
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.028411

Article

Air Pollution Prediction Via Graph Attention Network and Gated Recurrent
Unit

Shun Wang1, Lin Qiao2, Wei Fang3, Guodong Jing4, Victor S. Sheng5 and Yong Zhang1,*

1Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Artificial Intelligence Institute, the
Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China

2Beijing Meteorological Observatory, Beijing, 100089, China
3Nanjing University of Information Science & Technology, Nanjing, 210044, China

4China Meteorological Administration Training Centre, Beijing, 100081, China
5Texas Tech University, Lubbock, TX79409, United States

*Corresponding Author: Yong Zhang. Email: zhangyong2010@bjut.edu.cn
Received: 09 February 2022; Accepted: 23 March 2022

Abstract: PM2.5 concentration prediction is of great significance to environ-
mental protection and human health. Achieving accurate prediction of PM2.5
concentration has become an important research task. However, PM2.5 pollu-
tants can spread in the earth’s atmosphere, causing mutual influence between
different cities. To effectively capture the air pollution relationship between
cities, this paper proposes a novel spatiotemporal model combining graph
attention neural network (GAT) and gated recurrent unit (GRU), named
GAT-GRU for PM2.5 concentration prediction. Specifically, GAT is used
to learn the spatial dependence of PM2.5 concentration data in different
cities, and GRU is to extract the temporal dependence of the long-term data
series. The proposed model integrates the learned spatio-temporal depen-
dencies to capture long-term complex spatio-temporal features. Considering
that air pollution is related to the meteorological conditions of the city, the
knowledge acquired from meteorological data is used in the model to enhance
PM2.5 prediction performance. The input of the GAT-GRU model consists
of PM2.5 concentration data and meteorological data. In order to verify
the effectiveness of the proposed GAT-GRU prediction model, this paper
designs experiments on real-world datasets compared with other baselines.
Experimental results prove that our model achieves excellent performance in
PM2.5 concentration prediction.

Keywords: Air pollution prediction; deep learning; spatiotemporal data mod-
eling; graph attention network

1 Introduction

With the development of urban economy, air pollution has become more serious in recent years.
This situation has received significant public attention. Major air pollutants include SO2, NO2,
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PM2.5, and PM10. PM2.5 (particulate matter with diameters less than or equal to 2.5 μm) have
received great attention as a typical air pollutant. Many studies have proved that a high concentration
of PM2.5 can harm people’s health, such as damage to the respiratory and cardiovascular systems [1].
The average life expectancy of human beings is reduced due to long-term living in an environment with
high air pollution [2]. People living in areas with high air pollution levels may suffer more from brain
atrophy in Alzheimer’s when they are old [3]. Therefore, accurate prediction of PM2.5 concentration
can help the public take effective countermeasures to protect public health, and it can also help
decision-makers of government formulate related environmental protection policies.

Air pollution data collected from monitoring stations in different cities has complex temporal
and spatial characteristics. The monitoring data we obtained is composed of long-term series of
PM2.5 concentration in multiple cities. These time series have two temporal characteristics: the
tendency to increase or decrease over time and the seasonality in which air pollution becomes severe
in certain seasons, such as winter. In addition to temporal characteristics, PM2.5 pollutants spread
and influence each other between adjacent cities, so the spatial correlations between cities need to be
considered in the prediction process. Existing studies usually do not consider spatial correlation [4–
6], or only consider fixed spatial correlation and cannot dynamically learn spatial features [7–9]. On
the other hand, air pollutant concentrations are affected by urban meteorological conditions, such as
the city’s humidity, temperature, precipitation, and wind speed. These meteorological conditions are
underutilized in existing forecasting models. To address the above two limitations, we designed a new
PM2.5 concentration prediction model GAT-GRU. The proposed model is able to learn the dynamic
spatiotemporal dependence of air pollution data and make good use of the city’s meteorological
knowledge.

