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Abstract: To apply the fictitious domain method and conduct numerical
experiments, a boundary value problem for an ordinary differential equa-
tion is considered. The results of numerical calculations for different values
of the iterative parameter τ and the small parameter ε are presented. A
study of the auxiliary problem of the fictitious domain method for Navier-
Stokes equations with continuation into a fictitious subdomain by higher
coefficients with a small parameter is carried out. A generalized solution
of the auxiliary problem of the fictitious domain method with continuation
by higher coefficients with a small parameter is determined. After all the
above mathematical studies, a computational algorithm has been developed
for the numerical solution of the problem. Two methods were used to solve
the problem numerically. The first variant is the fictitious domain method
associated with the modification of nonlinear terms in a fictitious subdomain.
The model problem shows the effectiveness of using such a modification. The
proposed version of the method is used to solve two problems at once that arise
while numerically solving systems of Navier-Stokes equations: the problem of
a curved boundary of an arbitrary domain and the problem of absence of a
boundary condition for pressure in physical formulation of the internal flow
problem. The main advantage of this method is its universality in development
of computer programs. The second method used calculation on a uniform grid
inside the area. When numerically implementing the solution on a uniform
grid inside the domain, using this method it’s possible to accurately take into
account the boundaries of the curved domain and ensure the accuracy of the
value of the function at the boundaries of the domain. Methodical calculations
were carried out, the results of numerical calculations were obtained. When
conducting numerical experiments in both cases, quantitative and qualitative
indicators of numerical results coincide.
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1 Introduction

At the beginnig we will give a literature review on the application of the fictitious domain method.
Currently, there are several methods for the numerical solution of boundary value problems in complex
geometric domains, such as the method of curved grids and the fictitious domain method. The
construction of curved grids for the numerical solution of problems requires the transformation of
the equation into curved coordinates, which has a more complex form than the original equations.
When constructing curved grids, various requirements are imposed on difference equations, which
makes the construction of curved grids a difficult mathematical task. Therefore, for the numerical
solution of a wide class of problems of mathematical physics in an arbitrary domain, it is effective
to use the fictitious domain method [1,2]. The fundamental works on the application of the fictitious
domain method include the works of Vabischevich et al. [1–8]. Works [1,2] are devoted to the fictitious
domain method in the numerical solution of problems of mathematical physics in complex areas. The
fictitious domain method is based on the transition to a problem in a regular area that entirely contains
the original one. The issues of substantiation of such an approach at the differential level in the study
of boundary value problems for elliptic and parabolic equations, eigenvalue problems are considered.
Modifications of well-known iterative methods are constructed to solve grid problems that arise when
using the fictitious domain method. The possibilities of the fictitious domain method are illustrated by
examples of solving problems of ideal and viscous incompressible fluid, filtration under a hydraulic
structure. In [3,4], the fictitious domain method is applied to elliptic equations. Error estimates are
obtained for solving problems using the fictitious domain method. Lagrange multipliers based on
methods of fictitious domains are applied. Papers [5–8] are devoted to the application of the fictitious
domain method for solving computational fluid dynamics problems.

The fictitious domain method for the Navier-Stokes equations is the subject of works by Bugrov
et al. [9]. Smagulov et al. [10] proposed the fictitious domain method for hydrodynamic equations in
multiply connected domains.

In [11], a variation of the fictitious domain method for the Navier-Stokes equations for a viscous
incompressible fluid in the velocity and pressure variables was proposed. Moreover, a constant value
was imposed on pressure at the boundary of the auxiliary domain. This condition allows obtaining the
Dirichlet problem for the Poisson equation for pressure which admits the development and application
of effective iterative numerical methods for its solution.

The fictitious domain method is utilized in solving problems of computational fluid dynamics
such as modeling the motion of particles in a fluid flow [12], the motion of an incompressible fluid
[13], the two-phase Stokes problem including the surface tension force [14], the problem of flow around
moving or deformable bodies fluid flow [15–17] and others.

In [18], the spectral element/HP method was applied to perform direct numerical simulation
(DNS) for one row of turbine blades T106A using open source software Nektar++. The main goal of
the current research is to perform preliminary researches for uniform, stable flow around an aerody-
namic profile using the Nektar++ solver for 2D Navier-Stokes equations for incompressible flow.

In [19], the fictitious domain method was applied to simulate the interaction of liquid particles
with the Navier slip boundary condition. Numerical experiments show that the method works well for
an anisotropic particle in a flow with the Navier slip boundary condition.

In [20], fictitious domain method with a H1 -penalty for the Stokes problem with a Dirichlet
boundary condition is studied. Work [21] is devoted to the application of the fictitious domain method
in the numerical simulation of a pulse oscillation converter. In [22], fictitious domain method with a
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distributed Lagrange multiplier was studied for parabolic problems of a jump-like type with moving
boundaries.

