
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.028331

Article

P-ACOHONEYBEE: A Novel Load Balancer for Cloud Computing
Using Mathematical Approach

Sunday Adeola Ajagbe1, Mayowa O. Oyediran2, Anand Nayyar3,*, Jinmisayo A. Awokola4 and
Jehad F. Al-Amri5

1Computer Engineering Department, Ladoke Akintola University of Technology, LAUTECH, Ogbomoso, Nigeria
2Computer Science Department, Ajayi Crowther University, Oyo, Nigeria

3Graduate School, Faculty of Information Technology, Duy Tan University, Da Nang, Vietnam
4Department of Computer Sciences, Precious Cornerstone University, Ibadan, Nigeria

5Department of Information Technology, College of Computers and Information Technology, Taif University,
Taif, 21944, Saudi Arabia

*Corresponding Author: Anand Nayyar. Email: anandnayyar@duytan.edu.vn
Received: 07 February 2022; Accepted: 12 April 2022

Abstract: Cloud computing is a collection of disparate resources or services,
a web of massive infrastructures, which is aimed at achieving maximum
utilization with higher availability at a minimized cost. One of the most
attractive applications for cloud computing is the concept of distributed
information processing. Security, privacy, energy saving, reliability and load
balancing are the major challenges facing cloud computing and most informa-
tion technology innovations. Load balancing is the process of redistributing
workload among all nodes in a network; to improve resource utilization and
job response time, while avoiding overloading some nodes when other nodes
are underloaded or idle is a major challenge. Thus, this research aims to
design a novel load balancing systems in a cloud computing environment.
The research is based on the modification of the existing approaches, namely;
particle swarm optimization (PSO), honeybee, and ant colony optimization
(ACO) with mathematical expression to form a novel approach called P-
ACOHONEYBEE. The experiments were conducted on response time and
throughput. The results of the response time of honeybee, PSO, SASOS,
round-robin, PSO-ACO, and P-ACOHONEYBEE are: 2791, 2780, 2784,
2767, 2727, and 2599 (ms) respectively. The outcome of throughput of hon-
eybee, PSO, SASOS, round-robin, PSO-ACO, and P-ACOHONEYBEE are:
7451, 7425, 7398, 7357, 7387 and 7482 (bps) respectively. It is observed
that P-ACOHONEYBEE approach produces the lowest response time, high
throughput and overall improved performance for the 10 nodes. The research
has helped in managing the imbalance drawback by maximizing throughput,
and reducing response time with scalability and reliability.

Keywords: ACO; cloud computing; load balancing; swarm intelligence; PSO;
P-ACOHONEYBE; honeybee swarm

http://dx.doi.org/10.32604/cmc.2022.028331
mailto:anandnayyar@duytan.edu.vn

1944 CMC, 2022, vol.73, no.1

1 Introduction

The requirement to allow an increasing degree of flexibility, adaptability and autonomy in a cloud
environment has influenced the development of distributed systems [1]. Cloud computing, similar to
public utility, is a form of internet-based computing that makes uses shared resources, software, and
data, which are made available to computers and other devices on-demand [2,3]. It is made up by
aggregating two terms in the field of technology, “cloud” and “computing”. In the realm of technology,
a cloud is a collection of diverse resources, a web of massive infrastructure, and the phrase “Cloud” has
no meaning. Computation in the cloud is conducted and the goal is to maximize resource utilization
while maintaining high availability at a low cost [4]. One of the most attractive applications for cloud
computing is the concept of distributed information processing [5]. This is particularly clear in the
scenario of comparing cloud, grid, and cluster computing that cloud is not the combination of clusters
and grid, but are next generation to them [6,7]. In cloud computing, resource sharing is an on-demand
service and the particle swarm optimization (PSO) method is among the promising tools [8]. As a
result, cloud computing is a scenario in which a user may have safe access to any type of infrastructure,
software, or platform at a reduced cost on demand in an easy-to-use manner [9,10].

Cloud computing has some characteristics that include the following: Virtualization, Availability
and Scalability of Cloud Computing are the distinct attributes that differentiate it from Cluster and
Grid Computing [11–15]. Cloud computing uses scalability guidelines to control resource require-
ments, allowing businesses to save a significant amount of money on IT infrastructure. In cloud
computing environments, hosting providers are unable to have full control over the running application
because it is usually under the supervision of the company that subscribes to the system that has
produced the application [16–18]. This makes it difficult for the hosting providers to monitor the
application behavior and prepare the systems for necessary actions to improve the overall system
stability and availability [19–23]. The aforementioned fact leads to uneven distribution of network
traffic coming into the computer system on a network side, as well as on a server-side [24–26].
Despite cloud computing’s bright future, many crucial issues must be addressed before they can
be fully realized. One of the most attractive applications for cloud computing is the concept of
distributed information processing. Security, privacy, energy saving, reliability and load balancing
are the major challenges facing cloud computing and most information technology innovations. One
of the major challenges in the cloud computing environment is load balancing and these challenges
are not unconnected with the response time and throughput [27–29]. High response time and low
throughput are common difficulties in load balancing, and it affects sharing the limited resources in
a cloud environment. Therefore, this research seeks to develop an improved load balancing system to
optimize resources used in the cloud computing environment. The specific objectives of this research
are to:

i) conduct extensive literature studies about state-of-the-art research on load balancing.
ii) design a novel algorithm for load balancing system in a cloud computing environment using

modify conventional PSO, ACO, and Honeybee mathematical equations.
iii) experimentation of self-partitioning and clustering of resources and also serve as balancer

within the cloud environment.
iv) evaluate the performance of the developed load balancing strategy using response time, and

throughput as metrics.

Organization of the paper

The paper is organized as: Section 2 discusses related works on load balancing in a cloud
computing environment, section 3 elaborates the methodology adopted for the research, Section 4

CMC, 2022, vol.73, no.1 1945

presents the implementation, results, and analysis. Finally, Section 5 concludes the paper with future
scope.

