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Abstract: Fingerprint identification systems have been widely deployed in
many occasions of our daily life. However, together with many advantages,
they are still vulnerable to the presentation attack (PA) by some counterfeit
fingerprints. To address challenges from PA, fingerprint liveness detection
(FLD) technology has been proposed and gradually attracted people’s atten-
tion. The vast majority of the FLD methods directly employ convolutional
neural network (CNN), and rarely pay attention to the problem of over-
parameterization and over-fitting of models, resulting in large calculation
force of model deployment and poor model generalization. Aiming at filling
this gap, this paper designs a lightweight multi-scale convolutional neural
network method, and further proposes a novel hybrid spatial pyramid pooling
block to extract abundant features, so that the number of model parameters is
greatly reduced, and support multi-scale true/fake fingerprint detection. Next,
the representation self-challenge (RSC) method is used to train the model, and
the attention mechanism is also adopted for optimization during execution,
which alleviates the problem of model over-fitting and enhances generalization
of detection model. Finally, experimental results on two publicly benchmarks:
LivDet2011 and LivDet2013 sets, show that our method achieves outstanding
detection results for blind materials and cross-sensor. The size of the model
parameters is only 548 KB, and the average detection error of cross-sensors
and cross-materials are 15.22 and 1 respectively, reaching the highest level
currently available.
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1 Introduction

Biometric authentication refers to a technology that uses human physiological or behavioral traits
for identification. With the rapid growth of multi-media technology, biometric identification has grad-
ually emerged and developed rapidly [1–4]. Compared with traditional identification methods (keys,
passwords, ID), biometrics has not been easily lost and forgotten and has been widely used in identity
authentication. The biometrics commonly used for identity authentication include fingerprints, palms,
faces, veins, etc. Compared with other biometrics, fingerprint-based identification is the most widely
deployed and mature because of its uniqueness, stability, and long-term invariance. But it also faces
huge hidden risks, such as attacking fingerprint sensors, attacking software systems, and attacking
databases. Among them, forged fingerprint spoofing attacks are the threats that need to be addressed
most [5,6], since do not need to master much professional knowledge to launch an attack. How to
prevent the distinction between live and spoof fingerprints has become a research hotspot.

The aforementioned vulnerabilities can be counteracted using the fingerprint liveness detection
(FLD) strategy. Liveness detection refers to the analysis of fingerprint characteristics to determine
whether the fingerprint to be tested is from a live subject or from a forged one. In recent years,
many fingerprint liveness detection methods (FLD) emerged and are proposed by the research
community [7,8]. The current FLD methods are basically divided into two categories [9]: hardware-
based and software-based. Hardware-based methods generally assist professional hardware to the
fingerprint sensor to obtain vital signs (such as heartbeat, blood flow, skin impedance, smell, etc.),
however, these approaches greatly increase the cost; Software-based methods refer to the design
a framework of feature extraction, and get discriminant or differential characteristics between the
live fingerprint images and the fake one. Moreover, software-based methods be easily integrated
into the fingerprint authentication module at the software level without exorbitant hardware costs.
Consequently, software-based FLD scheme has broad application value and market prospects.

Software-based methods are further divided into handcrafted and deep learning-based features
[10,11]. The former heavily relies on experience and professional knowledge. Therefore, it will lack
consideration of the details of the live and forged fingerprint, leading to the loss of some key spatial
location information. In contrast, deep learning-based ways can automatically learn deep hidden
features from data and achieve better performance. However, they are still some inadequacies and
shortcomings that are difficult to solve, such as excessive parameters and mediocre generalization fac-
ing new unknown samples [12,13]. In spite of some classical deep learning models applied and reported
on fingerprint liveness detection research, they do not consider practical application problems. That
is, these models often have hundreds of megabytes of parameters, extremely inconvenient for mobile
terminal deployment. Based on the above questions, the research of lightweight FLD methods has
urgent practical value. In addition, the neural networks will excessively learn the features from data,
so that the model makes the final decision of unknown materials and cross-sensors poor.