In order to achieve effective capture of complex spatial features, our paper attempts to use
graph attention networks to learn spatial characteristics of PM2.5 concentration data. The graph
attention network (GAT) obtains the feature representation of the target node by assigning different
importance to different nodes in the neighborhood of the target node [10]. In the PM2.5 concentration
prediction process, some neighboring cities have strong correlations with the target city in terms of
air pollutants. Therefore, the GAT model can focus on the important cities with strong correlations
to obtain a more accurate representation when learning the spatial dependence. In dealing with the
complex temporal dependence of PM2.5 data sequences, we use another variant of the recurrent neural
network: Gated Recurrent Unit (GRU) [11]. Compared with traditional recurrent neural networks,
GRU can overcome the problems of gradient disappearance and gradient explosion when modeling
long-range dependence. On the other hand, GRU has the advantage of rapid calculation speed due to
fewer calculation parameters. In general, this paper combines GAT and GRU to form a spatiotemporal
prediction model of PM2.5 pollutant concentration.

In this paper, we propose a hybrid model called GAT-GRU that integrates GAT module and
GRU cell for spatiotemporal modeling and prediction of PM2.5 concentration. In addition, the GAT-
GRU prediction model makes an attempt to incorporate meteorological knowledge into the graph
structure as node attributes. In summary, GAT-GRU is a prediction model that can effectively capture
the spatiotemporal dependence of PM2.5 concentration and use various additional information to
enhance prediction.

The three main contributions of this paper are as follows:

(1) We propose a spatiotemporal prediction model called GAT-GRU. Graph Attention Networks
are introduced in the model to learn spatial connections between nodes. This model can
effectively learn the spatiotemporal dependence of PM2.5 concentration data series.
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(2) Meteorological knowledge that reflects the characteristics of the monitoring station itself is
utilized in the predictive model. We incorporate meteorological knowledge as part of the input
to the graph attention network.

(3) The proposed model has been experimented on real-world datasets. The results validate the
good performance of the model in PM2.5 prediction.

2 Related Work
2.1 PM2.5 Concentration Prediction

Weather prediction is an important research direction [12–15]. The main tasks include rainfall
prediction, temperature prediction, air pollution prediction, etc. Recent research on PM2.5 concentra-
tion prediction is generally based on deep learning methods, which convert the PM2.5 concentration
prediction problem into a data mining problem. Therefore, it is necessary to introduce the PM2.5
prediction models using deep learning methods. With the rapid growth of air pollution data, deep
learning methods have been further applied in PM2.5 prediction and proven effective prediction
performance. In order to capture the complex temporal characteristics contained in the air pollutant
data series, recurrent neural networks such as Long Short-Term Memory (LSTM) [4] have been widely
used in PM2.5 prediction and achieved good performance [5,6]. These studies show that LSTM can
achieve better results than traditional machine learning methods when modeling long-term sequence
prediction problems. However, these methods only consider the temporal characteristics of PM2.5
concentration series, and lack the utilization of spatial characteristics that reflect the correlation
between different monitoring stations.

However, the aforementioned deep learning methods usually only consider temporal character-
istics of PM2.5 concentration data. In the real world, the PM2.5 concentration data of different
regions are spatially interrelated, and PM2.5 pollutants between areas could be transmitted and
diffused to each other. In order to learn the spatial correlation, convolutional neural networks are
introduced to extract the spatial characteristics of the time series of PM2.5 pollutants [16,17]. Many
research works combine convolutional neural networks (CNN) and LSTM to learn the temporal and
spatial dependence of urban PM2.5 concentration [7–9]. Attention ConvLSTM Encoder-Forecaster
(AttEF) [18] integrates the attention mechanism into ConvLSTM encoder-forecaster to solve the
loss of important spatiotemporal information, which has achieved good performance in precipitation
nowcasting. These methods combine CNN and LSTM to form a spatiotemporal prediction model for
PM2.5 concentration. But convolutional neural networks can only be used to process data in Euclidean
space, and there are still shortcomings in capturing spatial features. In general, deep learning methods
have achieved good results in PM2.5 concentration prediction. How to learn the spatial dependence
of PM2.5 concentration data between different monitored cities needs further research. In addition,
the influence of meteorological factors needs to be considered in the forecasting process.