2 Review of Related Works

Topcuoglu, et al., (2020) [28] described load balancing as the process of redistributing a distributed
system’s general workload among all nodes (disk drivers, network connectivity, and CPU) to enhance
resource utilization, job response time and overall efficiency, while preventing situations where some
nodes are overloaded but some nodes are underloaded. Choudhari, et al., (2018) [29] opined that a few
key goals of load balancing mechanisms have been addressed in various studies. These goals include
reducing the time it takes to respond to a job while maintaining acceptable delays, keeping the system
stable, having the ability to tolerate mistakes, and improving and maintaining cloud system availability
among others.

One of the limitations of achieving optimum efficiency in the networks is imbalance drawback.
Random allocation and round-robin algorithms were proposed by Hoang et al. [30] to address the
imbalance drawback in the load balancing system, the algorithms were evaluated using response
time and the results were 9103 and 9134 (ms) for the random allocation and round-robin algorithms
respectively. The problem of reassigning total loads to individual nodes of the collective system to
achieve the lower response time and resource usage load balancing system was attempted by li et al.
[31], the study used PSO and evaluated using response time and migration time. The study reported
8991 and 4899 (ms) for response time and migration time respectively. Ant Colony Optimization
(ACO) was used to ensure load balancing and safe packet delivery by Kabirzadeh et al. [32], wherein
the research used response time and migration time as performance evaluation metrics and results
were 9001 and 6128 (ms) for response time and migration time respectively. The study concluded that
these results may not guarantee the regulation of traffic and workload.

An improved system was developed by Kabirzadeh et al. [32], in which the objectives were
to avert system failure by regulating input traffic and stopping the workload from being sent to
resources that have become overloaded and unresponsive. The overall aim was to achieve a frequent
load balancing system. The improved algorithm in the study was based on the ACO and Honeybee
mathematical expression to develop ACOBee. The two existing algorithms were compared alongside
the newly developed model using response time as a metric. The study reported 8991, 8919 and 7901
(ms) response times for ACO, Honeybee, and ACOBee respectively. In a bid to reduce complexity
in the cloud computing environment and ensure keeping the system stable, having the ability to
tolerate mistakes according to [33]. Honeybee and round-robin algorithms were used in the design and
implementation of a stable system in the cloud environment [34]. Kiran, et al., (2021) [35] presented
a better public cloud load balancing architecture based on the partitioning of the cloud with a switch
mechanism to select various systems for various scenarios. The technique used game theory to improve
the efficiency of the load balancing method on the public cloud. The model developed was compared
with other ones and it was discovered that the system was able to partition a public cloud and also can
switch between two different strategies but the system suffers from optimized resource utilization.

Qi, et al., 2019 [36] indicated a partitioning and load balancing method for a cloud environment.
The mechanism for partitioning a cloud is revealed in the paper, as well as a comparison of several
algorithms for balancing dynamic demand. The comparison of the Ant Colony and Honey Bee
algorithms yielded the conclusion that the Honey Bee method is the best in typical load conditions,
while the basic round-robin algorithm was used when the partitions were idle. In the results, Ant
Colony outperforms HoneyBee when compared. However, the algorithm suffers from non-dynamic

1946 CMC, 2022, vol.73, no.1

partitioning of the resource. Because the academics approached it from various angles, perspectives,
technologies, and backgrounds, different definitions for load balancing in cloud computing have been
created to date. cloud computing has a number of benefits and challenges. Benefits of cloud computing
include but are not limited to scalability, elasticity, mobility, low infrastructures, increased data storage,
availability, billing and payment [37]. Considering the challenges, which include; security and privacy,
interoperability, energy-saving, disaster recovery and load balancing [38]. Load balancing, which was
highlighted as a key feature of cloud computing and is still considered an open study topic and has
a significant effect on determining resource availability [39]. Lakra et al., (2015) [40] remarked that
the feature inherited from grid computing has been challenged by scalability and post a threat to load
balancing. Thus, the PSO algorithm was used to address and the performance was measured using
response time and throughput. The response time of 8100 (ms) and throughput of 4901 (bps) were
reported.

Cardellini et al., (2015) [41] remarked that load balancing algorithms should be stable enough to
work with a wide range of applications. An attempt was made towards ensuring a stable load balancer
for a wide range of applications, the following checklists are recommended for designing more efficient
load balancing algorithms based on [42]. The research reported improvement in complexity, scalability,
and fault tolerance performance. In terms of load management, independent and dependent schedul-
ing approaches are considered to be the most important strategy. Dependent scheduling is gaining
popularity [43]. Dependent scheduling is appropriate for jobs that have dependent organized patterns.
Usually, each job is made up of a number of interconnected tasks. Hence, task execution is dependent
on one another through the limited improvement was achieved in [44]. Failures in the execution of
dependent tasks, as opposed to failures in the execution of independent tasks, have an impact on
the overall system performance. At the moment, no viable algorithm exists for load balancing on
dependent structured jobs.

Previous load balancing solutions were software-based and time-based, with optimization done
locally. For load balancing, a clever solution is proposed by He et al. [45]. The suggested approach
performs global optimization over time. Load balancing was based on hardware in the proposed
method, and load balancing is computed at two levels: the entire system and the virtual machine or
server. The proposed strategy improves resource use. Mtshali et al., 2019 [46] suggested a method
for scheduling based on virtualization technology for energy consumption optimization and real-time
delay in fog computing technology. Four scheduling task policies were implemented and simulations
were conducted with iFogSimtooland. Improvements of 11% energy consumption, 7.78% average task
delay, 4.4% network usage, and 15.1% execution time were achieved in the study. Results show that
FCFS was better than the existing methods.