In [23], the influence of rotation and hydrostatic initial stresses under the influence of an
electromagnetic field incident on the outer surface of a semiconductor medium was investigated.

Papers [24–27] are devoted to the study of fictitious domain method for problems with discon-
tinuous coefficients. Elliptic type equations with strongly varying coefficients are considered and
investigated in [26–27]. Equations of this type are obtained using fictitious domain method. A special
method is used for the numerical solution of an elliptic equation with strongly varying coefficients. For
the obtained problem, the convergence rate estimation theorem of the developed numerical algorithm
is proved. Based on obtained estimates, a computational algorithm was developed and numerical
calculations were performed to illustrate the effectiveness of the proposed method. Work [28] is devoted
to the development of new exact and numerical solutions for the 1-dimensional integro-differential
Ito equation using the methods of 1-expansion and finite differences, respectively. Trigonometric,
hyperbolic and rational solutions are successfully presented. The stability and accuracy of the obtained
numerical simulation are discussed. The presented graphical comparison shows that the exact and
numerical solutions almost coincide with each other. Analytical and numerical solutions of the
generalized Benjamin-Bona-Mahoney equation (GBBM) are investigated in [29]. The exact solution
is obtained analytically, while numerical solutions are demonstrated using some methods, namely
adaptive moving mesh and uniform mesh methods. The exact solution is presented in the form of
convergent power series. Finite differences are also used to discretize the BBM equation.

The works [30–32] are devoted to the application of a parallel computational algorithm for
fictitious domain method. In [30], a parallel computational algorithm is constructed using the fictitious
domain method for the three-dimensional Helmholtz equation. Work [31] is devoted to modeling
turbulent flow in a channel using fictitious domain method. The paper [32] describes the possibilities
of using the fictitious domain method for biomechanics problems.

The work [33] is aimed at studying the effect of rotation on the general model of generalized
thermo-microstriction equations for a homogeneous isotropic elastic semi-spatial solid whose surface
is subjected to thermal shock. Comparisons are made with the results in the presence and absence of
rotation, as well as in the presence and absence of microextension constants between the two theories.

In [34], the influence of variable thermal conductivity, which depends on temperature, is consid-
ered in the context of photothermal diffusion (PTD). The PTD process is applied using the theory of
thermoelasticity under chemical action. The presented model describes the interaction between elastic-
thermal-plasma waves based on the properties of the material of a semiconductor elastic medium. The
Laplace transform is used to solve control equations in one dimension of a thin circular plate. Complete
solutions in the time domain are observed using the numerical approximation method. Physical fields
with some comparisons are presented analytically and graphically.

The paper [35] presents the results of a study of the Navier-Stokes equations in numerical modeling
in two-connected domains. Two methods are used to solve this equation numerically. In the first
method, the condition of unambiguity of pressure is used for numerical solutions of difference
equations for the functions of current and velocity vortex. To obtain a numerical solution of the elliptic
equation, which is obtained for current functions is found as the sum of two problems. The second
alternative method for solving the difference problem, fictitious domain method is considered. In this
method, there is no need to satisfy the condition of one-digit pressure, so it is easy to implement.
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In [36], the augmented domain method is considered for numerical simulation of the flow of a
viscous incompressible fluid in complex geometric domains. The problem is considered in a discretely
given two-connected domain with a curved boundary. Spline interpolation of curved boundaries
is performed. A monotonic finite difference scheme and an algorithm for numerical realization of
the Navier-Stokes equation for a viscous incompressible fluid are developed. Numerical results are
obtained for different numbers of grid nodes.

Glowinski et al. [5,37–39] considers a family of domain decomposition methods based on the
explicit use of the Lagrange multiplier defined on the actual boundary. The proposed technique
associated with true boundary conditions is common for modeling inviscid incompressible potential
flows. According to the proposed method, the original differential problem is reduced to an optimal
control problem with a saddle point, and the iterative method of conjugate gradients is used for its
numerical implementation.

In [40], the fictitious domain method without Lagrange multipliers is used for numerical simu-
lation of the suspension concentration. The boundary is tracked to delimit the domains occupied by
liquid and solid particles. The particle indicator function is constructed using the Heaviside function.
Further, the Heaviside function is approximated using the hyperbolic tangent in a small neighborhood
(proportional to the grid step) around the boundary. Such a continuous function ensures smooth
change, improves numerical accuracy and reliability.