2.2 Graph Neural Networks

Recently, graph neural networks have received increasing attention from researchers due to their
ability to learn graph structure information, representing complex non-Euclidean spatial information
[19]. Considering the non-Euclidean distribution among air monitoring stations in different cities, only
using convolutional neural networks is not enough to capture complex spatial information. Therefore,
the graph neural network (GNN) model based on the graph structure can better learn the spatial
correlation between PM2.5 monitoring concentration data in different cities. PM2.5-GNN integrates
domain knowledge into graph-structured data to explicitly model the long-term spatiotemporal
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dependence in the PM2.5 forecasting process [20]. In addition to GNN, graph convolutional neural
networks also play an essential role in air pollutant prediction. In the GLSTM model [21], the
graph convolutional network is combined with LSTM to introduce spatiotemporal information into
PM2.5 concentration prediction. Hierarchical graph convolutional networks are adopted to model
air pollutants’ diffusion process more effectively in air quality prediction [22]. GCLSTM proposes a
hybrid model combining graph convolutional network and LSTM to model and predict the continuous
changes of PM2.5 concentration [23]. The above methods use graph neural networks to learn node
features on a fixed graph, and cannot dynamically learn the weights of edges representing correlations
between nodes. Graph convolutional networks or graph neural networks obtain node representations
by aggregating the proximity information of target nodes. However, the relationship between different
PM2.5 monitoring sites is not just a connection of 0 or 1. The spread of air pollution between cities is
also closely related to meteorological conditions. The connection relationship between nodes needs
to be more optimized to a more accurate value to obtain a richer expression. Therefore, we use
graph attention network to learn the spatial relationship of PM2.5 concentration data in this paper.
Compared with other types of graph networks, graph attention networks use the attention mechanism
to learn the relative importance of different neighbor nodes. This method can effectively improve the
expressive ability of the graph network.

3 Data and Meteorological Knowledge

The dataset used in the paper is a public dataset in the field of air pollution research [20]. The
dataset contains PM2.5 concentration and meteorological feature data in 184 cities across multiple
provinces in north and south China. The time of the collected dataset is from January 1, 2015 to
December 31, 2018, which is recorded every three hours. Following the previous work [20], this public
dataset can be divided into two datasets. Dataset 1 uses the pollution situation in the past period to
predict the future PM2.5 concentrations. Dataset 2 selects the monitoring data during winter, when
the air pollution is more serious, and the pollutants are blown by the monsoon from northern China
to southern China. Fig. 1 shows the specific locations of the 184 cities in the dataset, (a) and (b) are
the locations of cities with PM2.5 monitoring data in northern China and southern China.

In the spatiotemporal modeling problem of PM2.5 prediction, we define the graph representing
the spatial correlation between cities as G = (V , E). V represents the city node, and E represents
the correlation between the nodes. We need to construct an adjacency matrix representing the graph
structure according to the distance between cities. When the spatial distance between two cities is
within a specific range and there are no high-altitude mountains between them, the two cities can be
judged as having a strong PM2.5 concentration correlation. The construction method of the adjacency
matrix in this article is as follows:

Aij =
⎧⎨
⎩

1 dij < dk, hij < hk

0 dij ≥ dk, hij ≥ hk

, (1)

where dij represents the distance between two cities, hij represents the highest elevation of the mountains
between the two cities. In this paper, dk is set to 300 km and hk is set to 1200 m.

Meteorological Knowledge: The meteorological characteristics and environmental factors of
cities largely affect the production or spread of PM2.5 pollutants. SCENT [24] proposes that the
precipitation results in precipitation nowcasting are related to non-image features such as wind speed
and shape of cloud clusters. The study find that there is a negative correlation between temperature and
PM2.5 concentration. As the temperature increases, the particle concentration decreases. Air pressure
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is positively related to particle concentration. There is a negative correlation between wind speed
and PM2.5 concentration within a certain range [25]. Therefore, we also integrate meteorological
features as domain knowledge into the process of air pollutant prediction. The domain knowledge
of meteorological characteristics related to PM2.5 concentration includes Planetary Boundary Layer
(PBL) height, stability index of tropospheric stratification, wind speed, temperature, high surface
relative humidity, precipitation and surface pressure. Tab. 1 shows the names and units of seven types of
meteorological knowledge. In the GAT-GRU model, meteorological knowledge is utilized as attributes
of different city nodes to enhance PM2.5 concentration prediction.