In a cloud computing study, Somwang (2020) [47] proposed an effective load balance control
solution based on HA Proxy, the purpose is to receive and distribute workload to the computer server
so that processing resources can be shared. The study used a round-robin scheduling technique to
manage the cloud storage systems’ resources efficiently, with a focus on effective workload balancing
and a dynamic replication mechanism. Results revealed that the proposed technique may enhance load
balancing performance in cloud computing by 1,000 requests /6.31 seconds while also reducing false
alarms. Sliwko (2019) [48] work focused on the development of a mechanism for dynamic allocation
jobs without overloading cloud nodes, resulting in system stability at a low cost. A new taxonomy and
classification system for three types of schedulers, namely, OS-level, Cluster, and Big Data, highlights
their distinct evolution and goals. Extensive trials on the University of Westminster HPC cluster were
conducted for the project, and the positive results are presented together with lengthy comments and
a conclusion. Finally, with a stable simulation environment in place, the project was able to go forward

CMC, 2022, vol.73, no.1 1947

with the development of load balancing solutions. However, the study did not report the metrics used
to evaluate the proposed approach.

For the purpose of increasing the efficiency of cloud services, an adaptive load balancing algorithm
(ALBA) based on a load prediction technique was presented by Mao et al. (2013) [49]. The ALBA
system can reclaim the cluster’s resources when the load in the cluster of virtual machines was less than
the minimal level. While the load on the virtual machine cluster exceeded the maximum threshold, the
ALBA added more virtual machines as needed to balance the computing load and ensure response
time. Extensive tests with CloudSim show that the suggested ALBA was enhanced resource usage while
also reducing task response time to an extent. Abiodun et al., (2020) [50] offers maximum-minimum
round-robin (MMRR) as a new load balancer, the algorithm which combined maximum-minimum
and round-robin algorithms to assign work with long execution times to maximum-minimum and
tasks with the shortest execution time to round-robin. According to the conclusions of the study, the
MMRR has had a substantial impact on cloud services. From Throttled and MMRR, the data center’s
loading time is good, however, round-robin was the worst. Based on the overall reaction time and
cost-effectiveness, MMRR outperformed the other algorithms with an outcome of 89%. The study
concluded that improving customer happiness in cloud services should be implemented.

Arising from the review of related works, a need for efficient task scheduling or load balancing
algorithms for optimum resource utilization, response time evade of application unresponsiveness
and non-dynamic partitioning of resources in the cloud computing environment was observed. Load
balancing which is the process of redistributing workload among all nodes in a network, to improve
resource utilization and task response time while preventing overloaded some nodes and others are
underloaded or idle is a major challenge. In addition, there are difficulties in sharing the limited
resources in a cloud environment, and this may reduce the productivity and efficiency of the system.
The importance of load balancing in cloud computing and elastic scalability cannot be overstated. As
cloud computing is evolving in the computing field, one of its attractive applications is the concept of
distributed information processing. According to the reviewed literature, the innovation in distributed
information processing of the cloud computing environment is threatened by security, privacy, energy-
saving, and load balancing. Load balancing is the process of redistributing a distributed system’s
general workload among all nodes to enhance the utilization of resources and job response time, while
preventing situations where some nodes are overloaded and others are idle or underloaded. Several
attempts have been made in the past but with a minimal solution to the problem. A number of studies
used PSO, ACO, HoneyBee and a few others such as Firefly. The response time, throughput, waiting
time and migration time are common metrics to measure the performance evaluation used by most of
these studies in cloud computing. Hence, this research was informed, by developing a novel algorithm
for an efficient and effective distribution of load across the cloud computing system, because high
response time and low throughput were observed as main gaps of load balancing in the reviewed
works.

3 Proposed Methodology

In developing a novel load balancing system for a cloud computing environment in this research,
the following research approaches were used:

Modification of mathematical expressions for the developed load balancing strategy using PSO,
ACO, and HoneyBee mathematical expression to perform self–partitioning of resources and also to
serve as a load balancer in the cloud computing environment

1948 CMC, 2022, vol.73, no.1

i) Development of an algorithm for the load strategy: The design of the algorithm was done
sequentially, wherein the output of PSO serves as input for the ACO and HoneyBee which
acted as the load balancer.

ii) Implementation of the developed algorithm: The developed algorithm was implemented in
Microsoft Azure cloud-integrated environment, which is an open and flexible cloud environ-
ment that allows developers to build, deploy and manage applications in any programming
language.

iii) Verification of the algorithm for Quality of Service (QoS): The designed algorithm was verified
for QoS to ascertain its correctness.

iv) Evaluation of the algorithm: The developed system was tested with other existing techniques
like: honeybee, PSO, round-robin, SASOS and PSO-ACO to evaluate the performance of the
developed system using; response time, and throughput as metrics.

3.1 System Model and Mathematical Expressions for the Development of a Load Balancing System

The optimization within the framework of an itinerary is an NP-complete problem that entails self-
partition and clustering of resources of the cloud environment with the set objective to evade/reduce the
overloading of components in cloud computing. The self-partitioning and clustering unit of the system
was developed using Eqs. (3)–(8). In the traditional PSO according to Shishira et al. [20], the inertia
weight (∞) which is the determining parameter that helps in the search for global best of the particle
cannot commerce due to the fact that the velocity update is trapped at the highest possible value
because ω = +∞, the particle velocity is at its maximum and skips multiple optimal solutions. The
parameter ω (inertia weight) was modified by finding a finite value for inertia weight ω as presented
in Eq. (5) to prevent the premature convergence of the particles towards achieving a maximum global
best result. The equation for updating the velocity of the particles and particle position is presented in
Eqs. (3) and (4) with a source from [15] who proved Eqs. (1) and (2) respectively. The position of the
particle is changed by adding a velocity, vi(t), to the current position presented in Eq. (1) which meant
the following:

xi (t + 1) = xi(t) + vi(t + 1) (1)

with xi(0) ∼ U(xmin, xmax).

