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Abstract: Generative Adversarial Networks (GANs) are neural networks that
allow models to learn deep representations without requiring a large amount
of training data. Semi-Supervised GAN Classifiers are a recent innovation
in GANs, where GANs are used to classify generated images into real and
fake and multiple classes, similar to a general multi-class classifier. However,
GANSs have a sophisticated design that can be challenging to train. This
is because obtaining the proper set of parameters for all models-generator,
discriminator, and classifier is complex. As a result, training a single GAN
model for different datasets may not produce satisfactory results. Therefore,
this study proposes an SGAN model (Semi-Supervised GAN Classifier).
First, a baseline model was constructed. The model was then enhanced by
leveraging the Sine-Cosine Algorithm and Synthetic Minority Oversampling
Technique (SMOTE). SMOTE was used to address class imbalances in the
dataset, while Sine Cosine Algorithm (SCA) was used to optimize the weights
of the classifier models. The optimal set of hyperparameters (learning rate
and batch size) were obtained using grid manual search. Four well-known
benchmark datasets and a set of evaluation measures were used to validate the
proposed model. The proposed method was then compared against existing
models, and the results on each dataset were recorded and demonstrated the
effectiveness of the proposed model. The proposed model successfully showed
improved test accuracy scores of 1%, 2%, 15%, and 5% on benchmarking
multimedia datasets; Modified National Institute of Standards and Technol-
ogy (MNIST) digits, Fashion MNIST, Pneumonia Chest X-ray, and Facial
Emotion Detection Dataset, respectively.
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1 Introduction

Since the invention of Generative Adversarial Networks (GANs), they have been extensively and
almost exclusively applied for image generation. GANs are trained using two adversarial networks—a
Discriminator and a Generator—working against each other under a min-max objective. Since 2014,
many different variants of the GAN [1] model have been developed to improve the image generation
task, e.g., Style Generative Adversarial Network (StyleGAN) [2]. StyleGAN is the architecture behind
the famous website [3] that can generate realistic human faces that do not exist. Another famous
variant of GAN is Wasserstein GAN (WGAN) [4]. In the original GANs or Deep Convolutional
Generative Adversarial Networks (DCGAN:Ss), the Jensen-Shannon divergence is minimized to perplex
the discriminator so that it cannot distinguish between real or fake images. However, in the case
of Wasserstein Generative Adversarial Networks (WGANSs), the Earth-Mover Distance (EMD) is
minimized instead. This small change results in much better and more stable image generation results.
Some other potential improvement on GANSs is Big Generative Adversarial Network (BigGAN) [5],
which is the most recent cutting-edge model applied on the ImageNet [6] model. The other one is
Progressive GAN, where the authors add new blocks of convolutional layers to both the generator
and the discriminator models, which then take help from the real image samples and try to generate
high-resolution images from them. Also, Pix2Pix GAN [7] has several exciting applications, such as
edge-maps to photo-realistic images [8]. Moreover, advanced technological tools such as Web 3.0
manipulate images to increase their quality or extract useful information from them. However, to
optimize efficiency and avoid time wastage, images must be processed post-capture at a post-processing
step[9]. The authorsin [10,1 1] indicated that “Due to the small size and dense distribution of objects in
UAV vision, most of the existing algorithms are difficult to detect effectively, while GAN can be used
to generate more synthetic samples, including samples from different perspectives and those from the
identical perspective yet having subtle distinctions, thus enabling deep neural network training.”

Semi-supervised learning is a machine learning technique where a small portion of data fed to the
model is labeled during training, and the rest of the data is unlabelled. There are two types of learning.
In semi-supervised learning, a small amount of labeled data is combined with a large amount of
unlabeled data during training. On the other hand, supervised learning deals with only labeled training
data. It is a unique case of insufficient supervision. Semi-supervised learning is considered the way to
g0 in many recent problems as it curbs many problems related to overfitting training data due to huge
amounts of unlabeled noisy data. Another reason why semi-supervised learning is gaining popularity
these days is because there is a lack of labeled data many times since this requires human annotators,
specialized equipment, and time-consuming tests [12]. All Generative models are applications of semi-
supervised learning. Here, the labeled samples are the actual samples, while the generated samples
are unsupervised. There are two main avenues for improvement in a GAN-based class— improve the
GAN as a whole and/or target the specific class labels and generate samples accordingly. Conditional
GANs (cGANS) [13] have been proposed for the same. Additional information, such as class labels
connected with the input images, can improve the GAN. This enhancement could be in the form of
more steady training, faster training, or higher quality generated images.

