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Abstract: Big data is a vast amount of structured and unstructured data
that must be dealt with on a regular basis. Dimensionality reduction is the
process of converting a huge set of data into data with tiny dimensions so
that equal information may be expressed easily. These tactics are frequently
utilized to improve classification or regression challenges while dealing with
machine learning issues. To achieve dimensionality reduction for huge data
sets, this paper offers a hybrid particle swarm optimization-rough set PSO-RS
and Mayfly algorithm-rough set MA-RS. A novel hybrid strategy based on
the Mayfly algorithm (MA) and the rough set (RS) is proposed in particular.
The performance of the novel hybrid algorithm MA-RS is evaluated by
solving six different data sets from the literature. The simulation results and
comparison with common reduction methods demonstrate the proposed MA-
RS algorithm’s capacity to handle a wide range of data sets. Finally, the rough
set approach, as well as the hybrid optimization techniques PSO-RS and MA-
RS, were applied to deal with the massive data problem. MA-hybrid RS’s
method beats other classic dimensionality reduction techniques, according to
the experimental results and statistical testing studies.

Keywords: Dimensionality reduction; metaheuristics; optimization algorithm;
mayfly; particle swarm optimizer; feature selection

1 Introduction

Creating big data applications has become increasingly important in recent years. Indeed, numer-
ous businesses from diverse industries are becoming increasingly reliant on data-driven expertise.
Traditional data methodologies and platforms, on the other hand, are less effective in large data
settings. They have poor reactivity as well as a lack of scalability, performance, and accuracy. Much
effort has been expended in addressing the troubling significant data concerns. As a result, numerous
distributions and technologies have emerged. Dimension reduction is the process of converting a
huge set of data into data with tiny dimensions so that equal information may be expressed easily.
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While dealing with machine learning concerns, these tactics are frequently employed to create stronger
features for use in classification or regression tasks. In most circumstances, training a machine-learning
model with multiple properties is a tough task. The appearance of vulnerable model overfitting is
always proportional to the increase in model features. That resulted from the fact that not all of the
features are usually significant. Some qualities, for example, may simply increase the volume of the
data. To address this issue, dimensionality reduction (DR) methods are used [1–6]. Dimensionality
Reduction is a preprocessing procedure that removes unnecessary and redundant data from the data
set to be processed [7].

Feature extraction (FE) and feature selection (FS) are the two DR approaches [8]. The goal of
projecting actual high-dimensional data into a new low-dimensional feature space in the first class
is to extract more features. FS enhances generalizability by reducing overfitting, computation time,
and memory requirements, as well as improving classification accuracy by establishing an accurate
prediction model [9,10]. In the final class, however, the FS techniques choose the fewest features that
adequately represent the original data set.

To use FS, it’s important to determine how to select a feature set and then analyze the selected
subset. Following the selection of a search method, three fundamental algorithms will be examined:
complete, random, and heuristic search algorithms. As the name implies, all possible feature subset
combinations should be thoroughly investigated. Because it considers all of the subsets in the search
region, it is obvious that a comprehensive search will aid in locating the best one. However, because
to the exponential growth of the number of features in a dataset (2 M, where M is the number of
features), accurate approaches for large-scale datasets are slow and impracticable. A random search
can also be used as an alternative. In the worst-case situation, a random search will be as difficult as
an in-depth search [11]. A complete search with high-dimensional data records is impossible since it
would require a large amount of processing power to determine which solution was the best, and in
the worst scenario, a random search might be as good as a full search. The third strategy is capable
of making “educational judgments” and directing the search process. Such heuristic information is
task-dependent and is frequently inapplicable.

Metaheuristic algorithms are search methods that can be utilized for a variety of purposes
[12]. The literature demonstrates how beneficial and efficient this strategy is when compared to
other techniques such as complete and random searches [13]. Metaheuristic techniques include
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),
and Differential Evolutionary (DE). They are all methods for determining the optimum solution to a
problem, but they are not the only ones. The Whale Optimization Algorithm (WOA), Harris Hawks
Optimizer (HHO), and Gray Wolf Optimizer are a few of the new methodologies being used (GWO)
[14–16]. Zervoudakis et al. [17] proposed the Mayfly algorithm (MA), which is a creative approach of
dealing with FS difficulties. Immature mayflies grow and change for a long time as aquatic nymphs
before becoming adult mayflies. A few meters above the water, they form a group of male adults. In
this way, they might attract ladies. They execute a wedding dance in which they move up and down in a
particular beat. The female mayflies then congregate to mate. Particle swarm optimization (PSO) is a
metaheuristic that is based on the premise that people work together to solve issues. PSO was founded
in 1995 by Kennedy and Eberhart [18]. The PSO process begins with a random selection of particles
(possible solutions). It then attempts to enhance the solutions using a quality metric (fitness function).
Particles are moved across the search space using a simple set of mathematical equations that move
them in such a way that they resemble how particles communicate with one another.



CMC, 2022, vol.73, no.1 1089

Missing-values ratio (MVR), low variance filter (LVF), high correlation filter (HCF), random
forest (RF), principal component analysis (PCA), linear discriminant analysis (LDA), backward
feature elimination (BFE), forward feature construction (FFC), and rough set (RS) theory are some
methods for locating missing values [19] in a population (RS). RS theory is a creative mathematician’s
solution to the problem of having insufficient information. The rough sets have been thought to be
useful for a variety of purposes. Researchers in Artificial Intelligence (AI) and cognitive science feel
that the rough set method is critical [20], particularly in machine learning, data mining, expert systems,
approximate reasoning, and pattern recognition.