Let us dwell on the advantages and disadvantages of the existing variants of the fictitious
domain methods. The method proposed and implemented in [5,37–39] allows satisfying the boundary
conditions on the actual boundary using variational principles. Two meshes are constructed for the
finite element solution in the extended domain: triangulation over the entire domain and a curvilinear
mesh on the actual boundary. Then, the desired variables are matched on the curvilinear boundary at
each iteration of the conjugate gradient method. In some cases, this process may behave worse than the
solution of the original problem on a non-uniform mesh consistent with a curvilinear boundary. The
results of numerical calculations show convergence to the solution “in the average” due to the use of
variational principles since the functional containing the main equation and the boundary condition
is minimized.

Therefore, in this paper, the authors propose a method that allows constructing a homogeneous
difference scheme in the entire extended domain which is a convenient tool in terms of programming
automation. At the same time, a reasonable continuation of the main equation coefficients leads to
the convergence of the solution to the desired solution in the original domain, which is confirmed by
mathematically proven statements and the results of numerical calculations.

In this work, two methods are applied for the numerical solution of the formulated problem.
The first one is the fictitious domain method associated with the modification of nonlinear terms
in a fictitious subdomain. The model problem shows the efficiency of using such a modification.
The proposed variation of the method is used to solve two problems at once that arise in the
numerical solution of the Navier-Stokes equations: the problem of the curvilinear boundary of an
arbitrary domain and the problem of the absence of a boundary condition for pressure in the physical
formulation of the internal flow problem.

The second method used the calculation on a uniform mesh inside the domain. The solution on a
uniform mesh inside the domain makes it possible to accurately take into account the boundaries of
the curved domain and ensures the accuracy of the function value on the boundaries of the domain in
the numerical implementation.
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2 One-Dimensional Problem

Consider the boundary value problem for the ordinary differential equation:

y′′ − 2y′ = −2, y (0) = y (0.5) = 0 (1)

which has the known exact solution:

y =
(
1 − e2x

)
2 (e − 1)

+ x.

We apply the fictitious domain method for problem (1) in the form
d
dx

(
a (x)

dv
∂x

)
− 2

d (b (x) v)
dx

= f ε (x) , 0 < x < 1 (2)

v (0) = v (1) = 0 (3)

with the agreement conditions imposed at x = 0.5:

[v]x=0.5 =
[

a (x)
dv
dx

− b (x) v
]

x=0.5

= 0. (4)

The coefficients in (2) are defined as follows:

a (x) =
{

1, 0 < x < 0, 5
1
ε2

, 0, 5 < x < 1
, f ε (x) =

{−2, 0 < x < 0, 5
0, 0, 5 < x < 1 (5)

If b (x) =
{

1, 0 < x < 0.5
1
ε
, 0.5 < x < 1 then the solution to problem (2)–(4) has the form

vε (x) =
{

C1 + C3 · e2x + x, 0 < x < 0.5
C2 + C4 · e2εx, 0.5 < x < 1 , (6)

where C1 = 1

2 (e − 1)
2 − ε (1 − eε)

ε (1 − eε) (e2 − 1) − (1 + eε) (e − 1)
2 ,

C3 = ε (1 − eε)

ε (1 − eε) (e2 − 1) − (1 + eε) (e − 1)
2 − 1

2 (e − 1)
2

C2 = − ε · eε

ε (1 − eε) (e + 1) − (1 + eε) (e − 1)
, C4 = ε · e−ε

ε (1 − eε) (e + 1) − (1 + eε) (e − 1)

If b (x) = 1, 0 < x < 1 then the solution to problem (2)–(4) has the form

vε (x) =
{

C1 + C3 · e2x + x, 0 < x < 0.5
C2 + C4 · e2ε2x, 0.5 < x < 1

(7)

where C1 = e − 1

2 (e + 1)
(
e + e−ε2

) , C3 = − e − 1

2 (e + 1)
(
e + e−ε2

) , C2 = − eε2

2
(
e + eε2

) ,

C4 = − e−ε2

2
(
e + eε2

) .

By comparing the solutions of the one-dimensional model problem, we see that in the first case,
when 0.5 < x < 1, the solution vε (x) directly proportional to the small parameter ε. Therefore, it can
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be concluded that in case of b (x) = 1
ε
, 0.5 < x < 1 the solution of the approximate problem in a

fictitious subdomain converges to the solution of the original problem faster than in case of b (x) = 1,
0.5 < x < 1.

We consider the following non-stationary equation for the numerical implementation of the one-
dimensional equation of the fictitious domain method by the establishment method:
dv
dt

= d
dx

(
a (x)

dv
∂x

)
− 2v

d (b (x) v)
dx

− f ε (x) (8)

which has the known exact solution:

v =
(
1 − e2x

)
2 (e − 1)

+ x.