Aims at improving the generalization of the trained model of fingerprint liveness detection, the
domain generalization (DG) strategy can be used to FLD to improve the reliability of the model
and learn the general traits of spoof fingerprints made from blind materials. DG technique is to
learn a model with strong generalization ability from new datasets with different data distributions.
The current methods of domain generalization can be roughly categorized in three directions:
data manipulation, representation learning, and learning strategy [14]. Data manipulation refers to
operating on training data and expanding the data in the training set via using some data enhancement
operations. Representation learning refers to the invariant features of the learning field, that is, learning
a feature that can perform well on data with different distributions. Learning strategy refers to the
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introduction of mature learning models in machine learning into multi-field training to make the
model more generalized. It mainly includes methods based on ensemble learning and meta-learning.
Domain generalization can make fingerprint liveness detection algorithms based on deep learning
learn more robust features, improving the performance of fingerprints synthesized in the face of
unknown materials.

In order to deal with the problem of the over-parameterization and poor generalization, a
lightweight multi-scale FLD method is proposed in this paper, and the related algorithms of domain
generalization are optimized so that the trained model can learn more dipartite texture features. Except
for testing the performance on two public benchmark datasets, we also test the performance of the
model in the FLD of cross-sensor and blind materials. The main contributions of this paper are as
follows:

1. Multi-scale lightweight network. A multi-scale parallel neural network is proposed for the
fingerprint liveness detection task. The parameter quantity of our network is far less than
other traditional CNNs.

2. Hybrid space pooling pyramid. The spatial pooling pyramid divides the feature map into
blocks and then uses global pooling to extract global features. Feature maps of different
sizes can be extracted after block and global pooling operation. Introducing a spatial pooling
pyramid enables the CNN to input fingerprint images of different sizes. Meanwhile, traditional
ones often only use one type of pooling, here we simultaneously use the maximum pooling and
the average pooling to extract richer features.

3. Optimized RSC (Representation self-challenge) module with attention mechanism. The DG
algorithm, RSC is introduced and optimized. Compared with the general DG algorithm, it
does not need the information of the target domain and only needs the source domain infor-
mation to learn robust features. On this basis, we introduced a channel attention mechanism
to further improve the performance of the algorithm.

4. Lightweight and generalization. While considering the weights of the model, the generalization
ability of the model is also further considered, so that the model not only is less than the
general NN in parameters, but also greatly exceeds the traditional CNN in the performance of
generalization.

The rest of this paper is organized as follows. In the Section 2, we introduce the proposed method
and related techniques. The experimental design and results are reported in the Section 3, and the final
conclusion and future work are given in the Section 4.

2 Proposed Methods

In this section, we first introduce the structural details of the lightweight network model, and
then design a hybrid spatial pyramid pooling module. Finally, an optimized RSC algorithm with the
attention mechanism is introduced. The flowchart of our method is shown in Fig. 1.

2.1 Multi-scale Lightweight Network

To differentiate from those forged fingerprint images, traditional deep learning-based methods
often directly increase the depth and width of the network. Among them, the depth of the network
refers to the number of layers of the network, and the width refers to the number of channels per
layer. However, as the depth and width increase, the number of parameters also rapidly expand,
and overfitting often occurs during training. The calculation power of the model will also be greatly



722 CMC, 2022, vol.73, no.1

increased simultaneously. To deal with this problem, Szegedy et al. pointed out that the Inception V1
module can widen the network [15], reduce the number of parameters and extract high-dimensional
features while ensuring the quality of the model. It uses different sizes of convolution kernels to obtain
different sizes of receptive fields, and finally splices the outputs of different convolution modules to
merge features of different scales; among them, a large number of 1 × 1 convolutions are used to
reduce the dimensionality of the data. An activation function can also be added to introduce more
nonlinearities.