From this concept of cGAN:Ss, researchers have been able to develop methods for semi-supervised
generative classification of generated images-SGAN [14], Auxiliary Classifier GAN (ACGAN) [15],
and External Classifier GANs (ECGAN) [16]. The discriminator of a typical GAN discriminates
between real and fake samples. The same architecture can be used to build a classifier with just the
output layer different via transfer learning, by which we can classify the generated images as required
during the semi-supervised training of the SGAN. The discriminator model is updated in the Semi-
Supervised GAN to predict the labels for the classes needed as the output alongside the prediction for
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the Real/Fake labels. Hence, we can train the same discriminator and classifier models to predict the
classes. That is how the semi-supervised GAN classifiers work. Similarly, there is a constant urge for
improvement in the field of image classification, which led to the development of two improved types
of GAN classifiers—Auxiliary Classifier GAN, which has two separated dense output layers, one for
identifying the fake/real samples and the other one for the multi-class classification task [16]. In July
2021, High School Student Ayaan Haque developed the External Classifier GAN, containing three
models—a generator, a discriminator, and an external multi-class classifier [17].

Hyperparameters lie at the heart of any machine learning or deep learning architecture. Without
the tuned hyperparameters, it is impossible to obtain the best results for a task using that particular
model. Searching for the correct set of hyperparameters manually is a very hectic task [18,19]. There are
various mathematical computation methods and algorithms for performing Hyperparameter Tuning.
Some computational methods include Random Search [20-22] and Grid Search [23,24]. Then there
are some algorithms like Population-Based Training (PBT) [25], Grey Wolf Optimizer (GWO) [26,27]
or Bayesian Optimization [28], and the Hyperband Method (BOHB) [29], which can be used for
optimization. In this study, the proposed SGAN model was trained on four benchmark datasets: (i)
MNIST Digits Dataset, (i)) MNIST Fashion Dataset, and (iii) Pneumonia Detection Chest X-Ray
Dataset and (iv) Facial Emotion Recognition Dataset.

Once a working baseline was set up, the authors in this study progressed towards finding an
optimal set of hyperparameters, like the learning rate for both the Generator and the Discriminator
models. The authors further applied a hybrid metaheuristic optimization algorithm called Sine Cosine
Algorithm (SCA) for hyperparameter tuning to obtain better results on the same datasets as above
more efficiently than using Grid Search and Manual optimization. Finally, the results of each method
were compared. Section 2, which follows this section, highlights the background and the related works
of the study. Section 3 discusses the proposed research methodology, while Section 4 describes the
experimental results of the proposed model. Lastly, Section 5 concludes the research and provides
future work.

2 Related Work

In the generative adversarial networks, there are two models the Generator (G) and the Discrimi-
nator (D) that are put up against one another in an adversarial fashion. The task of the G model is to
take the input of random noise as input and output a fake image that is then fed to the D model. On
its part, the D model tries to classify whether the image it got from the generator is real or fake. The
task of the G model is to fool the D model and generate realistic fake images after epochs of training
and backpropagation. The GAN architecture and the entire classification process are shown in Fig. 1.

