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Abstract: With the rapid development of the fresh cold chain logistics
distribution and the prevalence of low carbon concept, this paper proposed an
optimization model of low carbon fresh cold chain logistics distribution route
considering customer satisfaction, and combined with time, space, weight,
distribution rules and other constraints to optimize the distribution model.
At the same time, transportation cost, penalty cost, overloading cost, carbon
tax cost and customer satisfaction were considered as the components of the
objective function, and the thought of cost efficiency was taken into account,
so as to establish a distribution model based on the ratio of minimum total
cost to maximum satisfaction as the objective function. Then, the improved
A∗ algorithm and ant colony algorithm were used to construct the model
solution. Through the simulation analysis results of different calculation
examples, the effectiveness, efficiency and correctness of the design of the
single target low-carbon fresh agricultural products cold chain model by using
the improved ant colony algorithm were verified.

Keywords: Carbon tax cost; vehicle routing problem; cold chain; ant colony
algorithm

1 Introduction

In recent years, with the development of fresh food e-commerce, cold chain logistics distribution
has become an important mode of transportation. Compared with ordinary transportation, cold chain
logistics distribution needs to control cargo hold temperature, which will produce additional carbon
emissions. According to the report released by the International Energy Agency, the carbon emissions
of the transportation industry account for more than 20% of the global total emissions, and more than
70% of the carbon emissions generated by the transportation industry come from road transportation
[1]. At the same time, with the improvement of people’s living standards, the demand for fresh food
is also increasing, and the perishability of fresh food determines that fresh food logistics enterprises
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need to rationally plan cold chain logistics distribution, otherwise it will produce a lot of goods damage
cost. According to a survey by the Food and Agriculture Organization of the United Nations, 1/3 of
the food consumption in the world is due to waste or loss, of which 50% is fresh food [2]. Therefore,
it is a great challenge for cold chain logistics enterprises to achieve the goals of energy conservation,
emission reduction and cargo loss reduction.

Nowadays, many scholars are devoted to the cold chain vehicle routing problem of fresh products.
According to the different models, the related work can be divided into Green Vehicle Routing Problem
(GVRP), vehicle routing problem with time window and vehicle routing problem based on customer
satisfaction. The summary of the three aspects of research is as follows.

In terms of the GVRP, Erdogan et al. [3] first proposed the green vehicle routing problem.
Wang et al. [4] constructed a GVRP model with capacity constraint with the goal of minimizing
carbon emissions, and solved it with a hybrid tabu search algorithm. Poonthalir and Nadarajan
[5] took the total cost minimization as the optimization objective, and introduced greedy mutation
operator and time-varying acceleration coefficient into the particle swarm optimization algorithm
to solve the GVRP. Wu et al. [6] studied the vehicle routing problem of fresh agricultural products
with time window from two aspects of economic cost and environmental cost, and established the
time-dependent green vehicle routing problem with soft time windows model. According to the
characteristics of the model, a new variable neighborhood adaptive genetic algorithm was designed.

In terms of vehicle routing problem with time window, this problem was first proposed by Solomon
[7]. Gendreau et al. [8] studied the dynamic vehicle routing problem with time window and solved
it with tabu search algorithm. Ou et al. [9] proposed an open vehicle routing problem with time
windows considering Third Party Logistics (3PL). The problem was expressed as a Mixed Integer
Linear Programming (MILP) model with the goal of minimizing the total journey. A Coordinate
Representation Particle Swarm Optimization (CRPSO) algorithm was proposed to obtain the optimal
delivery order. Altaf et al. [10] studied the vehicle routing problem in the blood bank transportation
process, and proposed a solution based on Deep Reinforcement Learning (DRL) to address the
formulated delivery functions as Multi-objective Optimization Problems (MOPs).

In terms of vehicle routing problem based on customer satisfaction, Zhao et al. [11] established
a multi-objective optimization model based on carbon emissions, economic cost and customer
satisfaction, and designed an ant colony algorithm with multi-objective heuristic function to solve it.
Qin et al. [12] adopted cyclic evolutionary genetic algorithm to solve the model with the optimization
goal of minimizing customer cost per unit satisfaction. Zulvia et al. [13] took the sum of fuel cost,
vehicle fixed cost, depreciation cost, deterioration cost, carbon emission minimization and customer
satisfaction maximization as optimization objectives, constructed a multi-objective GVRP model with
capacity and time window constraints, and proposed a multi-objective gradient evolution algorithm
solution model.