In this paper, new supervised feature selection strategies for diverse data sets are presented, which
are based on a hybridization of the Mayfly algorithm-rough set MA-RS, Particle Swarm Optimization-
Rough Set (PSO-RS), and other standard dimensionality reduction methodologies [21]. Experimental
results on a variety of typical datasets show that the suggested strategy is both efficient and superior
to current feature selection approaches. The results showed that reducing dimensionality could reduce
overfitting while keeping performance comparable to or better than the original. According to the
findings, the hybrid algorithm MA-RS outperforms all other algorithms.

The rest of the paper is organized as follows: Section 2 presents the related work of this study.
Section 3 presents the preliminaries of this study. The proposed method of a hybrid MA with the rough
set algorithm is discussed in Section 4. Experimental analysis and results are presented in Section 5.
Conclusions with future work are presented in Section 6.

2 Related Work

In the literature, several FS algorithms employ metaheuristic algorithms. PSO, for example, was
frequently utilized in FS approaches [4,6]. The PSO algorithm’s performance with various update
methodologies for the inertia weight parameter was investigated. Dimensionality reduction was a
huge stride forward in many industries because it made it easier to group, display, or compress large
amounts of data. Data dispersed across a vast region could be relocated to a smaller area with fewer
dimensions [22]. In this situation, the purpose was to decrease the impact of large data difficulties [23].
Several advancements have contributed to minimize the overall size of various objects. When analyzing
nonparametric data, linear approaches such as Principal component analysis (PCA) are commonly
used. PCA was originally introduced by Pearson [24] and developed independently by Hotelling [25].
Approaches like this are useful in complex or nonlinear situations.

High-dimensional data was widespread in computers, and each of these datasets took up less
space than the entire dataset. To better characterize this lower-dimensional space, several dimensional
reduction approaches have been improved. The data map reduced the amount of signs indicating
supervised learning isn’t working while also making them more visible. In the last few years, there
has been a substantial increase in the use of biologically inspired hybrid algorithms in optimization
and feature selection. Hybrid models were the best choice for many optimization issues [4]. Li et al.
in [26] proposed a feature selection approach that ranks features in a high-dimensional dataset by
combining feature weighted k-nearest neighbors algorithm (K-NN) and the real-valued GA algorithm.
Hosseini et al. In [27] proposed Simulated annealing as a feature selection method in flash-flood
hazard assessment. Mafarja & Mirjalili in [28] proposed a hybrid WOA with simulated annealing (SA)
technique. It used two hybrid models: The low-level teamwork hybrid and the high-level hybrid. When
the SA was incorporated into the WOA, it became more powerful in terms of exploitation. Following
the WOA, the SA was employed in the second model to im-prove it beyond the best overall solution.
In [29], a hybrid method using PSO and the flower pollination algorithm have been used as feature
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selection techniques for software effort prediction and on popular University of California Irvine
(UCI) repository [30] datasets.

The authors in [31] demonstrated a hybrid FS technique that integrated the Differential evolution
(DE) and Artificial bee colony algorithm (ABC) algorithms to improve their performance. The
proposed hybrid technique solves the broad classification problem, as does data mining. The DE
approach was combined with the binary mutation’s new phase, making it much more effective. To
prevent becoming stuck in local optima (LO), the proposed technique modifies the bystander bee
process (LO).

According to [32], swarm-based and evolutionary algorithms could be integrated to create a new
hybrid biology-inspired algorithm. To integrate the search process with a selection operator and the
grasshopper optimization algorithm (GOA), a concept known as evolutionary population dynamics
(EPD) was developed. GOA enables the search to select the essential qualities based on correlation
data. According to the findings of bio-logical approaches, the method can increase classification
accuracy. The authors in [33] suggested a multi-label feature selection technique based on ant colony
optimization (ACO) employing swarm intelligence. Using the multi-level knn (ML-knn) classifier, the
method outperformed five state-of-the-art feature selection algorithms in nine well-known datasets.

In the literature, there are three types of hybrids like this one. Mohamed et al. [34] stated that
WOA and GWO can be merged. Both algorithms included crossover and mutation operators. They
were utilized to solve optimal power dispatch issues, demonstrating that the hybrid model outperforms
standalone of GWO and WOA. The most serious issue with this hybrid is the high cost of operation. As
a result, the WOA must be completed first, with the best response serving as the beginning point for the
GWO that follows. Singh and Hachimi in [35] adapted WOA’s spiral equation into GWO and applied
it to structural design problems. The authors in [36] developed a hybrid WOA and GWO strategy
similar to [35] and applied it to data clustering methods. Although this hybrid method has numerous
advantages, the authors used it for continuous improvement, hence it cannot deal with scenarios
requiring binary variables. Too and Mirjalili in [37] presented the hyper learning binary dragonfly
algorithm (HLBDA), a dragonfly-based method, which demonstrated improved performance in the
classification of twenty-one datasets from the University of California Irvine (UCI) repository [30]
and Arizona State University, as well as a coronavirus disease (COVID-19) dataset (2020).