Figure 1: The location of cities with PM2.5 monitoring data on the map

Table 1: Meteorological knowledge of cities

Name Unit

Planetary Boundary Layer (PBL) height m
stability index of tropospheric stratification K
wind speed m/s
temperature K
high surface relative humidity %
precipitation m
surface pressure Pa

4 The Proposed Method

PM2.5 concentration prediction can be regarded as a spatiotemporal modeling problem. This
paper uses two deep learning methods to learn the spatiotemporal dependence of PM2.5 concentration
data. This paper uses two deep learning methods to construct a GAT-GRU model to learn the temporal
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and spatial dependence of PM2.5 concentration data. Graph attention network is used for spatial
feature modeling, and the gated recurrent unit is used for temporal feature modeling.

4.1 Spatial Feature Modeling

For the air pollutant prediction problem, it is vital to learn the spatial characteristics and
dependencies contained in the original data. From a spatial perspective, neighboring cities generally
have similar air pollution conditions, and air pollutants could spread and affect each other between
neighboring cities. The current research work either ignores the mutual influence between different
city nodes or introduces prior knowledge to establish node correlations. In GAT-GRU prediction
model, the graph attention network is used to capture the spatial dependence of PM2.5 concentration
monitoring data. Compared with graph convolutional network, GAT can assign different weights to
the neighbor nodes of the target node according to their importance.

Unlike the general GAT-based forecasting model, the input h of the GAT layer in the GAT-GRU
model is obtained by combining two parts: PM2.5 concentration data x for a period of time, and the
domain knowledge s reflecting the city’s meteorological conditions during this period. Meteorological
conditions are closely related to the generation and spread of air pollutions. Therefore, these factors
need to be fully considered in the PM2.5 concentration prediction process.

The GAT layer in the prediction model is mainly composed of two parts: (1) calculate the attention
coefficient. (2) aggregate features of neighbor nodes to get node representation. Fig. 3 shows the
calculation process of the graph attention mechanism. First of all, the attention coefficient represents
the importance of neighboring nodes to the target node. The following formula can calculate the
attention coefficient:

Figure 2: Graph attention mechanism

eij = attention
(
Whi, Whj

) = attention
(
W [xi, si] , W

[
xj, sj

])
(2)

eij represents the attention coefficient between neighboring node i and target node j. The value
of the attention coefficient reflects the strength of the relationship between the two nodes. To make
the attention coefficient comparable between all nodes, the softmax function is used to normalize the
attention coefficient, and the formula is as follows:

αij = softmax
(
eij

) = exp
(
eij

)
∑

k∈Ni
exp (eik)

(3)
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The calculation formula of the final result of the attention coefficient is shown in formula (4). The
specific attention operation in GAT is to splicing the feature vectors of two nodes together, and then
doing an inner product with the weight vector �aT .

αij = exp(LeakyReLU
(�aT [W [ �xi,�si] || W

[�xj,�sj

]
]))∑

k∈Ni

exp(LeakyReLU
(�aT [W [ �xi,�si] || W [�xk,�sk]]))

, (4)

where Ni represents all neighboring nodes of node i, || represents the concatenation operation,
LeakyReLU denotes the nonlinear activation function. After calculating the weight of each city node’s
neighboring city nodes, the output of the GAT layer can be obtained by aggregating the information
of the neighboring nodes.

h′
i = σ

(∑
j∈Ni

αijWhj

)
, (5)

where σ represents the activation function, h′
i is the node feature vector obtained calculated by the

attention mechanism. In addition to a separate attention mechanism, multi-head attention can ensure
the stability of the attention mechanism. Multi-head attention allows the model to have the ability to
learn relevant information from different subspaces. K represents the number of attention layers in
the multi-head attention mechanism.

h′
i = σ

(
1
K

K∑
k=1

∑
j∈Ni

αk
ijW

khj

)
(6)

In order to enhance the stability of the results, the multi-head attention mechanism is used in the
GAT layer. As shown in formula (6), the results of K independent attention operations are aggregated
to obtain the final feature representation.