1x1 convolutions

1x1 
convolutions

3x3 
convolutions

1x1 
convolutions

3x3 
convolutions

3x3 max 
pooling

1x1 
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Figure 1: The flowchart of our proposed method

On this basis, we designed a similar parallel architecture module for extracting multi-scale features.
This module mainly consists of four parallel convolution modules, as shown in Fig. 1. After per-
forming different convolution operations, the feature maps are combined to obtain high-dimensional
features of different scales. After the merged feature map is subjected to another convolutional pooling
operation, it is input into the spatial pooling pyramid for block hybrid pooling to obtain a fixed one-
dimensional vector, and finally input to the fully connected layer for subsequent detection. The specific
structural parameters of the model are shown in Tab. 1.

Table 1: Network architecture and basic layer information

Block Layers in_channel out_channel

Block1 1 × 1 conv, Sigmod 3 8
Block2_1 1 × 1 conv 3 8
Block2_2 3 × 3 conv, Sigmod 8 16
Block3_1 1 × 1 conv 3 8
Block3_2 3 × 3 conv, Sigmod 8 16
Block4_1 3 × 3 MaxPooling 3 3
Block4_2 1 × 1 conv, Sigmod 3 8

(Continued)
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Table 1: Continued
Block Layers in_channel out_channel

Block5 5 × 5 conv,
BatchNorm2d,
ReLU, 2 × 2
MaxPooling

48 96

The multi-scale of our model is reflected in feature extraction, and our model also supports multi-
scale (arbitrary size) input. Through the above design, the size of our model parameters is only 548
KB, which is far smaller than the current two classical models, such as CNN-Alexnet and CNN-VGG
[11] as reported in Tab. 2 that 222 and 545 MB respectively. At the same time, our lightweight model is
easier to deploy on smart terminals with less computing power, such as mobile phones, platforms, etc.

Table 2: Parameter comparison information of different classic network model

Model Input size Total params Model size (KB)

CNN-Alexnet [8] (224,224) 57,012,034 222,703
CNN-VGG [8] (224,224) 139,578,434 545,228
Ours Arbitrary 140,226 548

2.2 Hybrid Spatial Pyramid Pooling

Spatial pyramid pooling [16], connected to the fully connected layer, can output a fixed-size one-
dimensional vector for any size image. Among them, block refers to dividing a feature map into n × n
sub-blocks, global pooling refers to global pooling of each sub-block to obtain a feature map, and
finally connecting the features of each sub-block to obtain a one-dimensional feature vector of length
n2. Spatial pyramid pooling is to use the above operations to connect the features extracted with
different sizes of n, and finally input them into the fully connected layer as shown in Fig. 2. During the
implementation, the kernel size and step size of the kernel of the pooling operation will be adaptively
adjusted according to the size x and the parameter n of the feature map, which achieves the above
effects. The specific calculation is shown in Eq. (1), where k_size is the kernel size and s_size is the
stride size.

k_size =
⌈x

n

⌉

s_size =
⌊x

n

⌋ (1)

Universal spatial pooling pyramids usually use only one type of pooling, that is, max pooling
or average pooling. Average pooling operation can extract some background features of fingerprints,
while max pooling operation is more inclined to extract texture features of fingerprints. Considering
that spoof fingerprints may change the background information and texture features extracted by the
sensor at the same time, we perform two kinds of pooling simultaneously to extract more generalizable
features. The hybrid spatial pyramid pooling algorithm flow is as follows:
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Figure 2: The flowchart of SPP module

Algorithm 1: Hybrid Spatial Pyramid Pooling

Input: n: an int list for the level of block, x: the input feature map, size(x) = (width, height)
Output: out: a fixed output one-dimensional vector

1. out = []
2. for i in n do
3. k_w, k_h = �size(x)/i�
4. s_w, s_h = �size(x)/i�
5. out1 = MaxPooling(x, kernel_size=( k_w, k_h), stride = (s_w, s_h))
6. out2 = AveragePooling(x, kernel_size=( k_w, k_h), stride = (s_w, s_h))
7. out.append(out1.resize(out1.size(x), −1))
8. out.append(out2.resize(out2.size(x), −1))
9. return out