Although these approaches have done well in certain areas of their applications, none of them have
taken into account a hybridization with rough set feature selection task. To our knowledge, there are a
limited number of metaheuristic algorithms combined with rough set feature selection problems. These
constraints apply to the work presented in this publication. This work contributes to the literature by
combining rough sets hybridization with the mayfly optimization methodology for feature selection
and dimensionality reduction.

3 Preliminaries of Mayfly Algorithm

Butterflies belong to the order Ephemeroptera, which is a suborder of the insect order
Palaeoptera. Mayflies (MA) are a type of butterfly in this order. These butterflies are most numerous in
the UK around May, hence they’re known as Mayflies by the locals. Before becoming adult mayflies,
immature mayflies spend a lengthy time as aquatic nymphs. Most men adults form a group a few
meters above the sea. That is how men attempt to attract females. They execute a wedding dance in
which they move up and down in a rhythmic manner. Female mayflies congregate in these swarms to
mate. During mating, the eggs are dropped into the water, and the cycle begins again. Allan et al. [38]
provides in-depth descriptions of the method described above.
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Male mayfly flight: A male mayfly’s position is updated as in Eq. (1):

xt+1
i = xt

i + vt+1
i (1)

xt+1
i is the next mayfly’s position, xt

i is the actual mayfly’s position. The following position is calculated
by multiplying the present position by the velocity vt+1

i . The male mayfly is constantly a few meters
above the water’s surface and can fly at high speeds [17]. The velocity of a male mayfly is estimated as
in Eq. (2):

vt+1
kj = g ∗ vt

kj + a1e−βr2
p ∗ (

pbestkj − xt
kj

) + a2e−βr2
p ∗ (

gbestj − xt
kj

)
(2)

vt
kj is the velocity of mayfly k in dimension j at time t, xt

kj is the same mayfly’s position at time t,
a1, and a2 are positive attraction constants used to quantify the cognitive and social components’
contributions; respectively, g is a coefficient of gravity. It is a coefficient of fixed visibility used to
obscure a mayfly from others. pbestk is the most advantageous position for an individual mayfly k has
ever visited, and gbestj is the jth the finest male mayfly’s posture is made up of components. Because it
is a minimization issue, pbestk is updated as follows:

pbestk =
{

xt+1
k

if |fitness (xt+1
k < fitness

(
pbestk

) (3)

where fitness
(
xt+1

k

)
represents the fitness of a location, i.e., the quality of a solution. Finally,

rprepresents the Cartesian distance between xk and pbestk while rg represents the Cartesian distance
between xk and gbest. These distances are computed as:

|xk − Xk| =
√√√√ n∑

j=1

(
xkj − Xkj

)2
(4)

xkj represents the position of the jth element of kth mayfly and Xk either represents pbestk or gbest. The
best mayfly at any given time must continue to execute the nuptial dance. The best mayfly gives the
program a stochastic component. Eq. (5) depict this dance mathematically.

vt+1
kj = g∗vt

kj + d∗r (5)

d is the nuptial dance coefficient, and r is a random value between [−1, 1] . The coefficient of
nuptial dance progressively reduces as ditr = d0×δitr. In this equation d0 is the nuptial dance coefficient’s
beginning value, itr is the current number of iterations, and δ is a random value between [0, 1].

Female mayfly flight: is the female mayfly moves towards the males to breed. The following is an
update to a female mayfly’s position [17]:

yt+1
i = yt

i + vt+1
i (6)

yt
iis the female mayfly’s current position at time t, which is kept up to date by adding its velocity vt+1

i .
The present solution’s quality determines the attraction process among men and females; for example,
the most accomplished female is drawn to the most accomplished guy. and so on. A female’s speed is
updated as in Eq. (7)

vt+1
kj =

⎧⎪⎪⎨
⎪⎪⎩

if fitness
(
yk

)
> fitness (xk)

g ∗ vt
kj + a2e

−βr2
mf ∗ (

xt
kj − yt

kj

)
elseif fitness

(
yk

) ≤ fitness (xk)

g ∗ vt
kj + fl ∗ r

(7)
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vt
kj is the jth component of the kth female mayfly’s velocity at time t, yt

kj is the position of female mayfly
k in dimension j at time t, xt

kj is the jth the position component of male mayfly k at time t. a2 and β are
the previously determined attraction constant and visibility coefficient, while g is the previously stated
gravity coefficient, r is a random value between −1 and 1, and rmf is the Cartesian distance separating
male and female mayflies. fl is a random walk coefficient in the case of a female who is not attracted
to a guy and f litr = f l0 × δitr.

Mating Process: Crossover between mayflies is the process that begins with the selection of a male
mayfly followed by the selection of a female mayfly. The selection is based on their fitness value,
meaning that the best male breeds with the best female [17]. Following a crossing, two offspring are
generated as:

of f spring1 = r ◦f ∗male + (
1 − r ◦f

) ∗female (8)

of f spring2 = r ◦f ∗female + (
1 − r ◦f

) ∗male (9)

Here male is the parent men mayfly, female is the female parent and r ◦f is a predetermined value
between 0 and 1. The offspring’s starting velocities are set to zero.

Mutation of a mayfly: The freshly created children are altered to improve the algorithm’s exploring
ability. As explained in [17], a regularly randomly generated number is appended to the offspring’s
variable.

of f springn = of fspringn + k (10)

k is the normally distributed random value.