Previous studies have made a lot of innovations in models and solving methods [14–19], which
also create conditions for subsequent research. From the current literature, related studies usually aim
at minimizing logistics cost as optimization goal, but many cost-based optimization solutions prove to
be impossible to apply in practice. Because if there is no other performance measure to balance, only
considering the minimum cost can have the opposite effect [20]. Therefore, a reasonable combination
of logistics cost and customer satisfaction can achieve a win-win situation between enterprises and
customers. At the same time, the literature of single objective function usually simply adds up all the
costs and combines them into optimization objectives, failing to consider the relationship between
each cost, while the literature of multiple objective function can only provide a Pareto solution set,
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making it difficult for decision-makers to choose the best solution. How to combine the advantages
of single objective function and multi objective function is a difficulty in current research. For green
vehicle routing optimization model with time windows, there is customer satisfaction function and the
time penalty function is a choice, not the researchers will consider both at the same time. As for the
algorithm to solve the model, the common single meta-heuristic algorithm is easy to fall into the local
optima and convergence speed is slow, so it is necessary to improve the single meta-heuristic algorithm
to improve its global search ability.

In order to solve the above problems, the model established in this paper considers the capacity
constraints and time window of vehicles. Based on the idea of cost effectiveness, the total logistics cost
and carbon tax cost generated by distribution are added together as the total distribution cost, and
then compared with customer satisfaction. Finally, the model is formed which takes the ratio of total
distribution cost and customer satisfaction as the optimization target. A∗ algorithm is combined with
ant colony algorithm to improve the efficiency of path search by taking advantage of A∗ good global
search ability and the robustness of ant colony algorithm.

Our contribution can be summarized as follows:

(1) We consider the consumption of fresh food and carbon emission in the objective function, and
the consumption and carbon emission of fresh food are generated in the transportation and
loading and unloading links;

(2) We consider both overtime penalty cost and customer satisfaction in the objective function;
(3) Comparing cost with customer satisfaction, we can measure cost and satisfaction well in the

form of ratio as the objective function;
(4) We propose an effective hybrid ant colony algorithm, verify its efficiency through algorithm

comparison experiments, and evaluate the actual effect of this method through a real case and
give some suggestions.

The rest of this article is organized as follows: Section 2 introduces the problem and all the symbols
used in this article; Section 3 shows the solution of the model; Section 4 introduces how the algorithm
is designed in detail; Section 5 is the numerical experiment and the analysis of the experimental results.
Finally, the conclusions and suggestions are given in the last two section.

2 Problem and Symbol Description
2.1 Problem Description

A distribution center needs to deliver the same fresh agricultural products to customers with a
limited window of time for service. The location of distribution center, the location of each customer,
the demand of each customer, the time window of each customer, and the carrying capacity of cold
chain vehicles are known conditions. The cold chain vehicles in the distribution center will try their
best to distribute agricultural products to customers within the time window, and there will be a certain
cost of cargo damage during the distribution process. There is a penalty cost if the cold chain vehicle
arrives outside the time window.

This paper will consider the concept of customer satisfaction and environmental protection at the
same time when studying the optimization of cold chain logistics and distribution of fresh agricultural
products. Therefore, the objective function of this paper mainly includes distribution cost, fine cost,
cargo damage cost, carbon tax cost and customer satisfaction. When choosing an algorithm to solve
the problem, this paper designs an improved ant colony algorithm. This algorithm minimizes economic
and environmental costs while maximizing customer satisfaction.