Vi + 1 = ∞Vi + c1rand1 ∗ (pbest − xi) + c2rand2 ∗ (gbest − xi) (2)

vi(t+1) = ωvi(t) + c1

(
Pi(t) − xi(t)

) + c2

(
g(t) − xi(t)

)
(3)

xi(t+1) = xi(t) + vi(t+1) (4)

Where in,

c1, and c2 are the acceleration coefficient

ω is the inertia weight

xi(t) is the particle’s initial position

Pi(t) is the particle personal best position

g(t) is the best position in the entire network on a worldwide scale.

xi(t+1) is the particle new updated position

vi(t) is the particle initial velocity

CMC, 2022, vol.73, no.1 1949

vi(t+1) is the particle’s new velocity

ωj
t = ωmin ∗ (ωmax − ωmin) (5)

where ω min and ω max are the minimum and maximum inertia weight values, t is the current number of
iterations. To determine the fitness value of each node position, the equation is presented in Eq. (6),
where N is the swarm size, fi is the fitness of particle i.

fi(x) =
N∑

i=1

x2
i (6)

In developing the part that determines the next available node to be loaded with the request,
which is based on modifying the ant equation and honeybee equation to determine the busy, idle,
and normal node in the cloud environment, the following assumptions were made; wherein a set of n
variables exists; where n is the number of nodes on a cloud itinerary. Then, the building graph is fully
connected and corresponds to a map of hosts, with each host corresponding to a node and possible
edges representing connections between hosts. An ant begins in a random host. The next host j for an
ant to choose (host j), given it is currently in host i and has already visited the hosts in partial solution
sp, is as presented in Eq. (8)

P
(
j|sp, i

) = τ α

il ∗ η(il)β

∑
I∈Nsp

τ α
il ∗ η(il)β

, ∀j ∈ N(sp) (7)

The relevance of the pheromone and the heuristic function is determined by the weight parameters
α and β. The equation states that only hosts that have not yet been visited are considered, and it
constitutes the neighborhood N (sp). For the honeybee Equation in (9);

Pi = fiti∑N

i=0 fiti

(8)

Tn =
Tn∑

i=1

Pi (9)

where Tn is the total number of the job of the same priority, the Tn value is calculated for each server
for different priorities which range from 1 to m, and the node having more number of same priority job
as the arrived job is assigned for processing and pi is the probability of obtaining the ith employed bee.

3.2 Architecture and Working for Load Balancing Strategy in Cloud Computing.

In developing an algorithm for load balancer strategy in the cloud environment, the process
involved was done sequentially which means, the output of PSO is given as the input to ACO and
honeybee algorithms. PSO algorithm is to perform self-partitioning of the cloud computing resources
considering resource wastage. ACO algorithm and honeybee algorithm are used as the local and
global exploration and exploitation of the explored search space in the developed hybrid algorithm.
Fig. 1 presents the flowchart of the developed load balancing strategy, and the developed algorithm
is presented mathematically in Algorithm 1. The Flowchart of the developed load balancing strategy
has the complete strategy and evaluation of the system.

1950 CMC, 2022, vol.73, no.1

Figure 1: Flowchart of the developed load balancing strategy

Algorithm 1: The P-ACOHONEYBEE Approach for the load balancing strategy
Set parameters For each node i do

Randomly initialize the position (xi) and velocity (vi) of all particles pi ← xi

Evaluate the fitness value of each node’s position
fi(x) = ∑N

i=1 x2
i

Update inertia weight ω

ωj
t = ωmin ∗ (ωmax − ωmin)

End for
While stopping criteria is not met do

(Continued)

CMC, 2022, vol.73, no.1 1951

Algorithm 1: Continued
Update the pbest(i)

If f (xi) > pi then
pi ← f (xi)

end if
Update the gbest(i) by
gbest = max(pbest(i))

gbest ← i
Update vi

vi(t+1) = ωj
tvi(t) + r1c1

(
pi(t) − xi(t)

) + r2c2

(
g(t) − xi(t)

)

Update xi

xi(t+1) = xi(t) + vi(t+1)

End.
Inputs collection.
The setting of the servers with resource capacity.
The setting of the VMs with their resource requirements.
Initialization.
// Particle population size, number of ants, bees and maximum number of iterations MAX_ITER are

initialized //
// Generate initial population by VM placement solutions based on power consumption and resource

wastage of each server //
Initiate load Balancer, (Start node [server]) to the first node, obtain data and back to the server
(1) Determine Sub-optimal routes from start_node to end_node (termination node)

// form numbers of nodes, 2m numbers of sub-optimal routes will be obtained.
(2) Compute path cost for each of the connected nodes on the sub-optimal route.
(3) Calculate the possible total distance for each sub-optimal route

// 2m numbers of distances will be obtained
(4) Value ordering of distance
(5) Update KB with RP parameter in the new routing path
(6) Update Start_node = current_node

End_node = Server
Until End_condition.

3.3 Experimental Setup and Simulation Setting

The experimental setup and simulation setting for the verification of the P-ACOHONEYBEE
approach developed for Quality of Service (QoS) was conducted. The analysis method of Microsoft
azure cloud was used to verify the developed algorithm for Quality of Service. The verification was
done to ascertain the correctness of the implemented strategy with respect to the conceptual system.

Implementation of Parameter for the Developed Algorithm of Load Balancing Strategy

The implementation was conducted in a Microsoft azure cloud-integrated environment. Microsoft
Azure cloud is an open and flexible cloud environment that allows developers to build, deploy and
manage applications in any programming language. It also allows the integration of public cloud
applications with any existing information technology environment. The developed load balancing

1952 CMC, 2022, vol.73, no.1

strategy was executed using a combination of inputs. The input was varied to determine the effect of
response time, and throughput, of the developed strategy. The implementation was both interactively
and automatically with the following parameters settings according to shihira et al. [20]. The virtual
machines (255 GB, 512 GB, and 1000 GB of memory), 2000 tasks, two data centers, Bandwidth (1000
MB each), Traffic Type – UDP, System used - Windows 10 Ultimate 64-bit operating system. An Intel
(R) Core ™ i5 CPU with a speed of 2.7 GHz, 4 GB RAM and 500 GB hard disk drive were used. The
developed system also used Microsoft Azure cloud-integrated environment on Windows 10 Ultimate
64-bit operating system, Intel (R) Core ™ i5 CPU with a speed of 2.7 GHz, 4 GB RAM and 500 GB
hard disk drive, and results obtained were evaluated using response time, and throughput as evaluation
metrics.