GANs were generally used for image synthesis from random noise. Hence, they were applied
to different fields like fake image synthesis, data augmentation, and conditional image synthesis.
However, recent advancements in the field of GANs have resulted in the diversified application of
GANs. One such application is a classification of fake images generated by the Generator model.
This field exploded with the advent of Conditional GANSs. Conditional GANSs are an extension of
the minimax Generative Modelling (GANs) whereby the required class is passed as a part of the
input to the Generator and the Discriminator, respectively, along with the random noise and the fake
sample generated, respectively. This results in the generation of images belonging to a particular class
as desired. This paper, though preliminary, opens up a whole new domain of interesting application
of GANs. Fig. 2 present the conditional-GAN Architecture.
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Figure 2: Conditional-GAN architecture

After this, many new GAN architectures were designed to solve the problem of image classification
(both supervised and semi-supervised). Some of them are discussed below:

2.1 Semi-Supervised Classification with GANs (SGAN)

In this method, the authors classify a data point x into K classes using a standard classifier as an
extension of the discriminator model. Thus, the discriminator model is designed to contain multiple
output channels, i.e., (1) Binary Classifier for identifying fake vs. actual samples (2) K channels
consisting of probabilities derived from applying soft-max activation function to the elements of K
dimensional output vector. The K output logits are then passed through the softmax activation layer
to predict the probability of the generated sample belonging to one of the K classes in the output
column. This technique is widely known as SGAN [30,31].

2.2 Auxiliary Classifier GANs (AC-GAN)

The AC-GAN is another type of GAN classifier that changes the discriminator such that instead
of taking the class labels as input (which was the case in Conditional GANSs), it predicts the class
labels of the generated image that was passed into the discriminator with Auxiliary Classifier. It makes
the training process stable. Hence, the generator can generate high-quality images when its weights
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and biases get trained through forward and backward propagation. In this method, the authors pass
the class labels along with the random noise at the Generator end. However, unlike the cGANSs, the
authors do not pass the labels at the Discriminator end. As before, the discriminator model must
estimate whether the input image is real or fake and the image’s class label. There are two dense layers:
one for the sample classification into fake or real and the other for categorical multi-class classification
into K classes, to which the image belongs.

2.3 External Classifier GANs (ECGAN)

This is a semi-supervised GAN architecture where the fake image generated by the generator
is used to improve image classification. Generally, the present models for classification with GANs
(ACGAN, SGAN) have the same discriminator and classifier models, with the only difference being
the output layer. EC-GAN attaches a GAN’s generator to a classifier, hence the name, as opposed
to sharing a single architecture for discrimination and classification. The promising results of the
algorithm could prompt new related research on how to use artificial data for many different machine
learning tasks and applications. Thus, there are three separate models-generator, a discriminator, and a
multi-class classifier. The Discriminator is trained in the classical fashion for GANs. The same goes for
the classifier. In ECGANS, all the real samples must have labels assigned to them. The generated images
are used as inputs for classification supplementation during training. In this case, the architecture
follows a semi-supervised approach because the generated images do not have any labels. The generated
images and labels are only kept if the model correctly predicts the sample class with a high probability
(The labeling is done through a process of pseudo-labeling initially) [32].

The Google Brain paper mentions that GAN is sensitive to hyperparameter optimization because
its benefit can override the cost function if it is not optimized correctly. Therefore, the performance
of the cost functions can fluctuate within the different hyperparameter settings, and this fluctuation
can occur when the developers do not know whether the GAN model is not working or they need
to engage in a lengthy process. During training the GAN, hyperparameter tuning requires patience.
Cost functions cannot work without spending time on the hyperparameter tuning since the new
cost functions may introduce hyperparameter(s) with sensitive performance. Vanishing gradient exists
during the GANSs training process due to the multiplication of the gradient with small values through
the backpropagation process. This causes the Neural Network to stop learning, distorting the accuracy.
Therefore, enhancing GANs networks’ architectures leads to better performance in terms of prediction
accuracy. Many factors affect GANSs’ performance, which can be explored for a particular task to
improve the prediction accuracy. For instance, generating the GANs weights based on meta-heuristic
algorithms (like the Sine-Cosine Algorithm used in this study) instead of traditional manners will lead
to better performance and overcome the limitations of existing work. This is the overview of what the
proposed research is trying to achieve through the Weight Initialization of the discriminator and the
classifier networks of the GAN in the proposed research.