The coefficients are defined as follows:

a (x) =
{

1, 0 < x < 0, 5
1
ε2

, 0, 5 < x < 1
, b (x) =

{
1, 0 < x < 0.5
1
ε
, 0.5 < x < 1

f ε (x) =
⎧⎨
⎩

e2x (2x − 1) − 1
e − 1

− e2x − e4x

(e − 1)
2 − 2x, 0 < x < 0, 5

0, 0, 5 < x < 1
(9)

Let us construct a non-uniform mesh that thickens in the neighborhood of the actual boundary,
x = 0.5. Introduce the parameter t, 0 < t < 1. Let us construct a uniform grid according to t,
ti = (i − 1) /N, i = 1, 2, . . . , N +1. The mesh in the integration domain is defined using the following
formula: xi = 4 (ti − 0, 5)

3 + 0, 5, i = 1, 2, . . . , N + 1.

The steps of a non-uniform mesh thickening near x = 0.5 are defined as

hi = xi − xi−1, i = 1, 2, . . . , N,

�i = 0, 5 (hi+1 + hi) .

Then the corresponding difference scheme on a nonuniform mesh has the form

vn+1
i − vn

i

τ
= 1
�i

[
ai+1/2

vn+1
i+1 − vn+1

i

hi+1

− ai−1/2

vn+1
i − vn+1

i−1

hi

]
−

−
[(

vn
i − ∣∣vn

i

∣∣) (
bi+1vn+1

i+1 − bivn+1
i

)
hi+1

+
(
vn

i + ∣∣vn
i

∣∣) (
bivn+1

i − bi−1vn+1
i−1

)
hi

]
− f ε

i .

Fig. 1 and Tab. 1 show the results of numerical calculations for various values of the iterative
parameter τ and small parameter ε. Methodological calculations were carried out using two schemes.
The calculation results demonstrate good convergence of the auxiliary problem solution of the
fictitious domain method to the solution of the main problem in the original domain. In this case,
the maximum deviation is 0,00003472.
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Figure 1: Plot of the numerical solution in comparison with the exact solution

Table 1: Results for different values of the parameter ε

Iteration parameter, τ 0.001 0.0001 0.0001 0.0001

Small parameter, ε 10−3 10−6 10−9 10−12

Non-uniform steps of
the mesh

0.01 0.01 0.01 0.01

Error, ‖vε − vT‖C =
maxi

∣∣vi
ε − vT ,i

∣∣ 0.00003329 0.00003343 0.00003343 0.00003343

Number of iterations, n
Scheme 1.
b (x) = 1, 0 ≤ x ≤ 1

338 336 336 336

Number of iterations, n
Scheme 2.
b (x) =⎧⎨
⎩

1, 0 ≤ x ≤ 0, 5
1
ε

, 0, 5 ≤ x ≤ 1

338 336 336 336

3 Multivariable Problem

Formulation of the problem. Let us consider an initial-boundary value problem for an unsteady
flow of a viscous incompressible fluid in a bounded domain Ω ⊂ R2 with a curved border S. The
problem is reduced to solving the system of nonlinear Navier-Stokes equations in the velocity-pressure
variables:
∂v
∂t

+ (v · ∇) v = μΔv − ∇p + f , (10)

div v = 0, (11)
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v |t=0 = v0 (x) , v |S = 0. (12)

The auxiliary problem corresponding to the fictitious domain method is reduced to solving a
system of nonlinear equations with variable coefficients in D = D1 ∪ Ω with a boundary S is as
follows:
∂vε

∂t
+ (vε · ∇) (αεvε) = div (με∇vε) − ∇pε + f , (13)

div vε = 0, (14)

vε|t=0 = 0, vε · τ |S1
= 0, pε|S1

= 0 (15)

with the agreement condition imposed at the border S:

[(αεvε (δvε) − με∇vε − pε · δ) n] |S = 0, [vε] |S = 0, (16)

where τ is the tangent vector to the boundary S1, [·] denotes a jump when passing through S, δ is the
metric tensor, n is the normal to the boundary S, and f is continued in D1 with the preservation of the
L2 (Ω) norm,

με =
{

μ, in Ω,
μ

ε2
, in D1

(17)

αε =
{

1, in Ω,
1
ε

, in D
(18)

Condition (16) is obtained after a preliminary transformation of the nonlinear terms:

(vε · ∇) (aεvε) = (vε · ∇) (aεvε) + aεvε (∇ · vε) = ∇ · (aεvε (δvε)) . (19)

Let us introduce a set of infinitely differentiable solenoidal in D vector functions v (x) with tangent
components vanishing on S1, M (D) = {v (x) ∈ C∞ (D) , div v = 0, v (x) · τ (x) = 0, x ∈ S1}. The

spaces obtained by closure of M (D) in the L2 (D) and
o

W
1

2 (D) norms are denoted by V (D) , V1 (D) ,
respectively, and their dual spaces are denoted by V ∗ (D) and V1

∗
(D), respectively.