Evaluation of the Developed Load Balancing Strategy

The performance of the developed load balancing strategy was evaluated by comparing it
with existing load balancing systems, which are as follows; honeybee, particle swarm optimization
(PSO), round-robin, simulated annealing symbiotic organisms search (SASOS), and particle swarm
optimization – ant colony optimization (PSO-ACO). The number of nodes used to determine the effect
of the approach was 10 nodes noting that this number of nodes is sufficient for the evaluation of the
strategies. Response time and throughput time were used as evaluation metrics.

Response time

While the total amount of time that has elapsed between the start and completion of a task or
request (round-trip time), the response time is the amount of time it takes for the scheduling algorithm
to respond to a task. It can be calculated using the following:

Tr = Tf − TA (10)

where Tf is the first task completion time;

TA is time for the first duty to arrive.

Throughput

The average data rate at which data or messages are successfully sent over a given communications
link is referred to as Throughput, and it is measured in bits per second (bps).

Throughput = sum (number of successful packets) ∗ (average packet_size)
total time spent indelivering that amount of data

(11)

4 Results and Analysis

The result is a novel P-ACOHONEYBEE approach that produces the lowest response time, high
throughput and overall improved performance for the 10 nodes experimented. The improvement in
response time, and throughput was sought-after capabilities of cloud computing in load balancing
strategy. The result and discussion of the study are presented in this section.

Presentation of Results of the Developed Load Balancing System

The load balancing challenge in cloud computing was addressed using a hybrid approach
combining PSO, ACO and the Honeybee technique to reconstruct and obtain an improved load
balancing system in cloud computing. The result display interface of Microsoft Azure was used to
obtain results for the performance evaluation after the load balancing strategy was constructed and
was tested with three algorithms: honeybee, PSO, round-robin and two hybridized techniques:

Simulated Annealing Symbiotic Organisms Search (SASOS) and PSO–ACO.

CMC, 2022, vol.73, no.1 1953

The major resources used in Microsoft Azure cloud:

i) Node: This panel allows users to create the number of nodes needed at a given time
ii) Network Server: This is an attribute that allows users to create and design the type of network

server needed for a particular job
iii) Virtual Machine (VM): This platform allows users to create the numbers of VM needed for a

project and also allows the user to allocate the VM necessary applications.
iv) Load Balancer: This platform allows the user to develop a load balancer and incorporate it

into the system.
v) Network: This attribute allows the user to develop the type of network (TCP/UDP) needed

for the job.
vi) Result Storage: This platform stores and displays the results.

The developed load-balancing system (P-ACOHONEYBEE) was constructed to perform self-
partitioning and clustering of resources within the cloud computing, in which, twelve virtual machines
were partitioned into three clusters (web tier, business tier and data tier) according to their storage area.
The system groups all VMs with less than 100 GB storage area as web tier and VMs with storage area
of 100 GB and less than 500 GB as business tier, wherein VMs with 500 GB and above were grouped
into the data tier.

Results Obtained on Response Time for the Developed Load Balancing System

Results obtained from the implementation of the developed load balancing system in terms of
response time are presented in Tab. 1. The response time of the developed strategy was considered
during the normal period. The peak period was the period when the network latency was high (4000
mls Time to Live (TTL) and above) and the normal period was the period when the network latency
was normal (below 4000 mls TTL). The number of nodes used was varied from 10 to 20 nodes to
determine the effect of more nodes on the developed load balancing system.

Table 1: Response time at 10 nodes during the normal network period

Number
of Task

HoneyBee
(ms)

PSO
(ms)

SASOS
(ms)

Round-robin
(ms)

PSO-ACO
(ms)

P-ACOHoneyBee
(ms)

100 203 203 201 196 198 184
200 211 210 212 217 208 203
300 216 212 209 211 209 197
400 221 217 220 217 217 204
500 225 225 222 219 221 207
600 228 227 224 222 222 208
700 250 253 251 248 242 227
800 277 277 276 272 272 267
900 300 299 300 300 294 279
1000 310 308 311 313 302 288
2000 350 353 354 352 342 335

SUM 2791 2784 2780 2767 2727 2599

1954 CMC, 2022, vol.73, no.1

4.1 Results and Analysis of Response Time at 10 Nodes

This section analyzes the results obtained using response time as a metric to evaluate the developed
system. This research focuses on the development of a novel load balancing strategy for cloud
computing environments using PSO, ACO and honeybee algorithms. A load balancing approach
named P-ACOHONEYBEE for a cloud environment was developed to address the issue of uneven
distribution of network traffic coming into the computer system on a network side, as well as on a
server-side and server overloading and application unresponsiveness. In Tab. 1, the results obtained
for the response time of the developed load balancing strategy (P-ACOHONEYBEE) are presented.
Ten (10) nodes were used for the peak and normal network period and P-ACOHONEYBEE was
tested with other strategies (honeybee, PSO, round-robin, SASOS and PSO-ACO) to evaluate the
performance and the results of the evaluation were also presented. During the normal network period,
a sum of 2599 ms was achieved for P-ACOHONEYBEE and 2791 ms for honeybee, 2784 ms for
PSO, 2767 ms for round-robin, 2780 ms for SASOS and 2727 ms for PSO-ACO. This revealed that
P-ACOHONEYBEE produced the lowest response time among all the strategies for both the normal
period. The results of response time at 10 Nodes during the normal network period is depicted in Fig. 2,
wherein all the six expressions were plotted against time (ms). P-ACOHONEYBEE shows outstanding
performance among the strategies balancing in the cloud computing environment according to this
research.