2082 CMC, 2022, vol.73, no.1

2.2 Symbol Description

The meanings of all symbols appearing in this model are as follows:

N is a set containing all customers, n ∈ {1, 2, . . . , m}; K is the total number of vehicles that can
be deployed, k ∈ {1, 2, · · · , K} ; c1 is transportation cost per unit distance; m is the total number of
customers served by the cold chain distribution center; S is the unit price of fresh agricultural products;
α1 is the loss ratio per unit time in transit; C0 is the fixed cost per vehicle; α2 is the loss ratio per unit
time during unloading; gi is the quantity demanded by customer i; lt is unloading efficiency; β1 is the
energy cost per unit time during transportation; β2 is the energy cost per unit time during unloading;
Lk

i is the amount of goods loaded when the vehicle leaves customer i; h0 is the service cost per unit
time; dij is the distance between customer i and customer j ; T (i, j) is the time it takes the vehicle to get
from customer i to customer j ; α3 is the penalty cost when the vehicle arrives within the time range[
ET ∗

i , ETi

]
; α4 is the penalty cost when the vehicle arrives within the time range

[
LTi, LT ∗

i

]
; η is the

penalty cost per unit weight of overloading goods; Q is the maximum carrying capacity of the vehicle;
U

(
tk

i

)
is customer i ‘s satisfaction with the delivery service of vehicle k; tk

i is the time when vehicle k
arrives at customer i; [ETi, LTi] is the optimum service window for customer i;

[
ET ∗

i , LT ∗
i

]
is the time

window in which customer i can accept the service; xk
ij is the decision variable, When vehicle k goes to

customer j after completing its service to customer i, xk
ij = 1, Otherwise, xk

ij = 0.

3 Mathematical Formulation
3.1 Total Logistics Cost

The total cost of logistics distribution LP1 [21] includes four aspects: transportation cost C1, cargo
damage cost C2, overtime-overload cost C3:

LP1 = min [C1 + C2 + C3] (1)

3.1.1 Transportation Cost

Transportation cost includes fixed use cost of vehicle, remuneration of delivery service personnel
and transportation cost of vehicle, which can be expressed as:

C1 = C0 ∗
K∑

k=1

xk
ij +

K∑
k=1

m∑
i=0

m∑
j=0

xk
ijh0T(i, j) +

K∑
k=1

m∑
i=0

m∑
j=0

xk
ijc1dij (2)

3.1.2 Cargo Damage Cost

The cargo loss discussed in this paper mainly includes two aspects: on the one hand, the trans-
portation loss cost C2(1) caused by time conditions and environmental changes in the transportation
of the cargo; on the other hand, the loading and unloading loss cost C2(2).caused in the loading and
unloading process:

C2 = C2(1) + C2(2) (3)

C2(1) = S
K∑

k=1

m∑
i=0

m∑
j=1

xk
ijα1T(i, j) (4)

C2(2) = S
K∑

k=1

m∑
i=0

m∑
j=1

xk
ijα2Lk

i (5)
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3.1.3 Overtime-Overloading Penalty Costs

Fresh products have the characteristics of perishable, so the demand for delivery time is relatively
high, once the delivery overtime, the corresponding punishment cost is high. In addition, when goods
are overloaded, they should be punished accordingly. Therefore, there are time penalty cost C3(1).and
overload penalty cost C3(2). Let η be unit overload penalty cost, and the total penalty cost C3 is:

C3 = C3(1) + C3(2) (6)

C3(1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞, tk
i < ETi;

α3(ET ∗
i − tk

i ), ETi ≤ tk
i < ET ∗

i ;
0, ET ∗

i ≤ tk
i < LT ∗

i ;
α4(tk

i − LT ∗
i ), LT ∗

i ≤ tk
i < LTi;

∞, tk
i > LTi.

(7)

C3(2) = η(gixk
ij − Q) (8)

3.2 A Carbon Tax Cost

The cost of carbon tax in this paper is mainly expressed through the carbon dioxide emissions
generated in the process of distribution combined with the carbon tax rate. Carbon emissions in this
paper are mainly calculated by fuel consumption, which is mainly depicted by load estimation method
[22]. Vehicle load is linearly correlated with fuel consumption. When the refrigerated vehicle carries a
cargo weight of M, the fuel quantity per unit distance of normal driving is shown as follows:

ρM = ρ0 + ρ∗ − ρ0

Q
∗ M (9)

The amount of fuel consumed from customer i to customer j is ρgi dij, ρgi .represents the fuel
consumption of the vehicle with a load of gi from customer i to customer j. When the vehicle completes
the delivery service to all customer points, the fuel consumption ff in the whole delivery process is as
follows:

ff =
K∑

k=1

m∑
i=0

m∑
j=1

xk
ijρgi dij (10)

According to Ottmar [23], there is a certain linear relationship between carbon emissions and fuel
consumption, so the cost of carbon tax in the whole distribution process can be expressed as follows:

LP2 = υωff = υω

K∑
k=1

m∑
i=0

m∑
j=1

xk
ijρgi dij (11)

Note: υ is the carbon tax rate; ω is the carbon emission coefficient.

