phase coefficient θx1,...,xk

are real numbers such that∑
x1,...,xk∈Zd

|αx1,...,xk
|2 = 1, the Si(i ∈ {1, 2, . . . k}) represent the registers possessed by the source node si.

And then suppose that the source nodes s1, . . . , sk and the sink nodes t1, . . . , tk initially share a 2k-
qudit entangled GHZ state as

|φ〉ST = 1√
d

∑

h∈Zd

|h, h, . . . , h〉S1
′ ,...,Sk

′ ,T1
′ ,...,Tk

′ , (7)

where for i ∈ {1, 2, . . . , k}, each quantum register Si
′ is possessed by the source node si , while quantum

register Ti
′ is possessed by the sink node ti.

Thus, the whole quantum system now becomes as

|�〉0 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk |x1, x2, . . . , xk〉S1,...,Sk

⊗ |h, h, . . . , h〉S1
′ ,...,Sk

′ ,T1
′ ,...,Tk

′ . (8)

According to the task of RSP over the quantum k-pair network N , the coefficients of |�〉(k)

S is
known only for the source nodes s1, . . . , sk and ultimately this desired k-qudit quantum should be
prepared at the sink nodes t1, . . . , tk. Now, the specific steps of the proposed RSP scheme based on
QNC are described below in detail.
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Step 1: At each source node si(i ∈ {1, 2, . . . , k}), ancillary registers Rii and Ri,i+1 are introduced,
in which each quantum state is initialized to |0H〉. Then, the quantum operators �XSi→Rii and
�XSi

′→Rii are applied to the registers Si , Si
′ and Rii, the operator �RSi→Ri,i+1

is applied to the
registers Si and Ri,i+1. Thus, the quantum state becomes

|�〉1 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk

k⊗
i=1

|xi〉Si |h〉Si
′ |h〉Ti ′ |xi ⊕ h〉Rii | − xi〉Ri,i+1

. (9)

Then, for i ∈ {1, 2, . . . , k}, the quantum registers Rii are sent from each node si to node n1; for
i ∈ {1, 2, . . . , k − 1}, registers Ri,i+1 are sent to the sink nodes ti+1; for i = k, register Ri,i+1 is sent to the
sink nodes t1. And the registers Si and Si

′ are maintained at the node si.

Step 2: At the intermediate node n1, the ancillary register Rn initialized to |0H〉 is introduced.
Afterwards, the quantum operators �XRii→Rn are applied on the registers Rii(i = 1, 2, . . . k) and
Rn, we have the quantum state:

|�〉2 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk | k⊕

i=1
xi ⊕ kh〉Rn

k⊗
i=1

|xi〉Si |h〉Si
′ |h〉Ti ′ |xi ⊕ h〉Rii | − xi〉Ri,i+1

. (10)

Then, the quantum register Rn is sent from the node n1 to the node n2 and the registers Rii(i =
1, 2, . . . k) are kept at the node n1.

Step 3: At the intermediate node n2, quantum registers ri(i = 1, 2, . . . , k) each initialized to
|0H〉 are introduced and then the quantum operator �XRn→ri is applied to the registers Rn and
ri. Thus, the quantum state becomes

|�〉3 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk | k⊕

i=1
xi ⊕ kh〉Rn

k⊗
i=1

| k⊕
i=1

xi ⊕ kh〉ri |xi〉Si |h〉Si
′ |h〉Ti ′ |xi ⊕ h〉Rii | − xi〉Ri,i+1

.

(11)

Then, k quantum registers ri(i = 1, 2, . . . , k) are transmitted from the node n2 to the sink nodes ti

respectively, and the register Rn are maintained at the node n2.

Step 4: For each sink node ti(i ∈ {1, 2, . . . , k}), the quantum register Ti initialized to |0H〉 is
introduced. Remembering that node ti(i ∈ {2, . . . , k}) has received the register Ri−1,i and the
node t1 has received the registers Rk,1 in Step 1, and register ri in Step 3, now the quantum
operator �Xri→Ti is applied to ri and Ti, �XRi−1,i→Ti (i ∈ {2, . . . , k}) is applied to Ri−1,i and Ti(
�XRk,1→T1

is applied to Rk,1 and T1). And then the quantum operator �X−k
Ti ′→Ti

is applied to Ti
′

and Ti, hence the resulting state becomes

|�〉4 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk | k⊕

i=1
xi ⊕ kh〉Rn

k⊗
i=1

| k⊕
i=1

xi ⊕ kh〉ri |xi〉Si |h〉Si
′ |xi〉Ti |h〉Ti ′ |xi ⊕ h〉Rii | − xi〉Ri,i+1

.