3 Proposed Methodology

This study aims to build a single Fine-Tuned Generative Adversarial Network Classifier Architec-
ture that can efficiently perform binary and multi-class classification tasks and apply population-based
meta-heuristic sine cosine algorithm [22,33,34] to initialize the parameters of the first layer, namely the
weights and the biases. After this, the authors compared the results of the applied SCA model and the
baseline model to look for improvement in train and test accuracies. Fig. 3 shows the proposed research

methodology of this study.
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Figure 3: Overall proposed research methodology

Hence, for the discriminator training, the data label coming from P, (x) is y = 1 (real data) and
y = D(x). So, the discriminator loss given in Eq. (1).

L(D(x), 1) = log(D(x)). (1

For data coming from generator, the label is y = 0 (fake data) and y = D(G(z)). Thus, in this case,
L(D(G(z2)),0) = log log (1 — D (G (2))) ©)

Ultimately, the discriminator’s purpose is to classify the fake and real datasets appropriately. To
do this, Egs. (1) and (2) should be maximized, and the discriminator’s final loss function can be written
asin Eq. (3).

L?” = max[log(D(x)) + log(1 — D(G(z)))] 3)

In this case, the generator faces off against the discriminator. As a result, it will attempt to minimize
Eq. (3), and the loss function is specified as,

L = min[log(D(x)) + log(1 — D(G(2)))] @

Therefore, by combining Eqs. (3) and (4) considering the whole dataset, the final loss function will
be as

min max V (D, G) = min max (Ever,, ollogD(x)] + E.p.[log(1 — D(G(2)))]) 5

3.1 Benchmark Datasets Description

For the task, the authors benchmarked the proposed model with four datasets that are all image-
based classification datasets. These datasets are:

e MNIST Digits Dataset [35]-Contains handwritten examples of digits from 0-9 with the labels
corresponding to each drawing showing the digit it represents.

o Fashion Dataset [36]-Contains examples of various garments (10 types) like - shirts, pants, boots,
headwear, etc., and their corresponding labels.

e Pneumonia Detection from Chest X-Rays [37]-This dataset contains two classes, chest X-Ray
images of healthy vs. pneumonic lungs.

e Facial Emotion Detection Dataset [38]-This is a tricky dataset with large-size images of seven
different classes of facial emotions.
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After that, the authors developed a Semi-Supervised GAN classifier. This is the proposed baseline
model. Then, the authors fine-tuned the hyperparameters like the learning rates and the batch sizes for
the SGAN model by Manual Searching. First, the authors preprocessed the data to get the images in
the form of a pixel value table, with each of the scaled pixel values as the features and the target as the
labels of the images. Next, the authors combined the generator, discriminator, and classifier models. In
a broad sense, the classifier model is similar to the discriminator model; the only difference is the output
layer. The discriminator has a sigmoid layer for classifying real/fake images, and the classifier has a
softmax layer used to perform the multi-class classification. The authors also trained the proposed
baseline model for classification tasks on all the benchmarking datasets. Squares 3 and 4 had class
imbalances, leading to poorer results than expected. Hence, the authors decided to try two techniques
to deal with the problem: (i) Synthetic Minority Oversampling Technique (SMOTE) [39] (i1) Principal
Component Analysis (PCA) [40,41]. Furthermore, the authors built a script for applying Sine Cosine
Algorithm for weights and biases initialization in the discriminator and the classifier models. The
authors could not do the same thing for the generator model because its first layer was a Dense/Fully
Connected Layer. As a result, there were too many parameters, such that it was practically impossible
to train them all. After training all the combinations of the models, the authors trained them on all
the four benchmarking datasets to get expected improvements upon using the Sine Cosine Algorithm
to initialize the Parameters instead of doing it randomly.