Definition 1. The generalized solution to the problem (13)–(16) is the function vε belonging to the
class L2 (0, T ; V1 (D)) ∩ L∞ (0, T ; L2 (D)) and satisfying the integral identity:

−
∫ T

0

(vε, Φt)D dt −
∫ T

0

((vε · ∇)Φ, aεvε)D dt +
∫ T

0

∫
S1

(vε · Φ) vε · ndsdt+

+ μ

ε

∫ T

0

∫
S1

k (x) (v · Φ) dsdt +
∫ T

0

(με∇vε · ∇Φ)D dt =
∫ T

0

(f · Φ)D dt (20)

for any Φ ∈ C1 (0, T ; V1 (D)) , Φ (T) = 0, (u, v)D = ∫
D

u · vdx, k (x) is the doubled mean curvature of
the boundary S1. Assume that k (x) is a non-negative function.

The following lemma [5] is used to obtain a priori estimates.
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Lemma 1. The following equality holds for a function vε belonging to the class L2 (0, T ; V1 (D))∩
L∞ (0, T ; L2 (D)):

(Δvε, Φ)Ω = − (∇vε, ∇Φ)Ω −
∫

S1

k (x) (vε, Φ) dl. (21)

To apply the Galerkin method, consider the eigenvalue problem

Aωj = −λjωj, j = 1, 2, . . . (22)

where

Aωj =
{

μΔωj − ∇pj, in Ω,
μ

ε
Δωj − ∇pj, in D1

(23)

div ωj = 0, in D = D1 ∪ 	 (24)

with the boundary conditions

ωj
ε · τ

∣∣
S1

= 0, pε|S1
= 0, j = 1, 2, . . . , (25)

and the agreement conditions[
με

∂ω

∂n
− p · δ · n

] ∣∣∣∣
S

= 0,
[
ωj

] ∣∣
S

= 0. (26)

The operator A is self-adjoint, and the set of functions
{
ωj

}
forms the basis in V1 (D). In [40], these

spectral problems were solved numerically.

In matters related to the justification of the existence of solutions to boundary value problems
for the Navier-Stokes equations by the Galerkin method, the very fact of the existence of the spectral
problem eigenfunctions for the operator (21)–(24) is used.

The operator is not symmetric and positive definite in the considered problem (13)–(16). Then the
Galerkin approximations are as follows:

vε

N (t, x) =
N∑

m=1

αNm (t) · ωm (x) (27)

where
{
ωj (x)

}N

j=1
is the basis of a finite dimensional subspace V1 (D).

Assume that L = A + N. Multiply (13) scalarly in V1 (D) by an arbitrary function u ∈ V1 (D) to
get the equality(
Avε

0 + Nvε

0 − f , u
) = 0.

Since u ∈ V1 (D) can be represented as

u =
N∑

i=1

bi · ωi (x) ,

then αNm (t) is found from the system of ordinary differential equations
d
dt

(
vε

N (t) , ωj

)
D

+ aε
((

vε

N · ∇)
vε

N, ωj

)
D

+ μ

ε

∫
S1

k (x) · (
vε

N, ωj

)
D

ds+
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+ (
με∇vε

N, ∇ωj

)
D

= (
f , ωj

)
D

, j = 1, 2, . . . , N (28)

vε

N (t)
∣∣

t=0
= 0, αNm (t)|t=0 = 0, m = 1, 2, . . . , N (29)

Taking into account (27), we obtain from (28):
d
dt

(
N∑

m=1

αNm (t) · ωm (x) , ωj

)
D

+ aε

((
N∑

m=1

αNm (t) · ωm (x)

)
·

N∑
m=1

αNm (t) · ∇ωm (x) , ωj

)
D

+

+μ

ε

∫
S1

k (x) ·
(

N∑
m=1

αNm (t) · ωm (x) , ωj

)
D

ds +
(

με
N∑

m=1

αNm (t) · ∇ωm (x) , ∇ωj (x)

)
D

= (
f , ωj

)
D

Further,

dαN,j (t)
dt

+ aε

(
N∑

i=1

N∑
m=1

(
αN,i · αN,mωi (x) · ∇ωm (x)

)
, ωj (x)

)
D

+

+ μ

ε

∫
S1

(k (x) ds) · αN,j (t) + με

N∑
m=1

αNm (t)
(∇ωm (x) , ∇ωj (x)

)
D

= (
f , ωj

)
D

(30)

αN,j (t)
∣∣

t=0
= 0, j = 1, 2, . . . , N (31)

The solvability of systems of Eqs. (30)–(31) in time is known from the general theory of ordinary
differential equations [41].