4.2 Temporal Feature Modeling

The PM2.5 concentration data recorded by the air pollution monitoring stations is stored in
the form of time series. The time series of PM2.5 concentrations have remarkable features such as
periodicity, proximity and trend. Periodicity means that the PM2.5 concentration fluctuates cyclically
over a longer period of time. Proximity means that the PM2.5 concentration values are closer when
the time period is similar. Trend means that the change of PM2.5 concentration has a trend of increase
or decrease in a period of time. Therefore, it is very important to model the temporal dependence of
PM2.5 concentration data. With the development of deep learning, the recurrent neural network has
become an effective method in time series modeling. Many PM2.5 prediction methods use LSTM as
the basic model for learning temporal dependencies [7–9]. This paper uses a variant of the recurrent
neural network called gated recurrent unit (GRU) to process air pollution data. Fig. 3 shows the overall
structure of the gated recurrent unit.

Gated recurrent unit contains two gates: reset gate rt and update gate zt. The reset gate rt determines
the combination of the new input information xt and the previous memory state ht−1. The update gate
zt determines the amount of past state information ht−1 that continues to be saved in the current state
ht. Fig. 3 shows the internal structure of the GRU and the connection between the update gate and

the reset gate. The following is the calculation formula of GRU:

zt = σ (Wz · [ht−1, xt]) (7)
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rt = σ (Wr · [ht−1, xt]) (8)

Figure 3: The overall structure of the gated recurrent unit

zt and rt represent the output of reset gate and update gate, Wz and Wr represent learnable
parameters. xt represents the input data at the current time t. In the GAT-GRU prediction model,
xt includes PM2.5 concentration data and meteorological characteristic data.

h̃t = tanh (W · [rt ∗ ht−1, xt]) (9)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (10)

ht represents the output at time t, ht−1 and xt represent the output of the previous time t − 1 and
the input of this time t.

4.3 GAT-GRU Model

In order to model the spatiotemporal dependence of PM2.5 concentration sequence, this paper
proposes the GAT-GRU model composed of graph attention mechanism and gated recurrent unit. The
input of the GAT-GRU model includes the node features matrix S ∈ R

N×s, the PM2.5 concentration
data X ∈ R

N×1 and the adjacency matrix A ∈ R
N×N. N represents the number of cities with PM2.5

concentration monitoring data. The node features matrix St ∈ R
N×s represents the meteorological

knowledge. Fig. 4 shows the overall architecture of the GAT-GRU model.

Figure 4: Spatial-temporal modeling using GAT-GRU cell
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In this paper, the PM2.5 concentration data Xt and additional factors St at time t are used as the
input of the model, and the output predicted value X ′

t+1 of the GAT-GRU model and the additional
factors St+1 at the next moment are used as the input for the next step to continue the prediction. The
basic unit of the GAT-GRU prediction model is the GAT-GRU cell. Each GAT-GRU cell mainly
consists of three parts: the GAT layer, the GRU layer and fully connected layer. The proposed model
predicts the future PM2.5 concentration value in a rolling manner. Formula (11) to formula (17)
represent the calculation process of the GAT-GRU model.

X ′
t = [fc (Xt) , St] , (11)

where fc() represents the fully connected layer, which changes the dimension of input or output. X ′
t

denotes the concatenation of the input concentration data Xt and additional factors St. In this part,
the PM2.5 concentration data and meteorological feature data at the current time t are processed as
the input of the graph attention network. Meteorological feature data, as important factors related to
PM2.5 concentration, provide important information for prediction models.

g
(
X ′

t

) = [
f

(
A, X ′

t

)
, X ′

t

]
, (12)

f
(
A, X ′

t

)
represents the graph attention network layer. A is an adjacency matrix representing the

spatial connection between different cities. Then the output of GAT layer is used as the input of GRU
to obtain temporal dependence.

zt = σ
(
Wz · [

g
(
X ′

t

)
, ht−1

])
(13)

rt = σ
(
Wr · [

g
(
X ′

t

)
, ht−1

])
(14)

h̃t = tanh
(
W · [

rt ∗ ht−1, g
(
X ′

t

)])
(15)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t, (16)

the above four formulas are the calculation formulas of GRU. ht−1 is the output of the GAT-GRU cell
at the last time step t − 1, which is used as the previous state’s input at time t. g

(
X ′

t

)
is the input of

GRU model.