2500
2550
2600
2650
2700
2750
2800
2850

T
im

e
(m

s)

Strategies (bps)

Normal period at 10 nodes (ms)

Figure 2: Summary of response time results

4.2 Results and Analysis of Throughput at 10 Node

In this section, we analyzed the results obtained using throughput as a metric in the developed
system. The research focuses on the development of a novel load balancing strategy for cloud
computing environments using PSO, ACO and honeybee algorithms. A load balancing approach
named P-ACOHONEYBEE for a cloud computing environment was developed to address the issue of
uneven distribution of network traffic coming into the computer system both on a network side as well
as on a server-side and server overloading and application unresponsiveness. Results obtained for the
throughput of the developed load balancing strategy (P-ACOHONEYBEE) are presented in Tab. 2.
A total of 10 nodes were used for the peak and normal network period and P-ACOHONEYBEE was
tested with other aforementioned strategies to evaluate the performance, the results of the evaluation
are also presented in Tab. 2. The results obtained for throughput of the developed load balancing
strategy (P-ACOHONEYBEE) and all other strategies for the normal network period at 10 nodes
are presented in Fig. 3. Results show that P-ACOHONEYBEE produced the highest throughput for
the normal network period at 10. P-ACOHONEYBEE at 10 nodes produced the highest with a sum

CMC, 2022, vol.73, no.1 1955

of 7484 and 7485 bps, followed by honeybee which produced a sum of 745 1 and 7438 bps. Time
(ms) is plotted against the strategies. P-ACOHONEYBEE shows outstanding performance among
the strategies, this makes P-ACOHONEYBEE a novel approach for the load balancer in the cloud
environment.

Table 2: Throughput results at 10 nodes during the normal network period

Number
of Tasks

HoneyBee
(bps)

PSO
(bps)

SASOS
(bps)

Round-robin
(bps)

PSO-ACO
(bps)

P-ACOHoneyBee
(bps)

100 95 91 90 85 91 97
200 197 195 193 191 193 197
300 297 297 296 293 288 300
400 395 394 394 390 390 398
500 496 493 489 484 489 500
600 596 591 589 585 593 599
700 695 692 687 682 690 698
800 795 792 789 784 787 799
900 895 892 889 886 889 899
1000 995 993 991 987 991 997
2000 1995 1995 1991 1990 1986 1998

SUM 7451 7425 7398 7357 7387 7482

7280
7300
7320
7340
7360
7380
7400
7420
7440
7460
7480
7500

T
im

e
(m

s)

Strategies (bps)

Normal period at 10 nodes (bps)

Figure 3: Summary of throughput results

We have been able to implement a novel load balancer building on the existing approaches,
the novelty of this research lines on the ability to come up with an approach that consumes better
computational resources than the existing approaches in the cloud environment. The state-of-the-art
evaluation parameters in the cloud computing environment (response time and throughput) were used
to measure the performance of the developed approach. The response time for honeybee, PSO, SASOS,
Round-robin, PSO-ACO and P-ACOHONEYBEE was 2791, 2784, 2780, 2767, 2727, and 2599 (ms)
respectively. Using the response time as a metric for the evaluation, the novel P-ACOHONEYBEE
approach developed is better by 128 (ms) than PSO-ACO, which is close to it. In the same vein, when

1956 CMC, 2022, vol.73, no.1

the throughput is used for the evaluation, honeybee, PSO, SASOS, Round-robin, PSO-ACO and P-
ACOHONEYBEE achieved 7451, 7425, 7357, 7387 and 7482 (bps) respectively. Using the throughput
as a metric for the evaluation, the P-ACOHONEYBEE approach developed is better by 31 (bps) than
honeybee which is close to it. Because an approach with lower response time and high throughput is
required for the effectiveness and efficiency of cloud computing operation, the P-ACOHONEYBEE
approach is good, as it has performed better than the existing approaches in this research.

5 Conclusion and Future Scope

This research helps in realize an efficient and effective load balancing approach highly suitable
and achievable for cloud computing which in turn facilitates migration optimization in distributed
processing systems and implementation. The research focuses on the development of a novel load
balancing strategy for cloud computing environments using PSO, ACO and honeybee algorithms.
A load balancing approach named P-ACOHONEYBEE for a cloud computing environment was
developed to address the issue of uneven distribution of network traffic coming into the computer
system on a network, side as well as on a server-side and server overloading and application
unresponsiveness. The developed strategy was created in the Microsoft Azure cloud environment
to maximum resource usage, throughput, and reaction time and are all achieved through dynamic
resource scheduling that is scalable and reliable. The performance of the developed load balancing
system was evaluated alongside the existing algorithms; honeybee, PSO-ACO, SASOS, PSO, and
round-robin using response time and throughput as metrics. The results from the implementation
showed that a reduction in the response time and throughput was observed when the developed load
balancing system is applied in the cloud computing environment. This implies that in terms of the
aforementioned metrics, the P-ACOHONEYBEE is computationally efficient, effective and superior
to the other methods. The P-ACOHONEYBEE produced the lowest response time and highest
throughput than other systems. This is an interpretation that P- ACOHONEYBEE was able to send
more successful data per second and it also confirms that it is computationally efficient and superior
to the other methods. Conclusively, this research has helped in managing the imbalance drawback by
maximizing resource utilization, maximizing throughput, reducing response time, dynamic resource
scheduling with scalability and reliability hence showing the novelty of the developed strategy, it has
equally guarantee the regulation of traffic and workload. This in turn enhances the performance of
cloud computing and other distributed computing adopting the solution in practice.

Future Scope

In the near future, we plan to extend the testing of P-ACOHONEYBEE protocol by comparing
normal time or period with peak period with other nature-inspired techniques such as Firefly,
Cockroach Swarm Optimization algorithm, and evolutionary computing to optimize load balancing
in cloud computing.

Acknowledgement: The authors would like to appreciate the support of Taif University Researchers
Supporting Project number (TURSP-2020/211), Taif University, Taif, Saudi Arabia.

Funding Statement: Taif University Researchers are supporting project number (TURSP-2020/211),
Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of the paper.

CMC, 2022, vol.73, no.1 1957

References
[1] S. O. Olabiyisi, T. M. Fagbola and R. S. Babatunde, “An exploratory study of cloud andubiquitous

computing systems,” World Journal of Engineering and Pure and Applied Sciences, vol. 2, no. 5, pp. 814–825,
2012.

[2] G. K. Neha and V. B. Bhagat, “An systematic overview on cloud computing and load balancing in the
cloud,” International Journal of Engineering Research & Technology (IJERT), vol. 2, no. 11, pp. 201–208,
2013.