2.3 Optimized RSC Algorithm based on SE

The feature self-learning ability is unique to convolutional neural networks, and the overfitting
problems often leads to the poorer generalization. Model regularization can improve the performance
of the model and effectively improve the generalization of the model. However, most current model
regularization uses dropout, randomly discarding the weights of some hidden layer nodes during model
training. Those nodes that are not working can be temporarily considered not part of the network
structure, and will not participate in the updating for the time being. With the advent of DG method,
the RSC strategy is similar to dropout operation. It can improve the generalization and performance
of the model by invalidating some neurons during training [17]. Unlike dropout, the RSC algorithm
compares gradients to inhibit neurons with higher gradients from participating in propagation. By
discarding the features related to higher gradients in each round of training, and forcing the model to
use the remaining feature information to make predictions. It restrains the fully connected layer from
using the most obvious feature to make predictions, so that the model pays more attention to all the
features instead of just one of the most obvious features, thereby improving the generalization capacity
of the neural network model.
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Assume that the model has one-dimensional features z extracted via hybrid spatial pyramid
pooling, which is connected to the fully connected layer. First, pass it through the fully connected
layer to get the output ypred and calculate the loss with the label ytrue, then calculate the gradient gz

about z with respect to loss. The formula for calculating the gradient is as Eq. (2).

gz = ∂loss
∂z

= ∂
∑

CrossEntropy
(
ytrue, ypred

)
∂z

(2)

After sorting the gradient of gz, for the proportion of neurons to be discarded, p, sort each neuron
in gz from large too small to get the ranking rankg corresponding to the elements in z, and then find
the location of the neuron to be discarded according to Eq. (3).

location (i) =
{

0, rankg/len (gz) < p
1, otherwise (3)

Finally, the location is multiplied by z to get the new feature, which is input into the fully connected
layer, and the loss is recalculated and backpropagated.

As mentioned above, the RSC algorithm improves the generalization of the model by suppressing
the most obvious feature that is the highest gradient in each training. However, the most obvious
feature may not be found by only relying on the gradient. In order to further optimize the performance
of the RSC algorithm, we introduce the channel attention mechanism to FLD, and use the Squeeze-
and-Excitation (SE) [18] module for the feature map after the last convolution pooling operation, so
that when the RSC algorithm calculates the gradient, more obvious features can be found.

The principle of Squeeze-and-Excitation is to first perform the Squeeze operation on the feature
map obtained by convolution, and convert the feature map of each channel into a value. The channel-
level global features are obtained by global average pooling in this paper as shown in Fig. 3. Then the
Excitation operation is carried out on the global features, that is, use the fully connected layer to predict
the importance of each channel, learn the relationship between each channel, and get the importance
of different channels. This article uses two full connections. The first one reduces the channel feature
to 1/16 of the original dimension, the second restores it to the original dimension, and finally the
learned channel weight is multiplied by the feature map of the corresponding channel to get a new
one. The feature map is then input into the hybrid pyramid pooling and further processed using the
RSC algorithm. It is found in the experiment that the optimized algorithm makes it possible to find
important features more accurately. The optimized algorithm flow is as follows:

Figure 3: The flowchart of the SE module
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Algorithm 2: RSC algorithm optimized by SE

Input: x: feature map, p: RSC drop rate, y: date’s true label
Output: model after backpropagating

1. f = Average Pooling (x, kernel_size=size(x))
2. len = length(f)
3. w1 = linear (f, input_size = len, output_size = len//16)
4. w2 = linear (f, input_size = len//16, output_size = len)
5. x_new = x.∗sigmoid(w2)
6. z = Algorithm1(n = [1,2,3,4,5], x = x)
7. y_pred1 = classfier(z)
8. loss1 = CrossEntropy(y_pred1, y)
9. gz = grad (loss1, z)

10. calculate m with Eq. (3) using p and gz

11. z_new = z.∗m
12. y_pred2 = classfier(z_new)
13. loss2 = CrossEntropy(y_pred2, y)
14. do backpropagation using loss2

3 Experimental Details and Performance Evaluation

The general fingerprint liveness detection dataset used to evaluate the performance of the
proposed method and the evaluation indicators are introduced in this section, and then the operation
details of the experiment are given. Finally, we compare the performance of the algorithms in different
scenarios and illustrate the effectiveness of our proposed method.