Global solvability follows from a priori estimates of the solution vε

N (t, x) which is obtained from
the following system:
d
dt

(
vε

N (t, x) , vε

N (t, x)
)

D
+ aε

((
vε

N · ∇)
vε

N, vε

N

)
D
+

+ μ
∥∥vε

Nx

∥∥2

L2(Ω)
+ μ

ε

∥∥vε

Nx

∥∥2

L2(D1)
+ μ

ε

∫
S1

k (x)
(
vε

N (t, x)
)2

ds ≤ ‖f ‖V∗
1 (D) · ‖vε‖V1(D) (32)

By virtue of the continuity equation and boundary conditions, we have∣∣∣∣
∫

D

((
vε

N (t, x) · ∇)
vε

N (t, x) , vε

N (t, x)
)

dx

∣∣∣∣ =
∣∣∣∣
∫

S

(
vε

N (t, x)
)2 · vε

N (t, x) dS

∣∣∣∣ ≤

≤
∫

S1

∣∣vε

N (t, x)
∣∣3

dS ≤ C0

∥∥∇vε

N (t, x)
∥∥2

L2(D1)
· ∥∥vε

N (t, x)
∥∥

L2(D1)
(33)

Hence the following inequality is obtained:
1
2

d
dt

∥∥vε

N (t, x)
∥∥2

L2(D)
+ μ

∥∥vε

N (t, x)
∥∥2

L2(Ω)
+

(μ

ε
− aε · C0

∥∥vε

N (t, x)
∥∥

L2(D1)

)
· ∥∥∇vε

N (t, x)
∥∥2

L2(D1)
≤

≤ ‖f (t)‖V∗
1 (D) · ∥∥vε

N (t, x)
∥∥2

V1(D)
(34)
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Let
μ

ε
− aε · C0

∥∥vε

N (t, x)
∥∥

L2(D1)
≥ 0. (35)

Then

max
0≤t≤T

∥∥vε

N (t, x)
∥∥

D
≤

∫ T

0

‖f (t)‖V∗
1 (D) dt. (36)

Choose ε such that
μ

ε
− aε · C0

∫ T

0

‖f (t)‖V∗
1 (D)dt ≥ 0. (37)

Then it follows from inequality (34) that

max
0≤t≤T

∥∥vε

N (t, x)
∥∥

L2(D)
+

∫ T

0

‖∇vε

N(t, x)‖2
L2(Ω)

dt + 1
ε

∫ T

0

‖∇vε

N(t, x)‖2
L2(D1)

dt + 1
ε

∫ T

0

∫
S1

k(x)|vε

N(t, x)|2dsdt ≤

≤ C ·
∫ T

0

‖f (t)‖2
V∗

1 (D)
dt ≤ C < ∞

where is the constant C does not depend on ε.

4 Numerical Calculations

We consider the numerical solution of the auxiliary problem (13)–(16) to illustrate the advantages
of the proposed approach.

Let us take a curvilinear channel with solid boundaries (Fig. 2) as the domain under consideration.
D1 denotes the fictitious domain and Ω denotes the physical domain.

Figure 2: Schematic representation of the domain under consideration

We use the finite difference method and the scheme of splitting by physical processes [42] for the
numerical implementation of the auxiliary problem (13)–(16). The integration domain is covered by
the so-called MAC-grid [43], in which the nodes for determining the pressure are located inside a
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rectangular grid cell, and the nodes for determining the velocity component are located on its faces.
The scheme taking into account the sign is used when approximating the convective terms. Thus, an
approximation with the second order of accuracy in space and the first order in time is provided.

Let the velocity field
→
v

n

be known at some point in time tn = nτ , where τ is the time step and n is
the number of steps. Then the scheme for determining unknown functions at tn+1 = (n + 1)τ can be
represented as a three-stage splitting scheme:

Stage I:
→
v

n+1/2 − →
v

n

τ
= −

(→
v

n∇
) (

aε
→
v

n+1/2) + μεΔ
→
v

n+1/2

(38)

Stage II:

Δp = ∇→
v

n+1/2

τ
. (39)

Stage III:
→
v

n+1 − →
v

n+1/2

τ
= −∇p, (40)

where με =
{

μ, in Ω,
μ

ε2
, in D1

, αε =
{

1, in Ω,
1
ε
, in D1

.

The prescribed values of pressure and zero values of the tangential component of the fluid flow
velocity at the inlet and outlet of the computational domain were set in the numerical implementation.
At the «solid» boundaries, the pressure values are given as linear functions and the tangential
component of the velocity is equal to zero.

Obviously, the sum of the equations corresponding to Stages I and III gives the original equation
of motion (13), and Eq. (39) corresponding to Stage II is obtained from (40) by applying the divergence
operator to the last one taking into account the continuity equation.