(12)
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Step 5: At the intermediate node n1, quantum Fourier measurement is performed on Rii(i =
1, 2, . . . k), giving measurement results mi. Because of

|l〉 = 1√
d

d−1∑

k=0

e−2πιkl/d|k〉, (13)

we have the quantum state:

|�〉5 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk

k∏

i=1

e−2πι(xi⊕h)mi/d| k⊕
i=1

xi ⊕ kh〉Rn

k⊗
i=1

| k⊕
i=1

xi ⊕ kh〉ri |xi〉Si |h〉Si
′ |xi〉Ti |h〉Ti ′ |

− xi〉Ri,i+1
. (14)

Then, k �log d
 bits classical information mi is sent from node n1 to the node si.

Step 6: At each source node si(i ∈ {1, 2, . . . , k}), once receiving the information mi, the quantum
unitary operator mapping of the state |xi〉 to e2πιmixi/d|xi〉 for each xi ∈ Zd is applied on the
register Si, and the quantum unitary operator mapping of the state |h〉 to e2πιmih/d|h〉 is applied
on the register Si

′. Thus the phase caused by Bell measurement in step 5 is corrected. Afterward,
considering the owned registers Si and Si

′, the quantum operation �XSi
′→Si and then the

Bell measurement are performed on this two qudits, providing the measurement result ui1ui2.
Because of

|j, j ⊕ u2〉 = 1√
d

d−1∑

u1=0

e−2πιju1/d|φ(u1, u2)〉, (15)

we obtain the quantum state:

|�〉6 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk

k∏

i=1

e
−2πι(

k⊕
i=1

xi⊕kh)ui1/d| k⊕
i=1

xi ⊕ kh〉Rn

k⊗
i=1

| k⊕
i=1

xi ⊕ kh〉ri |xi〉Ti |h〉Ti ′ | − xi〉Ri,i+1
.

(16)

Then, 2k �log d
 bits classical information ui1ui2 are sent from the nodes si to the sink node ti+1.
Here, the security of classical channels can be guaranteed by message authentication mechanism such
as HMAC [32], UMAC [33], etc., preventing outside attackers from tampering the transmitted classical
information. It is noted that the classical information transmission involved in the following steps is
all the same and there will be no repeated mention.

Step 7: At the sink node ti(i ∈ {1, 2, . . . , k}), upon receiving the information ui−1,1ui−1,2, the
quantum unitary operator mapping of the state |x〉 to e2πιui−1,1x/d|x〉 for each x ∈ Zd is applied
on its register ri. Thus the phase caused by Bell measurement in step 5 is corrected. And then
quantum Fourier measurement is performed on ri, giving measurement results li. The quantum
state becomes

|�〉7 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk

k∏

i=1

e
−2πι(

k⊕
i=1

xi⊕kh)li/d| k⊕
i=1

xi ⊕ kh〉Rn

k⊗
i=1

|xi〉Ti |h〉Ti ′ | − xi〉Ri,i+1
. (17)

Afterwards, k �log d
 bits classical information li is sent from node ti to the intermediate node n2.
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Step 8: At the intermediate node n2, once receiving the information li, the quantum unitary
operator mapping of the state |x〉 to e2πιlix/d|x〉 for each xi ∈ Zd is applied on the register Rn to
correct the phase. Following this, quantum Fourier measurement is performed on Rn, giving
measurement results p. Thus, we have the quantum state

|�〉8 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk e

−2πι(
k⊕

i=1
xi⊕kh)p/d k⊗

i=1
|xi〉Ti |h〉Ti ′ | − xi〉Ri,i+1

. (18)

Then, 1 �log d
 bits classical information p are sent from the nodes n2 to the sink node ti.

Step 9: At the sink node ti(i ∈ {1, 2, . . . , k}), upon receiving the information p, the quantum

unitary operator mapping of the state |h〉 to e
2πι(

k⊕
i=1

xi⊕kh)p|h〉 for each xi ∈ Zd is applied on the
register Ti

′ to correct the phase. Then, the Bell measurement is performed on the registers Ri−1,i

and Ti
′, giving measurement results q1q2. The quantum state becomes

|�〉9 = 1√
d

∑

x1,...,xk ,h∈Zd

αx1,...,xk
eιθx1,...,xk e2πιxiq1/d

k⊗
i=1

|xi〉Ti . (19)

Next, the phase is corrected by performing the quantum unitary operator mapping of the state
|x〉 to e−2πιq1 |x〉 for each xi ∈ Zd on the register Ti. Thus, the final quantum state becomes the desired
state, as follows:

|�〉T =
∑

x1,...,xk∈Zd

αx1,...,xk
eιθx1,...,xk |x1〉T1

⊗ · · · ⊗ |xk〉Tk
, (20)

That is, the arbitrary k-qudit quantum state originally possessed by the source nodes is successfully
prepared remotely at the sink nodes.