3.1 Dataset and Evaluation Metric

The performance of this method is evaluated on two public datasets LivDet 2011 and LivDet 2013
[19,20]. The LivDet 2011 dataset is derived from the 2011 FLD challenge. It is publicly downloaded
after registration and contains 12004 real and fake fingerprints. It is collected by four different
kinds of sensors, namely Biometrika, Digital, Italdata and Sagem. LivDet 2013 consists of four sub-
datasets, Biometrika, ItalData, Swipe, and CrossMatch, each of which is captured by a corresponding
fingerprint reader. LivDet 2013’s fake fingerprints are made of gelatin, latex, ecoflex, modasil, and
wood glue. The specific details of the two fingerprint data sets are shown in Tab. 3.

The metric used for performance evaluation is the average classification error (ACE). As shown
in Eq. (4), it is obtained by averaging the misclassification rate of live fingerprints (Ferrlive) and false
fingerprint misclassification rate (Ferrfake).

ACE = Ferrfake + Ferrlive

2
(4)
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Table 3: The detailed data information in LivDet 2011 and LivDet 2013

Dataset Sensor (Acronym) Size Training
(Live/Spoof)
Testing (Live/Spoof)

LivDet2011 Biometrika (Bio) 312 × 372 1000/1000
1000/1000

Digital (Dig) 355 × 391 1004/1000
1000/1000

Italdata (Ita) 640 × 480 1000/1000
1000/1000

Sagem (Sag) 352 × 384 1008/1008
1000/1036

LivDet2013 Biometrika (Bio) 312 × 372 1000/1000
1000/1000

Italdata (Ita) 640 × 480 1000/1000
1000/1000

CrossMatch (Cro) 800 × 750 1250/1000
1250/1000

Swipe (Swi) 208 × 1500 1221/979
1153/1000

3.2 Implementation Details

The environment used in the experiment is Python: 3.6.5, PyTorch: 1.7.1, and the GPU used to
run the experiment is GTX 1080Ti. The experimental data has been enhanced in advance through
four methods: small-angle rotation, flipping, zooming, and brightness enhancement methods. The
parameters used by RSC in the experiment refer to [17], gradient pruning rate is 0.3. In the cross-
material experiment, the unnecessary fake fingerprints corresponding to the training dataset and the
test dataset are deleted, and all the real fingerprints keep unchanged. Meanwhile, to speed up the
training and better compare with the results of others, all the fingerprint images are resized to 224 ×
224 for batch training, and the batch size is 32. And we train each model for only 60 epochs.

3.3 Results and Analysis

First, we perform performance tests on the datasets of sensors corresponding to LivDet 2011 and
LivDet 2013, and the results are shown in Tabs. 4 and 5. Regardless of whether it is LivDet 2011 or
LivDet 2013, our results obviously exceed the general CNN and methods, and the average ACE which
attains 2.47 and 1.49, is better than others.
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Table 4: The average classification error of different methods when dataset is LivDet 2011

Method LivDet 2011

Biometrika Digital Italdata Sagem Average

LCPD [21] 4.9 4.2 11 2.7 5.7
CNN-Alexnet [11] 5.6 4.6 9.1 3.1 5.6
ROI [22] 7.6 2.1 11 2.5 5.8
CNN-VGG [11] 5.2 3.2 8 1.7 4.53
HSIC [23] 3.5 1.35 5.1 1.55 2.88
Ours 2.05 2 4 1.82 2.47