The following physical interpretation of the given splitting scheme is proposed. At Stage I, it
is assumed that the transfer of momentum (momentum per unit mass) is carried out only due to
convection and diffusion. The velocity field thus obtained does not satisfy the incompressibility
condition, in general. In this paper, the implicit scheme is used at Stage I in contrast to the classical
version of the method of splitting into physical processes [42]. A similar approach was substantiated
and numerically implemented in [44]. Iterative schemes were proposed for solving auxiliary grid
Navier-Stokes equations. This approach improves the condition number of the system of linear
equations matrix and makes it possible to speed up the convergence of the solution.

At Stage II, the pressure field is found from the solution of the Poisson equation based on the
found intermediate velocity field and taking into account the solenoidality condition of the velocity
vector. At this stage, numerical methods for solving grid elliptic equations with Dirichlet boundary
conditions for pressure were used.

At Stage III, it is assumed that the transfer is carried out only due to the pressure gradient, and
the convection and diffusion are absent.
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In the numerical implementation, grids containing 50 × 20, 100 × 40, 150 × 60, 200 × 80 nodes
and the following dimensionless parameter values were used:

0 < xi < 2, 0 < yi < 1, τ = 0.001, μ = 1/Re = 0.001, ε = 10−5.

The upper and lower solid curved boundaries are described by the equations

y1 = 0.2 − 0.1 cos (2πx)

y2 = 0.8 − 0.1 cos (2πx)

Currently, there are several methods for the numerical solution of boundary value problems in
complex geometric domains, such as the method of curved grids and fictitious domain method. The
construction of curved grids for the numerical solution of problems requires the transformation of
the equation into curved coordinates, which has a more complex form than the original equations.
Therefore, for the numerical solution of a wide class of problems of mathematical physics in an
arbitrary domain, it is effective to use the fictitious domain method.

The solution of this problem is implemented in two ways. In the first case, the fictitious domain
method by the leading coefficients was used. The main advantage of this method is its versatility in
the development of computer programs for the numerical simulation of a wide class of problems of
mathematical physics. In the second case, a calculation on a was used. Methodological calculations
have been carried out, and the results of numerical calculations have been obtained. The quantitative
and qualitative indicators of the numerical results coincide for both cases when conducting numerical
experiments.

The boundary of the physical domain is smeared when solving the problem by the fictitious
domain method, and therefore the solutions at the boundaries may differ from the boundary
condition, although it gives reliable results of the flow. In addition, the fictitious domain method is
easily implemented. But since the problem is ill-conditioned at the first stage, an implicit scheme was
used where the boundary conditions of the integer iteration step were used in the calculations.

Fig. 3 shows the vector field of the problem solved using the fictitious domain method, respec-
tively, Fig. 4 shows the velocity module of the problem solved using the dummy domain method.
Curved lines can be seen from the velocity modulus, Poiseuille currents are formed corresponding
to the curvature of the boundary.

Fig. 5 shows the vector field of the problem solved on a consistent grid, respectively, Fig. 6 shows
the velocity module of the problem solved on a consistent grid. In Figs. 4 and 6, one can see the
qualitative and quantitative correspondences of the formed Poiseuille flows when solving the problem
by different methods.

Numerical implementation of the solution on a uniform grid inside the domain makes it possible
to accurately take into account the boundaries of the curved domain and ensures the accuracy of
the function value on the domain boundaries. The only drawback of this approach is the lack of a
specific algorithm, and one has to come up with separate conditions for determining the boundary
and boundary nodes of the grid for each problem, especially when boundary conditions of the second
kind are imposed.
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Figure 3: Vector field of the problem solved using the fictitious domain method with the grid size
200 × 80

Figure 4: The speed module of the problem solved using the fictitious domain method, grid size 200×80
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Figure 5: Vector field of the problem solved on a consistent grid with the grid size 200 × 80

Figure 6: The speed module of the problem solved on a consistent grid, the grid size is 200 × 80

Tab. 2 shows the maximum values of the velocity components on the indicated sections of the
channel and their discrepancies. It follows from the table that there are small deviations which indicate
a quantitative coincidence of the indicators.

Table 2: The value of the velocity components on the sections

Sections X = 0.5 X = 1.0 X = 1.5

Velocity components U V U V U V

The values of velocity
components obtained
by the method of
fictitious areas

0.563424339 0.127813428 0.573329524 0.000405213 0.523948447 0.050608793

(Continued)
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Table 2: Continued
Sections X = 0.5 X = 1.0 X = 1.5

Velocity components U V U V U V

The values of velocity
components obtained
by the consistent grid
method

0.543891 0.107817 0.561694 0.000262 0.494597 0.107749

Difference of the
values

0.019533 0.019996 0.011635 0.000144 0.029351 0.05714

It can be seen from Figs. 7–9 that the lower curved boundary relative to the computation domain
is convex, and the upper one, on the contrary, is concave in the area of the section X = 0.5 and X =
1.5. This affects the profile values of the velocity component U at the lower boundary to a greater
extent than at the upper boundary since they flow around the hill at the lower boundary and fall into
the concavity pit at the upper boundary (Fig. 5). The values of the velocity component V are positive
everywhere since the fluid flow moves in a positive direction(upward). Also, it can be seen that the
values of the velocity component U2 have negative values in the border areas of the upper boundary
which indicates the formation of vortex motions in the cavities.