4 The Proposed Approaches

To improve overall search efficiency, hybrid algorithms are developed by combining two or more
algorithms. Researchers frequently aim to exploit the benefits of specific algorithms for the larger
good, or so the thinking goes. It is questionable whether a hybrid can actually increase performance
and discovering techniques to merge dis-similar algorithms [39]. As a result, two proposed hybrid
techniques are implemented, and their performance is evaluated in this section. The names of two
proposed hybrid techniques are MA-RS and PSO-RS. The structure of the proposed hybrid algorithm
is shown in Fig. 1. The most important stage is generating precise, ready-to-use data. A preprocessing
phase began by deleting any missing values from the dataset’s rows. Then, employ the “dimensionality
reduction” approach (RS). The dataset is divided into two parts: training and testing. Using the
looping function, various splits were examined, and the optimal split was 67–33. (67% of the samples
were used as training samples and 33% as testing samples). To get the optimal option, differential
evolution normalization for feature scaling is employed. For classification, three models Artificial
Neural Networks (ANN), Random Forest Classifier (RFC), and Support Vector Machine (SVM) were
chosen. The random search cross-validation (CV) method was used to select the best hyperparameter
for each model. To validate models and avoid overfitting, five-fold cross validation is performed.

4.1 Hybrid MA-RS Algorithm

The pseudo-code of MA-RS algorithm is shown in Algorithm 1 to generate a redacted set. There
is nothing in the set when it begins. It adds one by one. Begin with male mayflies. The fitness function
of each mayfly is examined. As soon as feasible, the feature with the highest fitness level is chosen.
It is designed with all of the possible combinations of this feature and other characteristics in mind.
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The compatibility of the qualities in various combinations is discovered. This post is the best because
it is presently exceeding the best. Its location as well as its fitness are saved. The current behavior of
mayflies is compared to the previous one. If the value exceeds global best fitness (Gbest), the mayfly
position is established, and the global best fitness level changes. The location displays the best features
discovered thus far, and it is saved in R. The procedure is repeated until the halting condition is met,
which is usually a predetermined number of times. As a subset of features, an MA-R set is used. The
approach determines the importance of each attribute subset based on its relevance to the decision
attribute. Finally, the best particle is selected, see Fig. 1 below.

Figure 1: Structure of hybrid algorithm MA-RS
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Algorithm 1: Hybrid MA-RS Algorithm
Input: C, the collection of every conditional characteristic; D, every decisional aspect.
Output: Reduct R
1: Begin the male mayfly population.xi(i = 1, 2, . . . , N) and velocities vmi.
2: Begin the female mayfly population yi(i = 1, 2, ..., M) and velocities vfi.
3: Solution evaluation
4: Get global best gbest
5: Do While the stop requirements are not satisfied.
6: Male and female velocities and solutions have been updated.
7: Solution evaluation
8: Determine the mayfly’s rank.
9: Mate the mayfly
10: Examine offspring
11: Separate offspring into male and female groups at random.
12: Change worst solutions with the best new ones
13: Update pbest and gbest
14: end while
15: While Fitness! = 1
16: For i = 1. . .S
17: ∀ : Xi
18: Determine the fitness of a feature subset of Xi
19: R← Feature subset of Xi (1’s of Xi)
20: ∀x ∈ (C − R)

21: γ R∪{X} (D)= |MAR∪{X}(D)|
|U|

22: Fit = γ R ∪{X} (D) ∀Xsubset R , γ X (D ) �= γ C (D)

23: End For
24: Determine best fitness
25: For i = 1:S
26: If (Fitness (i) > globalbest)
27: gloablbest←Fitness(i);
28: gbest←Xi; getReduct(Xi)
29: Exit
30: End if
31: End For
32: Update Velocity(); //Update Velocity V̇ is of Ẋ is
33: Update Position(); //Update position of Xis
34: //Continue with the next
35: End {while}
36: Output Reduct R

4.2 Hybrid PSO-RS Algorithm

Algorithm 2 depicts the pseudo-code for the PSO-RS algorithm. A hybrid technique does not
produce all of the redact set’s available subsets. Each item is added to the collection one by one.
Particles with random positions and velocities are thrown into the problem area. The “fitness function”
of each particle is examined and validated. The important element is picked first, and then all
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feasible combinations with other features are created. The compatibility of the qualities in various
combinations is determined. The present particle becomes the best particle as long as it is more fit
than the best. Its position in the game and fitness are both saved. When the fitness of the current
particle is examined, it is compared to the population’s total best fitness from the previous P. If the
current value is greater than Gbest, it is substituted for the current particle, modifying the global best
fitness. The location displays the best features discovered thus far, and it is saved in R. After then,
the particle’s speed and location are altered. The procedure is repeated until the halting condition is
reached, which is usually a predetermined number of times. The feature set that returns is the PSO-RS
set. The approach determines the importance of each attribute subset based on its relevance to the
decision attribute. The best particle is selected.