Table 5: The average classification error of different methods when dataset is LivDet 2013

Method LivDet 2013

Biometrika Italdata CrossMatch Swipe Average

SURF [24] 5.75 6.08 4.6 4.6 5.26
CNN-Alexnet [11] 1.9 0.5 4.7 4.3 2.85
ROI [22] 2 1.8 7.42 0.74 2.99
CNN-VGG [11] 1.8 0.4 3.4 3.7 2.32
HSIC [23] 1.4 0.6 4.53 1.11 1.91
Ours 0.8 0.3 2.76 2.09 1.49

Then, we test the performance of our method in the case of cross-sensor, and also compared the
performance of the RSC algorithm without SE module optimization and the RSC algorithm with SE
module optimization on our lightweight model, as shown in Tab. 6. It can be seen that the performance
after the SE optimization has been improved by about 1.7, and the generalization performance on the
cross-sensor has been greatly improved compared with the general method, that the average ACE
achieves 15.22.

Table 6: The Average Classification Error from cross-sensor detection

Train Test [11] [25] Without SE ours

Bio2011 Bio2013 15.5 7.9 6.6 6.35
Bio2013 Bio2011 46.8 34.4 39.55 30.7
Bio2013 Ita2013 8.8 6.7 1.7 1.85
Ita2013 Bio2013 2.3 5.1 3.25 1.45
Bio2011 Ita2011 37.2 29.5 11.4 9.05
Ita2013 Bio2011 31.0 24.9 33.65 34.45
Ita2011 Ita2013 14.6 3.3 8.55 6.4
Ita2013 Ita2011 46.0 29.9 31.05 31.5

Average 25.28 17.71 16.97 15.22
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Finally, we test the performance under cross-material conditions in Bio2013 and Ita2013, as shown
in Tab. 7. We only keep spoof fingerprints made of Modalsil and Wood Glue in the training dataset,
and only keep spoof fingerprints made of EcoFlex, Gelatine, and Latex in the test dataset.

Table 7: The average classification error from cross-material detection

Data Materials used to fabricate fake
fingerprints

Nogueira et al. [11] Chugh
et al. [25]

ours

Materials for
training

Materials for
testing

CNN-VGG LBP

Bio2013 Modalsil, Wood
Glue

EcoFlex,
Gelatine, Latex

4.9 8.5 3.1 1.75

Ita2013 Modalsil, Wood
Glue

EcoFlex,
Gelatine, Latex

6.3 10.7 0.8 0.25

Average result 5.6 9.6 1.95 1

From the accuracy curve in Fig. 4, it can be seen that in the early stage of model training, the
accuracy fluctuates greatly, but after about 20 epochs of training, it gradually becomes stable. In
the early stage of training, the RSC algorithm could inhibit some of the more significant neurons,
resulting in unstable results. In this process, the model is effectively prevented from overfitting, so that
our method can finally learn more representative true/fake fingerprint features, thereby improving the
generalization performance of the model. Our method also performed well on two cross-material trails
as shown in Tab. 7, and the average ACE across materials reached 1.

Figure 4: Train and test accuracy curve from cross-material detection
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3.4 Supplementary Experiment

In order to better verify the superiority of the lightweight architecture proposed in this paper, we
use the RSC algorithm to test the two mainstream lightweight network structures MobileNet [26] and
ShuffleNet [27], and compares the performance with our proposed network.

First, we compare the parameters of each network. The parameters of MobileNet and ShuffleNet
reach 12,521 and 13,788 KB as shown in Tab. 8, while our proposed method is only 548 KB, which
is less than one-twentieth of the two mainstream networks. Our proposed architecture is lightweight
enough.