[3] S. A. Ajagbe, A. O. Adesina and J. B. Oladosu, “Empirical evaluation of efficient asymmetric encryption
algorithms for the protection of electronic medical records (EMR) on web application,” International
Journal of Scientific and Engineering Research, vol. 10, no. 5, pp. 848–871, 2019.

[4] J. Wan, B. Chen, S. Wang, M. Xia, D. Li et al., “Fog computing for energy-aware load balancing and
scheduling in smart factory,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4548–4556,
2018.

[5] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi et al., “Edge and fog computing for IoT: A survey
on current research activities & future directions,” Computer Communications, vol. 180, no. 1, pp. 210–231,
2021.

[6] H. E. Obinna and B. Seren, “A systematic mapping study on soft computing techniques to the cloud
environment,” Procedia Computer Science, vol. 120, no. 45, pp. 31–38, 2017.

[7] L. Jian, M. Tinghuai, T. Meili, S. Wenhai and J. Yuanfeng, “Improved FIFO scheduling algorithm based
on fuzzy clustering in cloud computing,” Information, vol. 8, no. 5, pp. 1–13, 2017.

[8] X. Zhang, W. Zhang, W. Sun, X. Sun and S. K. Jha, “A robust 3-D medical watermarking based on wavelet
transform for data protection,” Computer Systems Science & Engineering, vol. 41, no. 3, pp. 1043–1056,
2022.

[9] I. Bamimore and S. A. Ajagbe, “Design and implementation of smart home for security using radio
frequency modules,” International Journal of Digital Signals and Smart Systems (Inderscience Journal),
vol. 4, no. 4, pp. 286–303, 2020.

[10] K. Boonhatai and K. Warangkhana, “Enhancing of artificial Bee Colony algorithm for virtual machine
scheduling and load balancing problem in cloud computing,” International Journal of Computational
Intelligence Systems, vol. 13, no. 1, pp. 496–510, 2020.

[11] S. G. Domanal and G. R. M. Reddy, “Optimal load balancing in cloud computing by efficient utilisation
of virtual machines,” Communication Systems and Networks, vol. 10, no. 4, pp. 1–4, 2014.

[12] S. A. Ajagbe, A. O. Adesina, T. J. Odule and O. Aiyeniko, “Evaluation of computing resources consumption
of selected symmetric-key algorithms,” The Journal of Computer Science and Its Applications, vol. 26, no.
2, pp. 64–76, 2019.

[13] P. M. Shameem and R. S. Shaji, “A methodological survey on load balancing techniques in cloud
computing,” International Journal on Advances in Cloud Computing, vol. 23, no. 15, pp. 3801–3812, 2013.

[14] G. Sarmila, N. Gnanambigai and P. Dinadayalan, “Survey on fault tolerant and load balancing algorithms
in Cloud Computing,” Electronics and Communication Systems, vol. 15, no. 11, pp. 1715–1720, 2015.

[15] S. Gang, V. Anand, Y. Hong-Fang, L. Dan and L. Lemin, “Optimal provisioning for elastic service oriented
virtual network request in Cloud Computing,” in Global Communications Conf. (GLOBECOM), Anaheim,
CA, USA, pp. 2517–2522, 2012.

[16] N. Chopra and S. Singh, “HEFT based workflow scheduling algorithm for cost optimisation within
deadline in hybrid Clouds,” Computing, Communications and Networking Technologies, vol. 7, no. 3, pp.
1–6, 2013.

[17] S. V. Pius and S. Suresh, “A novel algorithm of load balancing in distributed filesystem for Cloud,”
Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, vol.
2015, pp. 1–4, 2015.

[18] L. Singh and S. Singh, “A survey of workflow scheduling algorithms and research issues,” International
Journal of Computer Applications, vol. 74, no. 15, pp. 21–28, 2013.

1958 CMC, 2022, vol.73, no.1

[19] R. Gao and J. Wu, “Dynamic load balancing strategy for cloud computing with ant colony optimization,”
Future Internet, vol. 7, no. 3, pp. 465–483, 2015.

[20] S. R. Shishira, A. Kandasamy and K. Chandrasekaran, “Survey on Meta heuristic optimization techniques
in cloud computing,” International Conference on Advances in Computing, Communications and Informatics
(ICACCI), vol. 12, pp. 1434–1440, 2016.

[21] M. Shorfuzzaman and M. Masud, “Leveraging A multi-objective approach to data replication in cloud
computing environment to support big data applications,” International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 10, no. 3, pp. 418–429, 2019.

[22] L. Nkosi, P. Tarwireyi and M. O. Adigun, “Insider threat detection model for the cloud,” in Proc. of the
2013 Information Security for South Africa, 14–16 August 2013, Johannesburg, South Africa, pp. 1–8, 2013.

[23] R. B. Chakraborty, M. Pandey and S. S. Rautaray, “Managing computation load on a Blockchain–based
Multi–Layered Internet–of–Things Network,” in Int. Conf. on Computational Intelligence and Data Science
(ICCIDS 2018), Gurugram, India, vol. 132, 2018.

[24] P. M. Rekha and M. Dakshayini, “Dynamic cost-load aware service broker load balancing in virtualization
environment,” in Int. Conf. on Computational Intelligence and Data Science, Gurugram, India, vol. 132,
2018.

[25] S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C. Arya et al., “HealthFog: An ensemble deep learning
based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog
computing environments,” Future Gener. Comput. Syst, vol. 104, pp. 187–200, 2019.

[26] S. Bitam, S. Zeadally and A. Mellouk, “Fog computing job scheduling optimization based on bees swarm,”
Enterprise Information Systems (EIS), vol. 12, no. 4, pp. 373–397, 2018.

[27] A. Aggarwal, P. Dimri, A. Agarwal, M. Verma, H. A. Alhumyani et al., “IFFO: An improved fruit
fly optimization algorithm for multiple workflow scheduling minimizing cost and makespan in cloud
computing environments,” Mathematical Problems in Engineering, vol. 2021, no. 3, pp. 9, 2021.

[28] H. Topcuoglu, S. Hariri and M.-Y. Wu, “Performance-effective and low-complexity task scheduling for
heterogeneous computing,” IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 13, no. 3,
pp. 260–274, 2020.