3.3 Customer Satisfaction

The service satisfaction U of a single customer depends on the delivery service time window when
it starts service, which constitutes a fuzzy membership function of customer satisfaction [24], thus
obtaining the overall delivery service satisfaction LP3:
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LP3 = max[
K∑

k=1

m∑
i=1

U(tk
i )gi/

m∑
i=1

gi] (12)

U(tk
i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, tk
i < ETi;

tk
i − ETi

ET ∗
i − ETi

, ETi ≤ tk
i < ET ∗

i ;

1, ET ∗
i ≤ tk

i ≤ LT ∗
i ;

tk
i − LT ∗

i

LTi − LT ∗
i

, LT ∗
i < tk

i ≤ LTi;

0, tk
i > LTi.

(13)

3.4 The Complete Model

Fresh cold chain logistics route optimization model considering customer satisfaction is mainly to
establish a multi-objective optimization model to minimize cost and maximize customer satisfaction.
The result of the model is a Pareto solution set, but the decision maker still cannot make a good
judgment on how to choose a better solution from these non-inferior solutions. Therefore, based on
the idea of cost-effectiveness, this model takes the ratio of cost to customer satisfaction as the objective
function, rather than the minimization of total cost [12]. This paper establishes an objective function
(LP) that minimizes the ratio of the minimum total logistics cost, carbon tax cost and maximum
customer satisfaction in the process of cold chain distribution:

LP = min[LP1 + LP2]
max LP3

(14)

s.t.
K∑

k=1

m∑
j=0

xk
ij = 1, i ⊂ N (15)

K∑
k=1

m∑
j=1

xk
0j ≤ K (16)

Lk
0 =

K∑
k=1

m∑
j=1

xk
ijdij ≤ Q, k ∈ K (17)

ETi ≤ tk
i ≤ LTi, i ⊂ N, k ∈ K (18)

0.6 ≤ U(tk
i ) ≤ 1 (19)

Formula (14) represents the ratio of the sum of the minimum total logistics distribution and carbon
tax costs to the maximum customer satisfaction, where LP1 is cold chain distribution cost, LP2 is
carbon tax cost, LP3 is customer satisfaction; Formula (15) represents that a customer can only be
delivered by one vehicle; Formula (16) indicates that the number of vehicles delivered by all customers
cannot exceed the maximum number of vehicles that can be dispatched. Formula (17) indicates that
the amount of products loaded by a single vehicle cannot exceed the maximum loading capacity of the
vehicle. Formula (19) represents service time window constraint; Formula (20) represents the delivery
service quality, namely, the minimum acceptable customer satisfaction constraint.
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4 Algorithm Design
4.1 Search Solution Space

Ant colony algorithm mainly imitates the traveling route of ants when foraging. Ants release
pheromones when foraging, and with the increase of pheromone concentration, more and more ants
choose this path, so as to select the optimal path from the starting point to the destination [25].

Since the pheromone of ant colony algorithm is missing at the beginning of searching for the
initial path, the convergence speed is slow. Therefore, in order to shorten the searching time of ant
colony algorithm, this study adopts the method of combining A Star Algorithm with it. Because A
Star Algorithm has fast global search ability, it does not need to traverse the whole solution space to
find the optimal solution, but selects the search direction with the highest concentration according to
the heuristic function. The traditional A-star algorithm needs to conduct global search when seeking
the optimal path. In order to further improve efficiency, this paper changes it:

f (n) = g(n) + τh(n) (20)

f (n) is the minimum cost estimate from the initial state to the target state via state n; g(n) is the
minimum cost in the state space to go from the initial state to state n; h(n) is the minimum estimated
cost of the path from state n to the target state; τ is the proportional coefficient of h(n), τ ∈ [0, 1]. In
general, the value of h(n) affects the degree of inspiration in global path planning. When h(n) is small,
A star algorithm will follow the shortest path, resulting in a longer running time. When h(n) is large,
the running speed is fast and the walking path length may not be the shortest, so it needs to weigh
according to the actual situation. Here, the Euclidean distance is used to find the value of h(n), and
g(n) represents the sum of the cost of the route from the distribution center to the customer point.