X ′
t+1 = fc (ht) , (17)

where X ′
t+1 denotes the predicted results of PM2.5 concentration in the next time t + 1. In the GAT-

GRU model, a rolling prediction model is used to predict the PM2.5 concentration after T time steps.
X ′

t+1 and St+1 are used together as the input of prediction cell for the next time step.

We summarize the learning process of the GAT-GRU prediction model in Algorithm 1 below.

Algorithm 1: GAT-GRU model
Input: Initial PM2.5 concentration data X0,

Meteorological knowledge for the forecasted time period [S1, S2, . . . ST ],
The adjacency matrix of the constructed graph A.

Output: Predicted PM2.5 Concentration Results [X ′
1 , X ′

2 , . . . X ′
T ].

For t = 1, 2, . . . , T do
If t = 1: ht−1 is initialized to 0;
The dimension of the input x is changed through the fully connected layer, and then combined
with the meteorological knowledge (formula (11));

(Continued)
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Algorithm 1: Continued
Learning spatial dependencies: f (A, Xt) = GAT(A, Xt);
Learning temporal dependencies: ht = GRU(

[
f
(
A, X ′

t

)
, X ′

t

]
, ht−1);

Get PM2.5 concentration prediction results: X ′
t+1 = fc (ht).

In the prediction process, the prediction result X ′
t+1 acts as the input Xt+1 for the next time step

5 Experiments
5.1 Experiment Setting

We conduct experiments on a GPU server with a single 2080ti which has 11G video memory.
We use PyTorch as the deep learning running framework of the server. The initial hidden state h0

of GRU is initialized with a zero tensor. The input data of all experiments is 1 step (3 h), and the
output prediction result is 24 steps (72 h). Therefore, it means that 3 h of historical data is used in the
experiment to implement the prediction of the PM2.5 concentration value after 72 h in the future. All
models are trained for 100 epochs. The learning rate is 0.0005, and the batchsize is set to 64.

A total of 5 evaluation indicators are used in the experiment to evaluate the predictive performance
of the GAT-GRU model. These indicators can be divided into two categories. The commonly used
indicators to measure prediction accuracy in prediction models are mean absolute error (MAE) and
root mean square error (RMSE). The other is the commonly used accuracy evaluation indicators in
meteorology: critical success index (CSI), false alarm rate (FAR) and probability of detection (POD).

Specifically, the calculation methods of MAE and RMSE are as follows:

MAE
(
x, x̂

) = 1
|�|

∑
iε�

|xi − x̂i| (18)

RMSE
(
x, x̂

) =
√

1
|�|

∑
iε�

(xi − x̂i)
2 ,

(19)

where x̂i and xi respectively represent the predicted value and the ground truth, � denotes the total
number of data samples.

Following PM2.5-GNN, the calculation methods of three meteorological evaluation indicators
are as follows:

CSI = hits
hits + misses + falsealarms

(20)

POD = hits
hits + misses

(21)

FAR = falsealarms
hits + falsealarms

, (22)

where hits means the predicted value and the true value are both 1, and misses indicates that the
predicted value is 0 while the true value is 1, and falsealarms means that the predicted value is 1 and
the true value is 0.



CMC, 2022, vol.73, no.1 683

5.2 Dataset and Baselines

As shown in Section 3, the dataset we used in the experiment is KnowAir, which contains the
PM2.5 concentration data and meteorological attribute data of 184 cities in China collected from the
real world from January 1, 2015 to December 31, 2018. From this dataset, we obtain two datasets
(Dataset 1 and Dataset 2) for experiments. Dataset 1 represents the air pollution prediction under
normal circumstances, and Dataset 2 selects the PM2.5 data in winter with severe air pollution for
prediction. Tab. 2 shows the segmentation method of the two datasets in the experiment.