3.2 Example: The Butterfly Network Over H = C
2

For the quantum k-pair network N illustrated in Fig. 1, when k = 2, the network becomes the
typical bottleneck network—butterfly network as shown as Fig. 2. This subsection describes the
techniques developed in the previous descriptions using the example of the butterfly network over
Hilbert space H = C

2.

1 2
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2
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1x

1x

2x

2x

communication channel

sources
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Figure 2: Quantum butterfly network
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Here, the arbitrary 2-qubit quantum state originally possessed at the source nodes s1, s2 and desired
to be prepared at the sink nodes t1, t2 is written as

|�〉(2)

S = (α00eιθ00 |00〉 + α01eιθ01 |01〉 + α10eιθ10 |10〉 + α11eιθ11 |11〉)S1S2
. (21)

And the source nodes s1, s2 and the sink nodes t1, t2 initially share a 4-qubit entangled GHZ state
as

|φ〉(2)

ST = 1√
2
(|0000〉 + |1111〉)S1

′S2
′T1

′T2
′ . (22)

Thus, the initial quantum state of the whole system is

|�〉(2)

0 = 1√
2
(α00eιθ00 |00〉 + α01eιθ01 |01〉 + α10eιθ10 |10〉 + α11eιθ11 |11〉)S1S2

⊗ (|0000〉 + |1111〉)S1
′S2

′T1
′T2

′ .

(23)

Hereafter, we proceed to the specific steps of the RSP scheme based on QNC. For step 1-step 4,
it can be considered as the encoding process and the object is to make the particles in the quantum
registers mutually entangled. The corresponding schematic diagram of quantum circuit can be shown
in Fig. 3.
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Figure 3: Schematic diagram of quantum circuit for steps 1–4
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According to the specific calculations, after Step 1–4, the quantum states of the of the whole system
becomes

|�〉(2)

4 = 1√
2

[α00eιθ00(|000〉Rnr1r2
|000〉S1R11R12

|000〉S2R22R21
|0000〉S1

′S2
′T1

′T2
′ |00〉T1T2

+ |000〉Rnr1r2
|010〉S1R11R12

|010〉S2R22R21
|1111〉S1

′S2
′T1

′T2
′ |00〉T1T2

)

+α01eιθ01(|111〉Rnr1r2
|000〉S1R11R12

|111〉S2R22R21
|0000〉S1

′S2
′T1

′T2
′ |01〉T1T2

+ |111〉Rnr1r2
|010〉S1R11R12

|101〉S2R22R21

|1111〉S1
′S2

′T1
′T2

′ |01〉T1T2
)

+α10eιθ10(|111〉Rnr1r2
|111〉S1R11R12

|000〉S2R22R21
|0000〉S1

′S2
′T1

′T2
′ |10〉T1T2

+ |111〉Rnr1r2
|101〉S1R11R12

|010〉S2R22R21

|1111〉S1
′S2

′T1
′T2

′ |10〉T1T2
)

+α11eιθ11(|000〉Rnr1r2
|111〉S1R11R12

|111〉S2R22R21
|0000〉S1

′S2
′T1

′T2
′ |11〉T1T2

+ |000〉Rnr1r2
|101〉S1R11R12

|101〉S2R22R21

|1111〉S1
′S2

′T1
′T2

′ |11〉T1T2
),

(24)

Then, For Step 5-Step 9, it can be considered as the decoding process and the object is to remove
the particles in the unnecessary quantum registers. The corresponding schematic diagram of quantum
circuit can be shown in Fig. 4.
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Figure 4: Schematic diagram of quantum circuit for steps 5–9
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According to the specific calculations, the quantum states of Step 5–9 are detailed as follows:

|�〉(2)

5 = 1√
2

[α00eιθ00(|000〉Rnr1r2
|00〉S1R12

|00〉S2R21
|0000〉S1

′S2
′T1

′T2
′ |00〉T1T2

+ |000〉Rnr1r2
|00〉S1R12

|00〉S2R21

|1111〉S1
′S2

′T1
′T2

′ |00〉T1T2
)