3.2 Synthetic Minority Oversampling Technique

SMOTE is applied to those tabular datasets with a high degree of imbalance between the output
classes. There are very few labels for some classes and a high number of labels for some classes. SMOTE
is an oversampling technique that oversamples the examples from the minority classes so that the
number of examples in the minority becomes equal to those in the majority classes [42]. Therefore,
SMOTE can be considered a Data Augmentation Technique. SMOTE works by selecting examples
in the feature spaces close together, distinguishing between the examples, and trying to draw a new
instance at a point along that line [42]. To be more specific, a random illustration from the minority
class is chosen first. Then, k of its nearest neighbors is found (typically, k = 5). A randomly chosen
neighbor is chosen, and a synthetic example is created in feature space at a randomly chosen point
between the two examples. Here, authors select some examples from the feature map and then try to
make a class division between the selected data by the k-nearest neighbors (KNN), where authors
generally take K to be 5. After this, they identify the minority classes and generate new samples on an
imaginary line between two samples from the minority class. In this way, authors can generate as many
new samples as required. Thus, SMOTE generates only new samples for the minority classes. However,
some researchers suggest using random undersampling of the majority classes and oversampling the
minority classes to obtain the best results. From the above discussion, the authors can figure out that
one of the drawbacks of using SMOTE is that it does not consider the majority of classes at all. As
a result, many times when there is not any clear distinction between the samples of the majority and
minority classes, SMOTE often fails to generate perfect augmented samples.

3.3 Principal Component Analysis

PCA was also applied to the datasets for dimensionality reduction. Nonetheless, the idea did not
lead to any improvement in the accuracy scores. Furthermore, reduction dimensions’ hyperparameter
tuning did not significantly change scores, so the authors discarded the idea. PCA was implemented
with an “auto” SVD solver. A default policy based on X.shape and n components select the solver: if
the input data is greater than 500 x 500 and the number of features to extract is less than 80% of the
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lowest dimension of the data, the more efficient ‘randomized’ method is enabled. Otherwise, the exact
full SVD is calculated and then optionally truncated.

3.4 Sine-Cosine Algorithm

Sine-Cosine Algorithm is a recent advancement in Metaheuristic Population-Based Optimization
algorithms [43-48]. Seyedali Mirjalili proposed it in 2016. As is common to algorithms belonging to
the same family, the optimization process consists of the movement of the individuals of the population
within the search space, which represent approximations to the problem. For this purpose, SCA uses
trigonometric sine and cosine functions. At each step of the calculation, it updates the solutions
according to the following equations:

X =X +r o Sin(ry) * [P — X!/| X' = X! + 1, % Cos (,) * |rsP, — X]| (6)

Where X'; denotes the position of the current agent at the iteration in the ith dimension; P; is the
position of the best agent at the iteration in the ith dimension. The random agents are ry, 1,, 5, and r,.

X = (X! +r % Sin(ry) % [Pl — X{| ,ry < 0.5X] + 71, % Cos (,) * |rsP, — X}| ,rs = 0.5 (7

r; defines the afterward search space between the exterior and the solution space. r, defines the amount
of space left between the exterior and the solution space.
a
rn=a—t— 8
. ®)
where T indicates the maximum iterations number and t is the iteration running. The a is a constant

variable.

Algorithm 1 Algorithm SCA

Input:

- Set the lower bound and upper bound of X solutions
- Set the population size

- Initialize the agents of the search space randomly

- Specify the maximum number of iterations

Output:

- The best-selected solution (X*)

LOOP Process

1: while (¢ < Max number of iterations 7 ) do

2: Calculate every single solutions candidate

3: Define the best-selected solution (X'x)

4: Update r, r,, 5, and r,

5: Update agents’ locations in the search space with (3.4)
6: end while

(Return X*)

Presently, SCA is considered the best population-based method to find the optimal solution at the
fastest speed. SCA is considered a meta-heuristic algorithm because it is a generalized algorithm that
can be used to find solutions to various problems; it is not problem-dependent.
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4 Experimental Results

This section describes and discusses the proposed GAN model’s findings in this study. The first
section focuses on the evaluation matrices used to evaluate the performance of the proposed model on
four different datasets.

4.1 Evaluation Metrics

In this paper, four standard metrics are utilized to thoroughly evaluate the effectiveness and
prediction of the proposed models: Accuracy, Precision, Recall, and F1-score. The following are the
definitions of these four metrics:

As the name suggests, Confusion Matrix gives us a matrix as output and describes the complete
performance of the model. Fig. 4 shows an Example Confusion Matrix of SGAN performance on
Pneumonia Chest X-ray Dataset.