Figure 7: Velocity profile U and V on the cross section at x = 0.5 (U1, V1 are the solution of the
problem obtained on a consistent grid, U2, V2 are the solution of the problem obtained using the
fictitious domains method)

In Fig. 8, on the contrary, the values of the velocity component U at the upper boundary are greater
than at the lower one. Vortex motions are observed near the lower boundary from the presented graph
of the velocity component U2. The values of the velocity component V are negative since the flow
moves in a decreasing direction relative to the y axis(downward). The results presented in Fig. 7 are
similar to those obtained in Fig. 5.
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Figure 8: Velocity profile U and V on the section at X = 1.0 (U1, V1 are the solution of the problem
obtained on a consistent grid, U2, V2 are the solution of the problem obtained using the fictitious
domains method)

Figure 9: Velocity profile U and V on the cross section at x = 1.5 (U1, V1 are the solution of the
problem obtained on a consistent grid, U2, V2 are the solution of the problem obtained using the
fictitious domains method)
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The calculations used a uniform grid with dimensions of 50 × 20, 100 × 40, 150 × 60, 200 ×
80. A numerical experiment was carried out on a modern personal computer with the following
characteristics: Intel(R) Core(TM)i9-10900F CPU@2.80GHz, RAM 32 GB.

Thus, in order to apply the fictitious domain method and conduct numerical experiments, the
boundary value problem for an ordinary differential equation is first considered. The results of
numerical calculations for different values of the iterative parameter τ and the small parameter ε are
presented. After successful application of the fictitious domain method for an ordinary differential
equation, a more complex problem of applying the fictitious domain method for the Navier-Stokes
equation in natural variables is considered.

Further, the research of the auxiliary FDM problem at the differential level for the Navier-
Stokes equations with continuation into a fictitious subdomain by the higher coefficients with a
small parameter is carried out. Methods of a priori estimates are used for the mathematical study
of the problems under consideration. A generalized solution of the auxiliary FDM problem with
continuation by higher coefficients with a small parameter is determined. The fictitious domain
method is used to solve many problems of computational fluid dynamics. Currently, there are several
methods for the numerical solution of boundary value problems in complex geometric domains, such
as the method of curved grids and fictitious domain method. The construction of curved grids for the
numerical solution of problems requires the transformation of the equation into curved coordinates,
which has a more complex form than the original equations. Therefore, for the numerical solution
of a wide class of problems of mathematical physics in an arbitrary domain, it is effective to use the
fictitious domain method.

Thus, in this paper, two methods are applied for the numerical solution of the formulated problem.
The first one is the fictitious domain method associated with the modification of nonlinear terms
in a fictitious subdomain. The model problem shows the efficiency of using such a modification.
The proposed variation of the method is used to solve two problems at once that arise in the
numerical solution of the Navier-Stokes equations: the problem of the curvilinear boundary of an
arbitrary domain and the problem of the absence of a boundary condition for pressure in the physical
formulation of the internal flow problem. The main advantage of this method is its versatility in the
development of computer programs.

The second method used the calculation on a uniform mesh inside the domain. The solution on a
uniform mesh inside the domain makes it possible to accurately take into account the boundaries of
the curved domain and ensures the accuracy of the function value on the boundaries of the domain in
the numerical implementation. Tabs. 3 and 4 present the computation time and number of iterations
obtained with the use of the two methods for different grid nodes. It can be seen from the presented
tables that the calculation time and the number of iterations are noticeably longer in case of a numerical
solution on a uniform grid inside the domain. This is due to the fact that the conditions for belonging
of the calculation node to the computational area are checked at each stage of the algorithm. This
affects the counting time and the number of iterations.
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Table 3: Counting time for different grid configurations

Number of mesh nodes 50 × 20 100 × 40 150 × 60 200 × 80

Methods

Fictitious domain method 2.14 s. 7.03 s. 15.37 s. 1 min., 39.36 s
Consistent grid method 9.01 s. 25.43 s. 1 min., 7.15s. 1 min., 33.25 s

Table 4: Number of iterations for different grid nodes

Number of mesh nodes 50 × 20 100 × 40 150 × 60 200 × 80

Methods

Fictitious domain method 1987 2172 2258 2329
Consistent grid method 2184 1999 2363 2607
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