Table 2: Segmentation of the dataset

Dataset 1 Dataset 2

Train 2016/9/1–2016/11/30 2015/11/1–2016/2/28
Validate 2016/12/1–2016/12/31 2016/11/1–2017/2/28
Test 2017/1/1–2017/1/31 2017/11/1–2018/2/28

In the PM2.5 concentration prediction experiment, the following models are used as baselines
compared with the proposed GAT-GRU model. For the fairness of the comparison of experimental
results, we add meteorological knowledge as part of the model input when conducting experiments on
all baselines.

(1) MLP [26]: MLP is a classic multi-layer neural network model, which generally consists of an
input layer, a hidden layer and an output layer. The representation of the node is used as the
input of the multi-layer perceptron to obtain the prediction result finally.

(2) LSTM [4]: LSTM is an improved variant of recurrent neural network that can capture the time
series characteristics of air pollution data.

(3) GRU [11]: GRU is another variant of the recurrent neural network. Similar to LSTM, GRU is
also used to model the temporal characteristics of PM2.5 concentration data. The difference
between GRU and the proposed model lies in the use of spatial feature modeling methods.
Using GRU as a baseline can demonstrate the effectiveness of spatial modeling.

(4) GC-LSTM [23]: GC-LSTM is a spatiotemporal representation model with superior perfor-
mance in the current research direction of PM2.5 prediction. This model combines GCN and
LSTM to model the spatiotemporal characteristics of PM2.5 concentration data.

(5) PM2.5-GNN [20]: PM2.5-GNN is currently the state-of-the-art model for PM2.5 prediction
performance. This model considers the use of the domain knowledge of city nodes to enhance
the prediction effect and considers the attributes of the edges between cities, such as the
transport effect brought by the wind.

5.3 Results and Discussion

Experiment 1: comparison with baselines. Tabs. 3 and 4 show the PM2.5 concentration prediction
performance of our proposed method and other methods used as baselines. As mentioned above,
we conduct experiments on two real-world datasets. Experimental results include MAE, RMSE,
CSI, POD and FAR. All the best experimental results are highlighted in bold. From the results in
the table, we can see that the prediction performance of the methods that use the recurrent neural
network to model the time characteristics is better than the MLP model. Furthermore, the predictive
models that use graph structure to model spatial dependence have better performance, such as GC-
LSTM, PM2.5-GNN and the proposed GAT-GRU model. These results mean that it is vital to
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model spatiotemporal dependence for PM2.5 prediction problem. Both GAT-GRU and PM2.5-
GNN introduce new information and knowledge, such as meteorological attributes of cities and edge
attributes obtained from wind speed and direction between city nodes. The experimental results prove
that the introduction of meteorological knowledge can effectively improve the accuracy of prediction.
In the experimental results of Dataset 1, the MAE and RMSE of the GAT-GRU model are 34.56
and 42.79, which are better than the results of other models. In the experimental results of Dataset
2, the results of GAT-GRU are also basically stronger than other models. Compared with the graph
neural network in GC-LSTM and PM2.5-GNN, the graph attention network can effectively model the
dynamic connection between monitoring nodes, especially under the condition of the integration of
meteorological knowledge. In the experiments of the two datasets, the POD (Probability of Detection)
indicator of PM2.5-GNN is better than the GAT-GRU model. Since PM2.5-GNN utilizes edge
attributes composed of wind speed and wind direction between city nodes, more accurate PM2.5
propagation information can effectively enhance the probability of detection. In general, compared
with other methods, the proposed GAT-GRU model achieves better prediction performance.

Table 3: Overall performance on dataset 1. Best scores are in bold

Method MAE RMSE CSI POD FAR

MLP 41.89 50.70 52.44 74.16 35.25
LSTM 37.79 46.19 58.85 81.03 31.71
GRU 37.94 46.06 59.16 83.32 32.86
GC-LSTM 37.46 45.71 58.98 81.92 32.18
PM2.5-GNN 36.32 44.36 60.57 83.94 31.37
GAT-GRU 34.56 42.79 61.71 81.95 28.55

Table 4: Overall performance on dataset 2. Best scores are in bold

Method MAE RMSE CSI POD FAR

MLP 28.67 35.55 45.52 60.85 34.56
LSTM 26.90 33.53 49.75 64.94 31.88
GRU 26.54 33.09 49.83 64.58 31.31
GC-LSTM 26.57 33.20 50.13 64.54 30.73
PM2.5-GNN 25.68 32.11 51.35 66.24 30.11
GAT-GRU 25.15 31.88 51.57 62.93 26.56