Table 8: Parameter comparison of different lightweight architectures

Model Input size Total params Model size (KB)

MobileNet [26] (224,224) 3,202,976 12,512
ShuffleNet [27] (224,224) 3,529,776 13,788
Ours Arbitrary 140,226 548

Then, experiments are carried out in LivDet 2011 and LivDet 2013, and the obtained results are
shown in Tabs. 9 and 10. It can be seen that in the LivDet 2011, MobileNet’s average performance is
4.39 worse than ours, and ShuffleNet is 3 worse. In LivDet 2013, MobileNet is 0.76 worse than ours,
and ShuffleNet is 0.01 worse. This point proves that the architecture designed in this paper performs
better on the fingerprint liveness detection task.

Table 9: Different lightweight architectures’ ACE when dataset is LivDet 2011

Method LivDet 2011

Biotrika Digital Italdata Sagem Average

MobileNet [26] 8.4 2.65 13.7 2.7 6.86
ShuffleNet [27] 7.5 2.65 10 1.72 5.47
Ours 2.05 2 4 1.82 2.47

Table 10: Different lightweight architectures’ ACE when dataset is LivDet 2013

Method LivDet 2013

Biometrika Italdata Crossmatch Swipe Average

MobileNet [26] 0.85 0.75 5.87 1.53 2.25
ShuffleNet [27] 0.85 0.5 3.78 0.89 1.50
Ours 0.8 0.3 2.76 2.09 1.49

Cross-sensor and cross-material experiments are then performed on MobileNet and ShuffleNet.
When cross-sensor, our proposed method outperforms MobileNet by 9.26 on average and 8.12
better than ShuffleNet, as shown in Tab. 11. When cross-material, ours outperforms MobileNet and
ShuffleNet by 4.45 and 0.95, respectively, as shown in Tab. 12.
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From the comparison of the results of our proposed method and two common lightweight models
under the training of an optimization algorithm, it can be seen that our model is not only more
lightweight than them, but also has less than one-twentieth of their parameters. Meanwhile, our
proposed method outperforms the other two models under the test of each task, which verifies the
superiority of the lightweight architecture proposed in this paper.

Table 11: Different lightweight architectures’ ACE from cross-sensor detection

Train Test MobileNet [26] ShuffleNet [27] ours

Bio2011 Bio2013 20.75 18.9 6.35
Bio2013 Bio2011 43.55 41.9 30.7
Bio2013 Ita2013 4.55 5.9 1.85
Ita2013 Bio2013 2.9 3.45 1.45
Bio2011 Ita2011 36.85 35.4 9.05
Ita2013 Bio2011 33.65 28.8 34.45
Ita2011 Ita2013 11.7 16.15 6.4
Ita2013 Ita2011 41.85 36.25 31.5
Average 24.48 23.34 15.22

Table 12: Different lightweight architectures’ ACE from cross-material detection

Data Materials used to fabricate fake fingerprints [26] [27] ours

Materials for training Materials for testing

Bio2013 Modalsil, Wood Glue EcoFlex, Gelatine,
Latex

7.19 2.71 1.75

Ita2013 Modalsil, Wood Glue EcoFlex, Gelatine,
Latex

3.71 1.19 0.25

Average result 5.45 1.95 1

4 Conclusion and Further Work

This paper proposes a lightweight multi-scale neural network for fingerprint liveness detection.
The network achieves multi-scale feature extraction with a small number of parameters. At the same
time, the introduced hybrid spatial pyramid pooling can make the model input fingerprints figure
of any size image. Furthermore, for unknown forged fingerprints, we designed an optimized RSC
algorithm based on the SE attention mechanism, greatly improving the generalization of the detection
model, and achieved excellent performance in cross-sensor and cross-material experiments.

In general, compared with other fingerprint liveness detection scheme, our proposed solution has
the characteristics of lightweight, great performance and excellent generalization. In the future, we
will further study the performance of this method in other fields such as forged face detection, and
introduce simultaneously more domain generalization methods to further improve the performance
of attack detection against spoofed fingerprints from unknown material. Moreover, the design of our
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proposed architecture and the setting of parameters are manually adjusted depending on the personal
experience, it can be combined with the network architecture search to develop a better lightweight
fingerprint liveness detection model.
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