Actual

Predicted

Figure 4: An example confusion matrix of SGAN performance on pneumonia Chest X-ray dataset

There are four essential terms:

e True Positives: The cases in which the authors predicted YES (1), and the actual output was
also YES (1). (i.e., 379 in the figure above).

e True Negatives: The cases in which the proposed model predicted NO (0) and the actual output
was NO (0). (i.e., 169 in the figure above).

e False Positives: The cases in which the proposed model predicted YES (1), and the actual output
was NO (0). (i.e., 221 in the figure above).

e False Negatives: The cases in which the proposed model predicted NO (0) and the actual output
was YES (1). (i.e., 11 in the figure above).
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Accuracy: is the ratio of the number of correct predictions to the total number of input samples, i.e.,

4 TruePositive + TrueNegative ©)
ceuracy =
4 TotalSample

Precision: is the ratio of the true positives predicted by the proposed model to the sum total of the
labels predicted as true positives and false positives.

o TruePositive
Precision = — > (10)
TruePositive + FalsePositive

Recall: It is the number of correct positive results divided by the number of all relevant samples
(all samples that should have been identified as positive).

TruePositi
Recall — : .rue ositive - (11
TruePositive + FalseNegative

F1-Score: is the Harmonic Mean between precision and recall. Hence, the value of the F1 score is
always a real number between 0 and 1. This value captures how precise and accurate the model is in
classifying the output classes for the labels.

2 . (Precision - Recall)

F1 — Score = —
Precision + Recall

(12)

4.2 Optimal Hyperparameters

The hyperparameters for the SGAN implementation on various datasets included the batch size
of the data for training and the learning rates of the discriminator/classifier and the GAN in general.
The Hyperparameters were selected using Grid Search and Manual Search over a discrete search
space chosen after careful considerations by the authors. The information regarding the various
hyperparameters is given in Tabs. | and 2.

Table 1: Grid search space hyperparameters

Hyperparameter Search Space
Batch size [100, 128, 256, 512]
Learning rate [le-4, 2e-4]

Table 2: Optimal hyperparameters

Dataset Learning rate Batch size
MNIST digits 2e-4 128
MNIST fashion le-4 256
Pneumonia chest X-Ray 2e-4 128
Facial emotion detection 2e-4 256

4.3 Results of the Proposed Model

The Sine-Cosine Algorithm was implemented on the oversampled data using SMOTE. The
authors named this result the SMOTE+SCA result. The authors expected to get the best results
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than all the previously experimented models because they had the dataset imbalance fixed, and the
parameters were to be initialized using the SCA. For the Fashion MNIST dataset, the authors got
around one improvement only for both the train and the test data. For the Pneumonia Detection
dataset, they got an overwhelming increase of around 21% in the training accuracy and around 15%
increase in accuracy over the baseline results for the test accuracy. The most satisfying results were
obtained for the Facial Emotion Detection Dataset—the authors obtained over 30% accuracy for
both train and test data for the first time since trying out all the different combinations of methods.
Tab. 3 showed the results when the authors combined the proposed GAN model along with SMOTE
and SCA methods.

Table 3: SMOTE+SCA results

Dataset Learning rate  Batch size Train accuracy Test accuracy  Fl-score
() (7o)

MNIST digits  2e-4 128 94.86 95.49 0.94

MNIST le-4 256 75.39 74.92 0.74

fashion

Pneumonia 2e-4 128 95.48 77.69 0.80

chest X-Ray

Facial emotion 2e-4 256 1.63 30.62 0.23

detection

4.4 Baseline and Balanced Dataset Results

The Baseline results consist of the classification results on the four datasets whereby the model is
a simple Semi-Supervised GAN Classifier that is directly trained and tested on the pixel value tables
of the images of the dataset. The results show that benchmark datasets like the MNIST Digits Dataset
show superior results under baseline conditions, majorly due to how easy it is to classify handwritten
digits given how complex and fine-tuned the SGAN classifier is. However, when a difficult dataset
like the facial emotion detection dataset is considered, the model predicts a person’s facial emotion
from the image of the face provided, the same complex SGAN classifier becomes counterproductive
to inaccurate results in most cases. Evidently, GANSs are difficult to train, and it is difficult to achieve
good results at times. Tab. 4 shows the baseline model results.