Algorithm 2: Hybrid PSO-RS Algorithm
Input: C, the collection of all conditional characteristics; D, the collection of all decisional aspects.
Output: Reduct R
1: Starting with a random location and a random velocity, X and Vi
2: ∀ : Xi ← random Position();
3: Vi ← random Velocity();
4: fit ← 0; globalbest ← fit;
5: Gbest ← X1; Pbest(1) ← X1
6: For i = 1. . .S
7: pbest (i) = Xi
8: Fitness (i)=0
9: End For
10: While Fitness! = 1
11: For i = 1. . .S
12: ∀ : Xi
13: Determine fitness of feature subset of Xi
14: R← Feature subset of Xi (1’s of Xi)
15: ∀x ∈ (C − R)

16: γ R∪{X} (D) = |POSR∪{X}(D)|
|U|

17: Fit = γ R∪{X} (D) ∀Xsubset R , γ X ( D ) �= γ C ( D )

18: End For
19: Determine best fitness
20: For i = 1:S
21: If (Fitness (i) > globalbest)
22: gloablbest←Fitness(i);
23: gbest←Xi; getReduct(Xi)
24: Exit
25: End if
26: End For
27: UpdateVelocity(); //Update Velocity V̇ts of Ẋts
28: UpdatePosition(); //Update position of Ẋts
29: //Continue with the next
30: End {while}
31: Output Reduct R
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4.3 Fitness Function

Because FS is linked to multiple goals, it is referred to as a multi-objective optimization issue.
The subset is evaluated based on two factors: the number of criteria chosen and the accuracy of
the categorization. These are two contradictory goals that must be balanced when developing FS
algorithms [8]. The initial goal is to keep the number of features picked to a minimum. The second
purpose is to maintain a classifier’s accuracy. The fitness score for each solution in a population of
solutions created across several iterations is computed as follows:

Fitness = η × ∈ + μ
|υ|
|ϒ | (11)

The constants η and μ signify the relevance of the classification’s accuracy and the length of the subset,
respectively. Note that η + μ = 1. The error rate of the classifier is represented by υ. At the same time,
ϒ is the total number of attributes in the data set.

5 Experimental Results and Discussions

This section contains the outcomes of the proposed techniques. To evaluate the overall perfor-
mance of the offered approaches, a set of comparisons are done. The hybrid MA-RS and PSO-RS
techniques are compared to the classic methodology’ results (i.e., MVR, LVF, HCF, RF, PCA, LDA,
BFE, FFC, RS). The most recent approaches are then employed in order to perform comparative
study. Finally, a comparison with a few well-known results from the literature on feature selection is
given.

5.1 Experimental Setup

The proposed approaches are implemented in Matlab and Python, and all experiments in this
section were performed on a computer equipped with an Intel(R) Core(TM) i7–7500U CPU running
at 2.70ghz and 2.90ghz with 8.0GB RAM. The Experiments entail investigating the effect of the
population size (N) parameter and the number of iterations on the MA and PSO. Tab. 2 displays
the most popular parameter values for MA, PSO, and other algorithms, as suggested by the original
MA and PSO papers. The results of the various DR algorithms (MVR, LVF, HCF, RF, PCA, LDA,
BFE, FFC, RS) were documented and compared to the recommended methods. Six data sets from
the University of California, Irvine’s machine-learning library were utilized to explain and validate
the evaluated models [30]. Tab. 1 depicts the dataset properties in terms of feature count, occurrences,
associated tasks, and attribute characteristics.

Table 1: Dataset description

Dataset
Attribute

Adult Dataset Wisconsin
Breast Cancer
Dataset

Dermatology
Dataset

Ionosphere
Dataset

Bands Dataset Sonar Data
Set

Attribute
Characteristics

Categorical,
Integer

Integer Integer Integer/Real Categorical,
Integer, Real

Real

Associated
Tasks

Classification Classification Classification Classification Classification Classification

(Continued)



CMC, 2022, vol.73, no.1 1097

Table 1: Continued
Dataset
Attribute

Adult Dataset Wisconsin
Breast Cancer
Dataset

Dermatology
Dataset

Ionosphere
Dataset

Bands Dataset Sonar Data
Set

Number Of
Instances

48842 699 366 351 512 208

Number Of
Attributes

14 32 33 34 39 60

Table 2: Parameter Settings

Model/Algorithms Parameter Values

MA & PSO Population size 20
Number of iterations 100
Dimension Number of features
α in the fitness function 0.99
β in the fitness function 0.01

Artificial neural network
(ANN)

Input nodes based on No. Features
Hidden nodes 1024
Activation fun for hidden nodes ReLU Rectified Linear

Unit
Activation fun for output nodes sigmoid
Output nodes 1
No. of Iterations 500

RFC n_estimators 1700
max_dep 50
min_samples_leaf 6
class_weight balanced
random_state 1

Support vector machine (SVM) n_estimators 700
max_dep 110
min_samples_leaf 6
class_weight balanced
random_state 1

5.2 Model Selection and Parameters Settings

The artificial neural network model was composed primarily of an input layer, two hidden layers,
and an output layer. Three different models were used (ANN [40], RFC, and SVM). The number
of characteristics determines the Input Layer. The first hidden layer comprised 1024 neurons with
a Rectified linear unit activation function (ReLU). The second hidden layer has 512 neurons and
the same activation function as the first (ReLU). The output layer consisted of only one neuron.
It has Sigmoid functions for its classification issue and activation function. The random search
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cross-validation (CV) approach was developed to ensure that hyperparameters such as (number of
estimators, maximum depth, etc.) were as accurate as possible. The chaotic search CV method that
maximizes the hyperparameters is the random forest classifier (RFC) (number of estimators, maximum
depth, etc.). After ten iterations, the best-obtained parameter value would be used in RFC. A kernel is
a support vector machine, and the support vector classifier employs the radial basis function. To select
the specific support vector machine, hyper-parameters have to be manually adjusted. The setting of
model parameters is summarized in Tab. 2.