4.2 Pheromone Renewal

The concentration of pheromone released by ants during foraging will change with time, and
the longer the time, the lower the concentration of pheromone released by ants. The parameter ρ is
pheromone volatile factor, and its value is between 0 and 1. The larger the parameter ρ is, the faster
the pheromone volatilized. As the ant completes each search, the corresponding weight is updated.

τij (t + 1) = (1 − ρ) τij (t) + 	τij (21)

	τij =
n∑

k=1

	τ k
ij (22)

	τ k
ij =

⎧⎨
⎩

Q
lk

, ant k takes the path(i, j)

0, other
(23)

τij(t).is the pheromone concentration on the road section (i, j) after time t; 	τij.is the sum of
pheromone concentrations released by all ants on the road (i, j); 	τ k

ij is the pheromone concentration
released by the k ant at the passage (i, j); Q is a constant, representing the total amount of pheromone
released by the ant in one cycle; lk is the path length of ant k.

4.3 Calculate the State Transition Probability

The search space M determines the current search direction of ants. Under different m values,
the same road section has different transfer probabilities. The probability of ants moving from path P
between nodes i and j is:
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Pk
ij =

⎧⎪⎨
⎪⎩

[τij(t)]
α[ηij(t)]

β

∑
s ∈ allowk

[τis(t)]
α[ηis(t)]

β
, s ∈ allowk

0, s /∈ allowk

(24)

ηij(t) is heuristic function, ηij(t) = 1/dij.represents the expectation of the ant to move from city i to city
j; allowk(k = 1, 2, · · · , m) is the collection of cities to be visited by ant k; α is the importance factor of
pheromone, and the larger the value, the better; β is the importance factor of heuristic function, and
the larger the value, the better.

4.4 Algorithm Steps

Step 1: Initialize parameters.

Step 2: Determine the initial pheromone distribution through the A-star algorithm.

Step 3: The ants start from the starting point and move step by step by calculating the transition
probability.

Step 4: After completing a cycle, perform pheromone update to complete a round of iterations.

Step 5: Repeat the above steps until the maximum number of iterations.

5 Analysis of Examples
5.1 Instance Parameters Selection and Setting

This paper adopts the Solomon benchmark test package in VRPTW database [7], and the data
set in the test package is divided into three categories:

(1) R Category: The distribution of each customer demand point is randomly distributed;
(2) C Category: The geographical location of each customer point is evenly distributed;
(3) RC Category: The coordinates of each customer point can be divided into random distribution

and uniform distribution.

There are three customer scales of 100/50/25 in each example, the latter two are obtained by
extracting the distribution information of the top 50 and top 25 customer points in sequence based
on 100 customer points. This case allocation method does not conform to the principle of customer
selection, so this paper adopts the principle of random selection and randomly selects 50 customer
points from 100 examples as new examples for analysis.

The algorithm was programmed by MATLAB R2018a and ran on a computer with a CPU of
1.90 GHz and a memory of 4G. Refer to the parameter setting method in reference [26], and the
parameters will be set as follows: Q = 200, max iter = 200, m = 50, ET/LT extracted from the
data of calculation examples.

5.2 Results Analysis
5.2.1 The Problem of Different Customer Distribution

For multi-type example analysis, According to TC (total distribution cost), TD (total distance
traveled), TS (carbon tax cost), ACS (average customer satisfaction), VN (number of vehicles used),
CPUT (program run time) Tax rate :0.05 yuan/kg.