Table 4: Baseline results

Dataset Learning rate  Batch size Train accuracy Test accuracy  Fl-score
(70) (7o)

MNIST digits  2e-4 128 93.48 94.12 0.93

MNIST le-4 256 74.11 73.75 0.73

fashion

Pneumonia 2e-4 128 74.77 64.14 0.63

chest X-Ray

Facial emotion 2e¢-4 256 25.13 24.72 0.23

detection
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Next, the authors applied SMOTE, a minority oversampling technique, because of the four
different datasets (MNIST digits and MNIST fashion). In contrast, the datasets like the pneumonia
detection from chest X-Ray images and facial emotion detection had class imbalances. The authors
expected to get similar results as the baseline results for the balanced datasets and significant
improvements for the imbalanced datasets. However, the results were poorer for both MNIST digit
and MNIST fashion datasets than the baseline results. This was somewhat expected since it is a
balanced dataset. For the pneumonia chest X-Ray dataset, which was heavily imbalanced, the authors
got very significant improvements of almost 20% for the train data and around 7% for the test data.
For the facial emotion detection dataset, which was also imbalanced, the model did not show much
improvement, which could have been due to the complexity and the size of the examples in the dataset.
Another reason why SGAN could not perform better on the facial emotion dataset was that the GAN
architecture might not have converged to a minimum error state, even after exhaustive grid search
hyperparameter tuning. Tab. 5 shows the proposed model results after applying SMOTE technique.

Table 5: SMOTE results

Dataset Learning rate ~ Batch size Train accuracy Test accuracy  Fl-score
(7o) ()

MNIST digits  2e-4 128 93.32 93.313 0.93

MNIST le-4 256 71.4 70.72 0.69

fashion

Pneumonia 2e-4 128 70.26 0.79 0.74

chest X-Ray

Facial emotion 2e-4 256 25.22 23.16 0.23

detection

Therefore, all the results are summarized in Fig. 5. The proposed SCA method showed outstand-
ing improvement in performance over the sSGAN method baseline. MNIST Digits & Fashion datasets
have less or negative results due to their already balanced nature on applying SMOTE. Furthermore,
when SCA was implemented for weight initialization, there was a considerable improvement over the
SGAN and SGAN-SMOTE baselines. Similar observations were seen in the Pneumonia Chest X-Ray
and Facial Emotion Detection datasets. However, in the Fashion-MNIST dataset, the performance of
the sGAN baseline model slightly decreased after SMOTE was applied to the dataset. This might be
because the dataset was already balanced, so SMOTE could not make a difference in the dataset label
distribution.

4.5 Comparison with Literature

This section compares the proposed GAN baseline model with the state-of-the-art models.
Different deep learning methods have been used to perform classification in the literature. Some of
these methods have been used as a comparison benchmark against our best-performing model. In
the MNIST Dataset, our proposed model yields a test accuracy of 95.28%. Projection Net paper, on
the other hand, gives the same performance of 95%. Recent developments such as Perceptron with
a tensor train layer performed at 98.2%, which is way higher than our baseline model performance.
Tab. 6 shows the comparison of the proposed method with related literature contributions.
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In the MNIST Dataset, our proposed model yields a test accuracy of 94.86%. Similar work in
neural networks such as CapsNet and Graph Convolutional Network achieves an accuracy score of
77% and 46%, respectively. In the Fashion MNIST, our proposed model surpasses machine learning
methods such as Naive Bayes, Decision Trees, and Bayesian Forest by a considerable margin, which
could be further seen in Tab. 6. Furthermore, in the Pneumonia Chest X-ray detection dataset, our
proposed model’s performance is slightly lower than the pre-trained models such as DenseNet121.
This might be because these architectures are trained on large scale datasets such as ImageNet, which