Experiment 2: The influence of meteorological knowledge. Tab. 5 shows the results of ablation
experiments on whether meteorological knowledge is incorporated in the GAT-GRU model. Taking
the experimental results on Dataset 1 as an example, the predicted MAE and RMSE of the GAT-
GRU model (without meteorological knowledge) are 42.21 and 50.61. With the use of meteorological
knowledge, MAE and RMSE are reduced by 7.65 and 7.82 respectively. The experimental results
show that the use of meteorological knowledge effectively improves the results of PM2.5 concentration
prediction. In addition, the MAE and RMSE of the ablation experiment on Dataset 2 have a more
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significant decrease, which proves that the result of the use of meteorological knowledge on Dataset 2
is better than that of Dataset 1.

Table 5: Results of ablation experiments using meteorological knowledge in prediction models

Dataset Metric GAT-GRU GAT-GRU
(no meteorological knowledge)

1 RMSE 42.79 50.61
MAE 34.56 42.21
CSI 61.71 53.98
POD 81.95 82.17
FAR 28.55 38.83

2 RMSE 31.88 39.45
MAE 25.15 32.38
CSI 51.57 38.55
POD 62.93 55.56
FAR 26.56 44.25

Experiment 3: multi-head attention mechanism. Tab. 6 shows the experimental results of ablation
for the multi-head attention mechanism. In the spatiotemporal prediction problem, we mainly consider
two indicators, MAE and RMSE. As can be seen from the table, the best prediction results on Dataset
1 and Dataset 2 can be obtained when the numbers of multi-head attention mechanisms are 2 and 6.
The results of Experiment 3 demonstrate the effectiveness of the multi-head attention mechanism.

Table 6: Results of ablation experiments of heads number in GAT

Dataset Multi-Heads number MAE RMSE CSI POD FAR

1 K = 1 35.01 43.18 61.42 83.38 29.97
K = 2 34.56 42.79 61.71 81.95 28.55
K = 3 34.68 42.90 61.76 81.92 28.46
K = 4 34.66 42.98 61.71 81.54 28.26
K = 5 34.57 42.82 61.85 82.02 28.40
K = 6 34.84 43.11 61.71 81.99 28.55
K = 7 34.90 43.19 61.67 82.09 28.70
K = 8 34.90 43.21 61.62 82.31 28.95

2 K = 1 25.25 31.96 51.39 63.52 27.04
K = 2 25.24 31.95 51.26 63.37 27.03
K = 3 25.33 32.04 51.16 63.11 26.97
K = 4 25.26 31.97 51.37 63.57 27.16
K = 5 25.26 31.96 51.44 63.82 27.34
K = 6 25.15 31.88 51.57 62.93 26.56

(Continued)
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Table 6: Continued
Dataset Multi-Heads number MAE RMSE CSI POD FAR

K = 7 25.17 31.88 51.20 62.99 26.75
K = 8 25.37 32.03 51.52 64.29 27.77

6 Conclusion

This article proposes a new spatiotemporal modeling method GAT-GRU to achieve PM2.5
concentration prediction. GAT-GRU model integrates two deep learning methods: graph attention
network and the gated recurrent unit, which can accurately and effectively model the temporal and
spatial dependence of air pollution monitoring data in different cities. In addition, we also consider the
influence of meteorological knowledge on PM2.5 concentration when building the model. Our model
learns the temporal and spatial dependence of different cities and incorporates the meteorological
attributes of different cities. The results on real-world datasets prove that the GAT-GRU model has
excellent predictive performance. The method we propose can be used to predict urban air pollutants to
help solve the problems caused by air pollution. In this paper, different types of meteorological features
are used as a whole for the input of prediction model. There is no specific analysis for effect of different
types of meteorological features on PM2.5 prediction. In the future, we will use the grpah neural
network to study the effects of different types of meteorological features on PM2.5 concentration
prediction to help achieve more accurate prediction results.
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