5.3 Evaluation Measures

Each algorithm was run, and the results were computed and reported in this section, as well
as compared to the evaluation metrics listed in Tab. 3. A confusion matrix is used to determine the
outcomes of a classifier. It is used to ensure that true values (the true positives and negatives) are
acceptable. As stated in Tab. 3, the assessment measures are precision, recall, accuracy and F1 score.

Table 3: Evaluation Measures

Measures Equation

Precision precision = true positives
true positives + false positives

Recall Recall = true positives
true positives + false negatives

Accuracy accuracy = true positives + true negatives
true positives + false positives + false negatives + true negatives

F1 Score F1 score = 2 ∗ (precision ∗ recall)
precision + recall

5.4 Results and Comparative Analysis

In this section, the results of the proposed methodologies are presented and compared to
established algorithms. The results of the proposed technique (MA-RS) are compared to those of
other DR algorithms. (For example, MVR, LVF, HCF, RF, PCA, LDA, BFE, FFC, and RS). The
hybrid algorithm (PSO-RS) investigates the impact of this hybrid version on assessment metrics such
as classification accuracy, F1 Score (F1 s), precision, and recall. Following the analysis of the acquired
findings, the performance of the MA-RS will be compared to several common DR approaches from
the literature in order to validate the applicability of these fields in FS situations for dimensionality
reduction [41].

5.4.1 Results of Hybrid and Basic Approaches Applied on (ANN) Model

The findings of the proposed hybrid techniques demonstrate that the proposed algorithm out-
performs standard algorithms based on the (ANN) model. Tab. 4 compares the performance of the
suggested strategies in terms of classification accuracy and average, which is derived in the same way.
The average is calculated using the F1 score, precision, and recall. When we analyze the methods in
Tab. 4, we see that the worst scenario occurs at the bands dataset because it has the most attributes
at the high-correlation filter. The average accuracy of bands dataset was 33%, which was the worst
case scenario when compared to the other 5 datasets. The proposed hybrid method outperforms
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traditional algorithms for 6 datasets and improves the results of the bands dataset. In general, the
hybrid algorithm’s (MA-RS) best average values were 97% at dermatology. All feature selection
approaches enhance classification accuracy and average values for all datasets when compared to
performing classification without any feature selection. In dermatology datasets with 97% accuracy,
the number of selected features for the best scenario was 33, while the number of features for the worst
case was 39.

Table 4: The average execution time (Avg T), accuracy and average of classification between the
enhanced approaches and vs. original methods

Algorithms Average
execu-
tion
time

ANN

Adult dataset Breast cancer
dataset

Dermatology
dataset

Ionosphere
dataset

Bands dataset Sonar dataset

Avg T Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg

1 Before
Reduction

583.167 0.80 0.72 0.97 0.96 0.97 0.98 0.85 0.84 0.64 0.59 0.78 0.80

2 Missing-
Values
Ratio

358.467 0.80 0.72 0.97 0.96 0.98 0.98 0.90 0.88 0.51 0.64 0.78 0.81

3 Low-
Variance
Filter

237.886 0.72 0.65 0.96 0.95 0.93 0.95 0.69 0.62 0.56 0.53 0.62 0.68

4 High-
Correlation
Filter

308.447 0.61 0.57 0.88 0.82 0.75 0.82 0.78 0.69 0.54 0.33 0.59 0.56

5 Random
Forest

337.786 0.75 0.67 0.96 0.95 0.88 0.90 0.84 0.82 0.68 0.61 0.61 0.68

6 Principal
Component
Analysis

298.765 0.71 0.64 0.97 0.96 0.97 0.97 0.91 0.89 0.67 0.57 0.87 0.88

7 Linear Dis-
criminant
Analysis

207.486 0.73 0.64 0.98 0.98 0.97 0.98 0.82 0.76 0.67 0.54 0.78 0.78

8 Backward
Feature
Elimination

291.711 0.78 0.71 0.97 0.96 0.96 0.97 0.77 0.68 0.67 0.58 0.71 0.76

9 Forward
Feature
Construc-
tion

300.315 0.77 0.71 0.97 0.96 0.97 0.97 0.85 0.81 0.52 0.50 0.80 0.82

10 Rough-set 190.894 0.80 0.64 0.92 0.90 0.96 0.97 0.93 0.91 0.55 0.41 0.72 0.77
11 PSO-RS 160.748 0.75 0.72 0.94 0.93 0.96 0.97 0.78 0.79 0.90 0.90 0.72 0.77
12 MA-RS 103.005 0.92 0.91 0.97 0.96 0.97 0.98 0.92 0.90 0.94 0.94 0.87 0.88

Fig. 2 shows Boxplots of accuracy rates for MVR, LVF, HCF, RF, PCA, LDA, BFE, FFC and
RS compared to PSO-RS and MA-RS optimizers for all data sets. A boxplot is a graph’s visual
representation of a five-number summary. The central portion of the chart box represents the position
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of the data’s middle component: the interquartile range. The first quartile is 25% and the third quartile
is 75%, which are located at the box’s extremes. The minimum (the lowest value in the set) is near the
bottom of the chart (near the end of the bottom “box”), while the maximum is near the top (the largest
number in the set).