As can be seen from Tabs. 1 and 2:
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Table 1: Optimization results of each index in different example 100 data

EX TC TD TS ACS VN CPUT

C101 786650 1415.4 1224.15 99.65 15 412
C102 718980 1411.2 1118.5 1 14 413
C103 644920 1318.9 1003.8 95.28 12 417
C104 408700 1203.0 635.25 89.83 11 442
C105 618820 1291.3 962.6 99.85 12 405
R101 1853700 2660.6 2909.9 89.69 25 394
R102 1254600 2417.6 1953.05 83.92 22 341
R103 879130 1323.3 1368.05 99.48 14 388
R104 487850 1452.7 758.35 99.25 13 393
R105 1065500 2076.9 1658.3 99.98 19 375
RC101 1358600 2682.2 2116.15 99.56 21 389
RC102 1069200 2230.0 1664.7 98.33 17 391
RC103 728890 1802.7 1134.4 95.87 14 391
RC104 588610 1569.6 915.65 99.55 13 414
RC105 1285600 2296.1 1957.2 96.22 20 401

Table 2: Optimization results of each index in different example 50 data

EX TC TD TS ACS VN CPUT

C101.50 318300 1278.1 494.82 97.92 9 139
C102.50 408650 1388.1 635.4 97.69 8 111
C103.50 225160 1161.1 349.88 93.09 6 125
C104.50 124660 725.11 193.215 84.65 6 121
C105.50 343240 1211.3 533.75 1 7 118
R101.50 560310 1457.0 870.75 79.93 15 103
R102.50 420740 1236.6 653.8 80.64 13 117
R103.50 273990 1135.1 425.4 80.51 9 104
R104.50 202080 900.7 313.37 92.23 8 108
R105.50 273470 1091.5 424.36 99.31 11 110
Rc101.50 444800 1494.4 691.35 95.48 11 107
Rc102.50 295520 1252.3 459.025 92.05 9 113
RC103.50 268370 1097.2 416.86 93.47 7 138
RC104.50 205220 1019.8 318.51 98.59 8 112
RC105.50 432740 1422.8 672.75 92.31 11 107

(1) The maximum running time of the 100 data program is 442 s, and the maximum running time
of the 50 data program is 139 s, indicating that the algorithm in this paper can effectively solve
different calculation examples in a short time.
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(2) Class C has the lowest total distribution cost, the shortest vehicle driving distance, the lowest
carbon tax cost, the least number of vehicles used, but the longest running time. The reason is
that the customer distribution of class C calculation example is relatively concentrated, and the
distance between each point is short, but the time window and service time are long. Therefore,
all the indexes related to distance are small and the running time is long.

(3) Compared with the C example, the total distribution cost, distribution distance and carbon tax
cost of the R and RC examples are larger, and the number of vehicles used is larger. The reason
is that the customers of the R and RC examples are randomly distributed, and the distance
between each customer is longer, so the items related to distance are larger when completing
the delivery. However, the customer time window and service time are short, so the running
time is shorter than class C.

(4) The results of 100 samples and 50 samples selected from all kinds of calculation examples are
basically consistent, indicating the correctness of calculation examples.

In this paper, the path planning diagrams of the data of 100 samples and 50 samples are selected
for analysis, namely, C101.100, R103.50, RC101.100, and RC103.50. As shown in the following Fig. 1,
the distribution path of class C is relatively regular due to the centralized distribution of customers at
each point, while the distribution path of class R and RC is not obvious due to the random distribution
of customers.

Figure 1: Vehicle routing diagram of C101.100, R103.50, RC101.100, and RC103.50
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5.2.2 Optimization Results of Practical Examples

Combined with the model established in this paper and the design algorithm, taking Y cold chain
logistics distribution enterprise in Pudong New Area of Shanghai as an example to verify. Mainly
based on the 40 customers around the enterprise for distribution, the location, demand, service time
window and other information of each customer are shown in Tab. 3. Assume that the vehicle starts
from the distribution center and travels at a uniform speed. The vehicle parameters are as follows:
S = 200 yuan/t, α1 = 0.02, α2 = 0.03, β1 = 15 yuan/h, β2 = 20 yuan/h, c1 = 7.25 yuan/L,
ω = 2.63 kg/L, ρ0 = 0.165 L/km, ρ∗ = 0.377 L/km, C0 = 200 yuan/car:

Table 3: Customer information

Serial number X coordinate Y coordinate Quantity demand ET LT Service time

0 50 50 631 0 690 0
1 88 68 10 30 150 20
2 22 70 30 120 210 10
3 65 66 10 30 150 20
4 96 68 10 60 170 20
5 63 65 10 70 180 25
6 12 69 20 90 210 25
7 43 66 20 110 210 22
8 83 68 20 120 210 15
9 100 70 10 90 180 15
10 50 66 10 90 210 15
11 63 69 10 120 240 15
12 75 85 20 120 210 10
13 49 75 30 120 240 10
14 53 85 10 120 210 20
15 54 80 40 80 180 25
16 80 85 40 90 190 20
17 67 75 20 90 190 20
18 13 75 20 140 210 10
19 13 80 10 60 180 30
20 60 50 10 140 210 15
21 82 52 20 178 574 18
22 40 62 20 100 625 20
23 92 55 10 169 305 19
24 73 50 10 53 475 15
25 20 52 40 165 674 25
26 69 55 10 171 267 11
27 54 52 10 146 325 30
28 98 55 20 76 418 24
29 35 50 10 135 445 24
30 89 55 10 102 654 16
31 49 35 20 195 331 26

(Continued)
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Table 3: Continued
Serial number X coordinate Y coordinate Quantity demand ET LT Service time

32 29 40 30 139 637 24
33 8 40 40 137 645 14
34 60 45 20 146 608 14
35 23 35 10 156 533 26
36 27 45 10 189 676 23
37 42 40 20 104 228 27
38 94 40 30 145 629 18
39 39 45 20 129 255 17
40 62 30 10 130 378 25

After simulating the target model through MATLAB based on the improved ant colony algorithm,
the simulation results of various indicators based on Y enterprise are shown in Tab. 4, the vehicle
routing is shown in Fig. 2.

Table 4: Instance data results

Indicators Numeric value

TC 534200
TD 17335
TS 830.95
ACS 99.46
VN 12
CPUT 82

Figure 2: Vehicle routing diagram of example data
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It can be seen from the obtained data that the analysis of the case is basically normal, the
satisfaction index and other indicators are within the normal range, and the distribution path graph is
in line with the normal VRP model operation results.

5.3 Algorithm Comparison Test

The improved ant colony algorithm and the model considering satisfaction were compared with
the original ant colony algorithm and the model not considering satisfaction temporarily, and the
advantages of the improved algorithm were observed by comparing the simulation results before and
after.

The proposed algorithm was compared with the original ant colony algorithm, and 6 examples of
C103, C104, R104, R104, RC103 and RC104 were randomly selected for testing. The parameters will
be set as follows: Q = 200, max iter = 200, m = 50, ET/LT extracted from the data of calculation
examples. The results are shown in the following Tab. 5.

Table 5: Results of different examples solved by improved ant colony algorithm and original ant colony
algorithm

GTD GVN GCPUT TD VN CPUT

C103 1318.9 12 417 1423.2 14 399
C104 1203 11 442 1345.4 12 423
R103 1323.3 14 388 1567.1 17 354
R104 1452.7 13 393 1627.3 15 367
RC103 1802.7 14 391 1987.5 17 376
RC104 1569.6 13 414 1723.4 15 385

The model without considering the requirement of satisfaction was simulated, and three data
from various calculation examples were selected for analysis, namely, C101.100, C102.100, C103.100,
R101.100 and RC101.100. The simulation results are shown in Tab. 6. The vehicle routing diagram is
shown in Fig. 3.

Table 6: Simulation results of different examples without considering satisfaction requirements

EX TC TD TS VN CPUT

C101.100 329740 1015 512.5 10 207
C102.100 316330 978.95 491.5 10 212
C103.100 379910 1240.3 590.8 10 215
R101.100 305840 1241.7 475.6 8 191
R102.100 327160 1298.9 508.9 8 207
R103.100 344250 1295.7 535.6 8 206
RC101.100 376920 1320.6 586.4 9 212
RC102.100 434850 1607.7 676.8 9 217
RC103.100 411160 1568.1 639.8 9 211
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Figure 3: Vehicle routing diagram of C103.100 and R103.100

As can be seen from Tab. 6 and Fig. 3:

(1) The improved ant colony algorithm is better than the original ant colony algorithm for the six
groups of experimental results. For example, the TD of the improved total distribution distance
is 1318.9, which is smaller than the original TD1423.2. For the same calculation example and
the same data, the number of original vehicles is more than the number of vehicles after the
improved algorithm. And the overall running time is longer than the improved ant colony
algorithm, so the effectiveness of the improved algorithm is verified on the whole.