gives these architectures a massive advantage over the non-pre-trained models

Table 6: Comparison of the proposed method with related literature contributions

Model Benchmark Accuracy Precision Recall F1 score
dataset
Capsule Neural N/A MNIST Digit  0.77 0.80 0.77 0.77
Network (CapsNet)
[49]
Graphic N/A MNIST Digit  0.46 - - -
Convolutional
Networks (GCN)
[49]
Proposed model Normal Baseline MNIST Digit  93.48 0.93 0.93 0.93
Results
SMOTE Results 93.32 0.93 0.93 0.93
SMOTE+SCA 94.86 0.95 0.95 0.94
Results
Multilayer N/A MINST - 0.736 0.676 0.692
Perceptron (MLP) Fashion
[50]
Naive Bayes [51] N/A MINST 0.5539 0.5444 0.5539 0.5417
Fashion
Decision Trees [S1]  N/A MINST 0.6130 0.6085 0.6130 0.6064
Fashion

(Continued)
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Table 6: Continued

Model Benchmark Accuracy Precision Recall F1 score
dataset
Proposed model Normal Baseline MINST 74.11 0.73 0.72 0.73
Results Fashion
SMOTE Results 71.4 0.69 0.69 0.93
SMOTE+SCA 75.39 0.74 0.74 0.74
Results
Dark Covid Net N/A Pneumonia 0.87.02 0.89.96 0.85.35 -
Model [52] Detection Chest 0.85.35
X-ray
CNN ensemble N/A Pneumonia 91.62 - - -
model [53] Detection Chest
X-ray
Convolutional Original Pneumonia 0.9479 0.8512 0.9778 0.9102
Neural Networks Detection Chest
(VGG-16) [54] X-ray
enhanced 0.9436 0.8511 0.9589 0.9018
Densely Connected Original Pneumonia 0.913 0.769 0.971 0.858
CNN Detection Chest
(DenseNet121) [54] X-ray
enhanced 0.934 0.804 1.00 0.891
Proposed method ~ Normal Baseline Pneumonia 74.77 0.81 1.00 0.63
Results Detection from
SMOTE Results Chest X-Rays ~ 70.26 0.71 0.51 0.74
SMOTE+SCA 95.48 0.81 0.70 0.80
Results
Adam optimizer N/A Facial Emotion 20.2751 6.3535 5.2063 10.1489
[55] Detection
Dataset
Proposed method  Normal Baseline Facial Emotion 25.13 0.26 0.21 0.23
Results Detection
SMOTE Results Dataset 25.22 0.29 0.19 0.23
SMOTE+SCA 30.62 0.29 0.19 0.23
Results

5 Conclusion

In this study, the authors proposed an SGAN classifier model that performs binary and multi-
class classification accurately with the help of the Population-Based MetaHeuristic Sine Cosine
Algorithm (SCA). While previous works majorly focused on a single dataset, we have implemented
the proposed architecture on four different benchmark datasets to show the efficiency of the proposed
model. The datasets used were the MNIST digits dataset, the MNIST Fashion dataset, Pneumonia
Detection from Chest X-Rays dataset, and Facial Emotion Detection dataset. The class imbalance was
addressed using the SMOTE method, which further led to a substantial improvement in the model’s
performance. However, PCA did not yield better results. The application of SMOTE yielded better
results on the imbalanced datasets, whereas we remained the same on datasets having balanced class
distribution. One of the reasons why PCA might have failed is that the differentiating characteristics
of the classes are not reflected in the variance of the variables. This is because PCA does not consider
class information when calculating the principal components. Furthermore, the application of the
Sine Cosine algorithm (SCA) used for initialization of weights and biases of Discriminator led to
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substantial improvement in the accuracy scores of the model. Lastly, this work could be further
expanded by implementing the SCA algorithm to initialize weights and biases of the Generator
efficiently without making it so computationally expensive. It is also suggestible to experiment with
more benchmark datasets such as CIFAR-10 and CIFAR-100. To further improve the results, it is
possible to use Auto-Encoders where the sheer number of parameters would benefit from their effective
initialization through SCA.
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