+α01eιθ01(|111〉Rnr1r2
|00〉S1R12

|11〉S2R21
|0000〉S1

′S2
′T1

′T2
′ |01〉T1T2

+ |111〉Rnr1r2
|00〉S1R12

|11〉S2R21
|1111〉S1

′S2
′T1

′T2
′

|01〉T1T2
)

+α10eιθ10(|111〉Rnr1r2
|11〉S1R12

|00〉S2R21
|0000〉S1

′S2
′T1

′T2
′ |10〉T1T2

+ |111〉Rnr1r2
|11〉S1R12

|00〉S2R21
|1111〉S1

′S2
′T1

′T2
′

|10〉T1T2
)

+α11eιθ11(|000〉Rnr1r2
|11〉S1R12

|11〉S2R21
|0000〉S1

′S2
′T1

′T2
′ |11〉T1T2

+ |000〉Rnr1r2
|11〉S1R12

|11〉S2R21
|1111〉S1

′S2
′T1

′T2
′

|11〉T1T2
),

(25)

|�〉(2)

6 = 1√
2

[α00eιθ00(|000〉Rnr1r2
|0〉R12

|0〉R21
|00〉T1

′T2
′ |00〉T1T2

+ |000〉Rnr1r2
|0〉R12

|0〉R21
|11〉T1

′T2
′ |00〉T1T2

)

+α01eιθ01(|111〉Rnr1r2
|0〉R12

|1〉R21
|00〉T1

′T2
′ |01〉T1T2

+ |111〉Rnr1r2
|0〉R12

|1〉R21
|11〉T1

′T2
′ |01〉T1T2

)

+α10eιθ10(|111〉Rnr1r2
|1〉R12

|0〉R21
|00〉T1

′T2
′ |10〉T1T2

+ |111〉Rnr1r2
|1〉R12

|0〉R21
|11〉T1

′T2
′ |10〉T1T2

)

+α11eιθ11(|000〉Rnr1r2
|1〉R12

|1〉R21
|00〉T1

′T2
′ |11〉T1T2

+ |000〉Rnr1r2
|1〉R12

|1〉R21
|11〉T1

′T2
′ |11〉T1T2

),

(26)

|�〉(2)

7 = 1√
2

[α00eιθ00(|0〉Rn |0〉R12
|0〉R21

|00〉T1
′T2

′ |00〉T1T2
+ |0〉Rn |0〉R12

|0〉R21
|11〉T1

′T2
′ |00〉T1T2

)

+α01eιθ01(|1〉Rn |0〉R12
|1〉R21

|00〉T1
′T2

′ |01〉T1T2
+ |1〉Rn |0〉R12

|1〉R21
|11〉T1

′T2
′ |01〉T1T2

)

+α10eιθ10(|1〉Rn |1〉R12
|0〉R21

|00〉T1
′T2

′ |10〉T1T2
+ |1〉Rn |1〉R12

|0〉R21
|11〉T1

′T2
′ |10〉T1T2

)

+α11eιθ11(|0〉Rn |1〉R12
|1〉R21

|00〉T1
′T2

′ |11〉T1T2
+ |0〉Rn |1〉R12

|1〉R21
|11〉T1

′T2
′ |11〉T1T2

),

(27)

|�〉(2)

8 = 1√
2

[α00eιθ00(|0〉R12
|0〉R21

|00〉T1
′T2

′ |00〉T1T2
+ |0〉R12

|0〉R21
|11〉T1

′T2
′ |00〉T1T2

)

+α01eιθ01(|0〉R12
|1〉R21

|00〉T1
′T2

′ |01〉T1T2
+ |0〉R12

|1〉R21
|11〉T1

′T2
′ |01〉T1T2

)

+α10eιθ10(|1〉R12
|0〉R21

|00〉T1
′T2

′ |10〉T1T2
+ |1〉R12

|0〉R21
|11〉T1

′T2
′ |10〉T1T2

)

+α11eιθ11(|1〉R12
|1〉R21

|00〉T1
′T2

′ |11〉T1T2
+ |1〉R12

|1〉R21
|11〉T1

′T2
′ |11〉T1T2

),

(28)

|�〉(2)

9 = 1√
2
(α00eιθ00 |00〉T1T2

+ α01eιθ01 |01〉T1T2
+ α10eιθ10 |10〉T1T2

+ α11eιθ11 |11〉T1T2
). (29)

Here, the global phases 1/2 can be ignored during computation, so the final quantum state at the
sink nodes t1, t2 becomes the desired state, i.e., |�〉(2)

9 = |�〉(2)

S = α00eιθ00 |00〉+α01eιθ01 |01〉+α10eιθ10 |10〉+
α11eιθ11 |11〉.