(2) When the objective function does not consider satisfaction, the operation results of all kinds
of calculation examples are better than that of satisfaction. For example, the total distribution
cost TC of 100 data points of all kinds of calculation examples in the non-objective function of
satisfaction is nearly 50% less than that of 100 data points of all kinds of calculation examples
in this model, the total distribution path is nearly 34% less, and the overall carbon tax cost is
55% less. And the number of vehicles used has been greatly reduced. The overall running results
are in line with the actual situation. When the objective function constraints are reduced, the
model optimization does not need to consider too many restrictions, so the running results are
better. It shows that the overall distribution efficiency is higher and the cost is lower without
considering the customer satisfaction at the completion of the distribution state.

(3) As shown in Fig. 3, when satisfaction is not an objective function, the overall running roadmap
still conforms to the distribution of various calculation examples, indicating the correctness
and rationality of the algorithm. At the same time, when satisfaction is not a part of the
objective function, although the overall running route still conforms to the distribution of
calculation examples, there is no need to consider too many limiting factors in algorithm
simulation due to the reduction of objective function optimization objectives, and the most
convenient and fast distribution route can be selected from the feasible distribution scheme to
complete all the distribution tasks. Therefore, all indicators in the overall running results are
smaller than the original target model, which conforms to the theoretical logic, indicating that
the calculation example is correct.
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6 Conclusion

This paper proposed an optimization model of low carbon fresh cold chain logistics distribution
path considering customer satisfaction, and combined with time window constraints, load limit and
delivery requirements to optimize the distribution model, at the same time, transportation cost, penalty
cost, overloading cost, carbon tax cost and customer satisfaction were considered as the components
of the objective function, and the thought of cost efficiency was taken into account, so as to establish a
distribution model based on the ratio of minimum total cost to maximum satisfaction as the objective
function. After that, the improved A∗ algorithm and ant colony algorithm were combined to conduct
simulation analysis on the objective function. The simulation data came from VRP database and real
example data. Then through MATLAB software simulation analysis, and get simulation data results
and roadmap. Simulation results show that:

(1) The improved ant colony algorithm can effectively reduce the total distribution cost, reduce
carbon emissions and reduce the number of vehicles used;

(2) The overall distribution cost of the improved ant colony algorithm increases compared with
the original algorithm due to the consideration of carbon tax;

(3) The overall optimization model conforms to VRP optimization results, indicating the correct-
ness of the model constructed in this paper.

7 Discussion

This paper focuses on the optimization of low-carbon fresh cold chain transportation model based
on customer satisfaction. However, because the whole model is based on the constraint conditions of
assumed distribution requirements and distribution results, there are still many different solutions
for different distribution requirements. Therefore, in the future research, in-depth research can be
conducted on the following types:

(1) The problem studied in this paper is that fresh products can be applied to logistics operations
at the same temperature environment, but there are various types of fresh products distributed
in real life, and the appropriate temperature of many products is not the same. Therefore,
the optimization research of fresh cold chain logistics distribution with multi-temperature
coordination can be carried out in the future.

(2) For the convenience of calculation, the speed of vehicle transportation is set as a constant
value in this paper. But in the actual situation, the distribution environment is limited by the
distribution time, distribution environment, distribution location, etc. Generally speaking, the
vehicle distribution speed is dynamic change. Therefore, in future studies, the real-time speed of
cold chain distribution vehicles under time-varying road network conditions can be calculated.

(3) This paper assumes that the vehicle does not need to return to the distribution point after
completing the task of reaching the distribution point from the distribution center. Therefore,
the subsequent operation of vehicles will not be included in the consideration center of
the whole system. However, based on the actual distribution situation, after completing the
distribution task, most vehicles need to return to the original distribution center, and the route
planning scheme required for the return trip is missing. Therefore, the future research direction
can be based on the overall planning of the route after the vehicle completes the delivery task
and returns.
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