Figure 2: Boxplots of accuracy rates for MVR, LVF, HCF, RF, PCA, LDA, BFE, FFC, RS compared
to PSO-RS and MA-RS optimizers in dealing with Adult, Breast cancer, Dermatology, Ionosphere,
Bands and Sonar datasets
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5.4.2 Results of Hybrid and Basic Approaches Applied on (RFC) Model

In this subsection, the efficacy of the proposed approaches is compared against algorithms from
the literature using RFC model. The most recent FS wrapper techniques include hybrid algorithms
and other reduction algorithms. The comparison is based on classification accuracy and average, where
average is computed using F1 score, precision, and recall, as with previous testing. As demonstrated
in Tab. 5, the worst-case scenario also happens in the band’s dataset due to the fact that it has the
most features. The accuracy and average at the High-Correlation Filter and Rough set are 56% and
33%, respectively, resulting in the lowest accuracy when compared to the other 5 data sets. However,
the proposed hybrid technique outperforms the standard methods in the other six datasets. The
performance of the proposed hybrid method was improved in the band’s dataset, where accuracy
and average became 92% and 96%, respectively. In most circumstances, hybrid techniques outperform
traditional algorithms on average. When compared to doing classification without feature selection
on any specific dataset, all feature selection algorithms improve classification accuracy and average
values for all datasets. According to dermatology datasets with a 98% accuracy, the number of selected
features for the best scenario was 33, while the number of selected features for the worst situation
was 39.

Table 5: The average execution time (Avg T), accuracy and average of classification between the
enhanced approaches and vs. original methods

Algorithms Average
execution
time

RFC

Adult dataset Breast cancer
dataset

Dermatology
dataset

Ionosphere
dataset

Bands dataset Sonar dataset

Avg T Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg

1 Before
Reduction

309.805 0.85 0.74 0.97 0.96 0.98 0.99 0.93 0.91 0.69 0.59 0.80 0.81

2 Missing-
Values
Ratio

203.854 0.84 0.73 0.97 0.96 0.98 0.98 0.93 0.91 0.66 0.67 0.80 0.81

3 Low-
Variance
Filter

133.433 0.77 0.69 0.96 0.95 0.83 0.86 0.80 0.77 0.63 0.58 0.62 0.62

4 High-
Correlation
Filter

170.281 0.69 0.60 0.85 0.79 0.70 0.67 0.84 0.80 0.56 0.33 0.54 0.61

5 Random
Forest

197.923 0.83 0.70 0.94 0.93 0.85 0.87 0.91 0.89 0.67 0.60 0.70 0.73

6 Principal
Component
Analysis

213.552 0.80 0.65 0.98 0.97 0.97 0.98 0.93 0.91 0.67 0.57 0.87 0.87

7 Linear Dis-
criminant
Analysis

183.283 0.75 0.57 0.98 0.98 0.96 0.97 0.84 0.79 0.67 0.53 0.80 0.80

8 Backward
Feature
Elimination

185.787 0.83 0.73 0.97 0.96 0.95 0.96 0.89 0.86 0.67 0.58 0.70 0.73

(Continued)
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Table 5: Continued
Algorithms Average

execution
time

RFC

Adult dataset Breast cancer
dataset

Dermatology
dataset

Ionosphere
dataset

Bands dataset Sonar dataset

Avg T Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg

9 Forward
Feature
Construc-
tion

199.829 0.81 0.72 0.97 0.96 0.95 0.96 0.90 0.87 0.68 0.59 0.75 0.77

10 Rough-set 81.422 0.85 0.70 0.94 0.93 0.92 0.93 0.91 0.88 0.56 0.59 0.70 0.70
11 PSO-RS 81.212 0.76 0.69 0.93 0.92 0.92 0.93 0.91 0.88 0.92 0.91 0.70 0.70
12 MA-RS 80.977 0.87 0.86 0.94 0.94 0.98 0.99 0.93 0.92 0.96 0.96 0.80 0.81

The average accuracy rates for each number of features in the train and test datasets are shown in
Fig. 3. Fig. 3c shows that the train and test are close to each other, and the best accuracy occurs when
the number of features reaches 9. The best results are demonstrated in the dermatological dataset,
where the number of features is 9, and the test and train accuracy are close to each other, indicating
that we have the best models. The hybrid approaches achieved the highest accuracy rates in the majority
of the dataset. The accuracy at each number of features is determined by the test score and training
applied to the RFC model on various datasets. As shown in Fig. 3, the greatest reduction occurs when
training and testing are completed at their highest levels.

Figure 3: (Continued)
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Figure 3: The average accuracy rates for each number of features from RFC model on training & test
dataset.

5.4.3 Results of Hybrid and Basic Approaches Applied on (SVM) Model

According to the full analysis of Tab. 6, the best reduction strategy in testing dataset utilized on
SVM was (MA-RS). On the vast majority of datasets, it has the highest accuracy. The performance
improved and was so close to the real-world data. As shown in Tab. 6, the proposed hybrid technique
outperforms the standard methods for all six datasets, with the performance of the proposed
hybrid method improving in the band’s dataset, where accuracy and average became 95% and 95%,
respectively. In most circumstances, hybrid approaches outperform conventional algorithms in terms
of average and accuracy. All feature selection methods improve classification accuracy and average
values across all datasets when compared to performing classification on any given dataset without
feature selection. According to dermatology datasets with a 98% accuracy, the number of selected
features for the best scenario was 33, while the number of selected features for the worst situation was
39. Because the band’s dataset has the most attributes, the worst-case scenario occurs. The accuracy
and average at the Linear Discriminant Analysis are 68% and 54%, respectively.