That is, the arbitrary 2-qubit quantum state originally possessed by the source nodes is successfully
prepared remotely at the sink nodes.

4 Scheme Analysis
4.1 Correctness

The correctness of the proposed RSP scheme based on QNC can be verified by the specific
steps. From Section 2, in the Step 1–4, the particles at every network node are entangled to the
whole quantum system by applying relevant quantum encoding operations. The resulting quantum
state after the entanglement of each time is presented specifically. In the Step 5–9, by applying
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relevant quantum measurements called decoding operations, all the unnecessary particles are dis-
entangled from the whole quantum system and leave alone the certain particles on the sink nodes.
The resulting quantum state after the disentanglement of each time is also presented specifically.
Thus, after all the encoding and decoding steps, the final quantum state at the sink nodes formed
|�〉T = ∑

x1,...,xk∈Zd

αx1,...,xk
eιθx1,...,xk |x1〉T1

⊗ · · · ⊗ |xk〉Tk
, is exactly equal to the initial source state |�〉S =

∑
x1,...,xk∈Zd

αx1,...,xk
eιθx1,...,xk |x1〉S1

⊗···⊗|xk〉Sk
, at the source nodes. Therefore, according to all the calculating

procedure and numerical results, the correctness of the proposed RSP scheme is verified. What is worth
mentioning, in this proposed scheme, the probability of successful preparation can always reach 1.

4.2 Security

In the existing RSP schemes [12–18], the quantum state desired to be prepared remotely is known
for the senders, i.e., the amplitude coefficient and the phase coefficient is known. However, in many
actual scenarios, if the senders are not honest, then the final quantum state prepared remotely is likely
to be mistaken. In this paper, the proposed RSP scheme is based on QNC, which means that the senders
do not need to know the desired quantum state and finally it can be prepared remotely. Therefore, the
security of the proposed RSP scheme here is higher.

4.3 Practicability

In the existing RSP schemes [12–18], the point-to-point communication mode is used. With the
development of quantum communication, quantum network communication containing more users
has become a necessity. In this paper, the proposed RSP scheme based on QNC is established over
the quantum k-pair network which is the typical bottleneck network model. Using this scheme, the
quantum network congestion can be solved effectively and the communication efficiency is higher.
Thus, the proposed scheme can be more applicable to the scenarios of large-scale quantum networks.

4.4 Achievable Rate Region

As is known, the communication rate [34] between si and ti in n network uses is defined as
r(n)

i = 1
n
log|Hi|, where Hi denotes the Hilbert space of the transmitted quantum state owned by si,

and | · | denotes the dimension of the Hilbert space. Meanwhile, an edge capacity constraint [35], i.e.,
log|H(u,v)| ≤ n · c((u, v)), exists when the quantum state is transmitted with the fidelity of one over the
edge (u, v) ∈ E in n uses.

Accordingly, in the presented RSP scheme based on QNC above, the desired arbitrary unknown
quantum state is finally prepared successfully over the quantum k-pair network in single use of the
network. Thus, the 1-flow [34] value reaches

k∑

i=1

r(1)

i =
k∑

i=1

log|Hi| ≤
k∑

i=1

c((u, v)) =
k∑

i=1

1 = k, (30)

under the condition that the capacity c((u, v)) of each edge (u, v) always remains equal to 1 according to
the quantum k-pair network N . In fact, the 1-max flow is the supremum of 1-flow over all achievable
rate. Hence, 1-max flow of value k is achieved, and the achievable rate region [34,36] can be written as

{(r1, . . . , rk)|
k∑

i=1

ri ≤ k}.
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5 Conclusions

In this paper, we propose a novel RSP scheme based on QNC over the quantum k-pair network.
In terms of the quantum state, an arbitrary unknown quantum state is finally prepared at the sink
nodes; in terms of the success probability, this scheme can always achieve the success probability of 1;
in terms of the network model, the quantum k-pair network is the expansion of the typical bottleneck
network—butterfly network. Thus, the proposed scheme can effectively improve the security and
communication efficiency, and is more applicable to the large-scale quantum networks, which can
enrich the theory of quantum remote state preparation.
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