[29] T. Choudhari, M. Moh and T.-S. Moh, “Prioritized task scheduling in fog computing,” in Annual ACM
Southeast Conf. (ACMSE), USA, pp. 22, 2018.

[30] D. Hoang and T. D. Dang, “FBRC: Optimization of task scheduling in Fog-based Region and Cloud,”
in IEEE Int. Conf. on Big Data Science and Engineering, and IEEE Int. Conf. on Embedded Software and
Systems (Trustcom/BigDataSE/ICESS), Sydney, Australia, vol. 2017, pp. 1109–1114, 2017.

[31] J. Li, S. Su, X. Cheng, Q. Huang and Z. Zhang, “Cost-conscious scheduling for large graph processing
in the cloud,” in IEEE Int. Conf. on High Performance Computing and Communications (HPCC), Banff,
Alberta, Canada, vol. 2021, pp. 808–813, 2011.

[32] S. Kabirzadeh, D. Rahbari and M. Nickray, “A hyper heuristic algorithm for scheduling of fog networks,”
in IEEE Conf. of Open Innovations Association (FRUCT), Helsinki, vol. 2017, Finland pp. 148–155, 2017.

[33] M. Nouiri, A. Bekrar, A. Jemai, S. Niar and A. C. Ammari, “An effective and distributed particle swarm
optimization algorithm for flexible job-shop scheduling problem,” Journal of Intelligent Manufacturing,
vol. 29, no. 3, pp. 603–615, 2018.

[34] L. Huang, G. Li, J. Wu, L. Li, J. Li et al., “Software-defined QoS provisioning for fog computing advanced
wireless sensor networks,” IEEE Sensors, Orlando, FL, USA, vol. 2016, pp. 1–3, 2016.

[35] N. Kiran, X. Liu, S. Wang and C. Yin, “Optimising resource allocation for virtual network functions in
SDN/NFV-enabled MEC networks,” IET Communications, vol. 15, no. 13, pp. 1710–1722, 2021.

[36] D. Qi, S. Shen and G. Wang, “Towards an efficient VNF placement in network function virtualization,”
Comput Commun. (ComCom), vol. 138, no. 3, pp. 81–89, 2019.

[37] I. M. Ali, K. M. Sallam, N. Moustafa, R. Chakraborty, M. J. Ryan et al., “An automated task scheduling
model using non-dominated sorting genetic algorithm II for fog-cloud systems,” IEEE Transactions on
Cloud Computing, vol. 2020, pp. 1, 2020.

CMC, 2022, vol.73, no.1 1959

[38] C. S. Pawar and R. B. Wagh, “Priority based dynamic resource allocation in cloud computing with modified
waiting queue,” in IEEE Int. Conf. on Intelligent Systems and Signal Processing (ISSP), Vallabh Vidyana-
gar, Anand, Gujarat India, vol. 2013, pp. 311–316, 2013, http://dx.doi.org/10.1109/ISSP.2013.6526925.

[39] C. S. Nandyala and H.-K. Kim, “From cloud to fog and IoT-based real-time Uhealthcare monitoring for
smart homes and hospitals,” International Journal of Smart Home, vol. 10, no. 2, pp. 187–196, 2016.

[40] A. V. Lakra and D. K. Yadav, “Multi-objective tasks scheduling algorithm for cloud computing throughput
optimization,” Procedia Comput. Sci., vol. 48, pp. 107–113, 2015.

[41] V. Cardellini, V. Grassi, F. L. Presti and M. Nardelli, “On QoS-aware scheduling of data stream applications
over fog computing infrastructures,” in IEEE Symp. on Computers and Communication (ISCC), Golden
Bay, Larnaca, Cyprus, pp. 271–276, 2015.

[42] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin et al., “Vehicular fog computing: A viewpoint of vehicles as the
infrastructures,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873, 2016.

[43] W. Hou, Z. Ning and L. Guo, “Green survivable collaborative edge computing in smart cities,” IEEE
Transactions on Industrial Informatics (TII), vol. 14, no. 4, pp. 1594–1605, 2018.

[44] H. Mahdizadeh, “Designing a smart method for load balancing in cloud computing,” International Journal
of Mechatronics, Electrical and Computer Technology (IJMEC), vol. 7, no. 24, pp. 3314–3324, 2017.

[45] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou et al., “Multitier fog computing with large-scale IoT data analytics
for smart cities,” IEEE Internet of Things Journal (IoT-J), vol. 5, no. 2, pp. 677–686, 2018.

[46] M. Mtshali, H. Kobo, S. Dlamini, M. Adigun and P. Mudali, “Multi-objective optimization approach
for task scheduling in fog computing,” in 2019 Int. Conf. on Advances in Big Data, Computing and Data
Communication Systems (icABCD), South Africa, pp. 1–6, 2019.

[47] P. Somwang, “Efficient load balancing for cloud computing by using content analysis,” International
Journal of Communication Networks and Information Security (IJCNIS), vol. 12, no. 2, pp. 242–247, 2020.

[48] L. Sliwko, “Intelligent Load Balancing in Cloud Computer Systems, a PhD thesis awarded by the University
of Westminster,” 2019.

[49] Y. Mao, D. Ren and X. Chen, “Adaptive load balancing algorithm based on prediction model in cloud
computing,” in ICCC’13. China: ACM Wuhan, 2013.

[50] K. M. Abiodun, J. B. Awotunde, R. O. Ogundokun, M. Sanjay and E. Adeniyi, “Applicability of MMRR
load balancing algorithm in cloud computing,” International Journal of Computer Mathematics: Computer
Systems Theory, vol. 6, no. 1, pp. 7–20, 2020.

http://dx.doi.org/10.1109/ISSP.2013.6526925

	P-ACOHONEYBEE: A Novel Load Balancer for Cloud Computing Using Mathematical Approach
	1 Introduction
	2 Review of Related Works
	3 Proposed Methodology
	4 Results and Analysis
	5 Conclusion and Future Scope
	Future Scope