Table 6: The average execution time (Avg T), accuracy and average of classification between the
enhanced approaches and vs. original methods

Algorithms Average
execution
time

SVM

Adult dataset Breast cancer
dataset

Dermatology
dataset

Ionosphere
dataset

Bands dataset Sonar dataset

Avg T Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg

1 Before
Reduction

380.339 0.79 0.72 0.98 0.97 0.98 0.99 0.95 0.94 0.75 0.66 0.88 0.89

2 Missing-
Values
Ratio

245.165 0.79 0.71 0.98 0.97 0.98 0.99 0.95 0.94 0.74 0.72 0.88 0.89

3 Low-
Variance
Filter

209.225 0.72 0.66 0.95 0.94 0.92 0.93 0.72 0.64 0.71 0.65 0.65 0.66

(Continued)
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Table 6: Continued
Algorithms Average

execution
time

SVM

Adult dataset Breast cancer
dataset

Dermatology
dataset

Ionosphere
dataset

Bands dataset Sonar dataset

Avg T Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg Acc Avg

4 High-
Correlation
Filter

200.747 0.66 0.59 0.88 0.83 0.71 0.76 0.76 0.67 0.71 0.58 0.59 0.62

5 Random
Forest

222.114 0.75 0.68 0.95 0.94 0.87 0.90 0.92 0.90 0.70 0.63 0.70 0.71

6 Principal
Component
Analysis

174.173 0.65 0.62 0.97 0.96 0.97 0.98 0.95 0.94 0.74 0.65 0.78 0.88

7 Linear Dis-
criminant
Analysis

113.424 0.74 0.64 0.98 0.98 0.96 0.97 0.84 0.79 0.68 0.54 0.78 0.78

8 Backward
Feature
Elimination

168.312 0.78 0.71 0.98 0.97 0.96 0.97 0.83 0.77 0.67 0.58 0.68 0.72

9 Forward
Feature
Construc-
tion

159.470 0.78 0.71 0.97 0.96 0.96 0.97 0.92 0.90 0.68 0.59 0.78 0.79

10 Rough-set 129.465 0.74 0.66 0.92 0.90 0.92 0.93 0.90 0.88 0.68 0.55 0.71 0.73
11 PSO-RS 120.181 0.71 0.70 0.95 0.95 0.97 0.97 0.90 0.88 0.82 0.82 0.71 0.73
12 MA-RS 119.271 0.92 0.86 0.98 0.98 0.98 0.99 0.95 0.94 0.95 0.95 0.88 0.89

Fig. 4 illustrates the results of all approaches from six testing datasets, with the average results
shown as (avg). On the hybrid methodology, the optimal reduction approach was applied (MA-RS).
The number of features was reduced. The training and testing accuracy in the MA-RS algorithm ranges
from 88% to 98%. As a result of the test score for the three models for each reduction technique, the
best model was SVM, and the accuracy of most of the algorithms reached 98%, as shown in Fig. 5.

(a) Adult dataset (b) Breast cancer dataset

Figure 4: (Continued)
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(c) Dermatology dataset (d) Ionosphere dataset

(e) Bands dataset (f) Sonar dataset

Figure 4: Result of all techniques with average results of (avg) applied on SVM model

Figure 5: Test score for three models for each reduction technique

Six distinct datasets were utilized to assess the overall performance of three different models.
The MA-RS and PSO-RS dimensional reduction methods were effective at reducing overfitting and
producing the best outcomes. Fig. 6 depicts the number of features picked for all datasets using RS,
PSO-RS, and MA-RS. As a feature selection approach, the hybrid algorithm MA-RS surpasses all
other algorithms, followed by PSO-RS.
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Figure 6: Dataset feature selection

6 Conclusions

This research developed a hybrid strategy for solving big data problems that combines the
benefits of rough set theory (RST) and metaheuristic optimization methods like MA, PSO, GA,
etc. Metaheuristic optimization helps to make a speedy decision since it has a comprehensive search
capability in the problem space and can locate and delete the fewest number of objects. We also
examined some of the most prevalent methods for reducing twelve dimensions and how they affect
the overfitting problem such as MVR, LVF, HCF, RF, PCA, LDA, FFC, and RS theory. These
methods can help to prevent overfitting and achieve decent results. The tactics employed on six distinct
datasets with three different models were compared to how well they worked for both training and
testing (ANN, SVM, and RFC). The datasets were reduced in size to around half their original
size, making it easier for machine-learning models to operate with them. Another advantage of
dimensionality reduction is that it saves space. Experiments show that hybridization tactics increase
prediction accuracy for a wide range of datasets. The new concepts are compared to current supervised
algorithms that employ rough sets and other tactics to reduce the number of data points. Classification
accuracy measures are used to determine how effectively the proposed strategies operate. As a result,
the performance of hybridization MA and RST-based strategies outperformed the other methods. It
could be used in the future to choose a set of images that share common characteristics. Another use
of swarm intelligence that can be used is the Horse Herd Optimization Algorithm, often known as the
Rock Hyrax Swarm Optimization.
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