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Abstract: In the present study, a design of a fractional order mathematical
model is presented based on the schistosomiasis disease. To observe more
accurate performances of the results, the use of fractional order derivatives in
the mathematical model is introduce based on the schistosomiasis disease
is executed. The preliminary design of the fractional order mathematical
model focused on schistosomiasis disease is classified as follows: uninfected
with schistosomiasis, infected with schistosomiasis, recovered from infection,
susceptible snail unafflicted with schistosomiasis disease and susceptible
snail afflicted with this disease. The solutions to the proposed system of
the fractional order mathematical model will be presented using stochastic
artificial neural network (ANN) techniques in conjunction with the Levenberg-
Marquardt backpropagation (LMBP), referred to as ANN-LMBP. To illus-
trate the preciseness of the ANN-LMBP method, mathematical presentations
of three different values focused on fractional order will be performed. These
statics performances are taken in these investigations are 78% and 11% for
both learning and certification. The accuracy of the ANN-LMBP method is
determined by comparing the values obtained by the database Adams-Bash
forth-Moulton scheme. The simulation-based error histograms (EHs), MSE,
recurrence, and state transitions (STs) will be offered to achieve the capability,
accuracy, steadiness, abilities, and finesse of the ANN-LMBP method.
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1 Introduction

Schistosomiasis disease (SD) is a parasitic disease produced by worms of the species Schistosoma.
Schistosomiasis was treated for approximately 206 million people in 2016. However, the observed
number of people expected to treat in 2016 was 89.2 million [1]. This disease instigated by tapeworms,
which are members of the monophyletic Platyhelminthes and the species Schistosoma [2—4]. In 1905,
a doctor in Changde discovered Schistosoma camellia eggs on an 18-year-old farm worker. The life
cycle of schistosomiasis is complicated. It consists primarily of two rapacious host stages, human and
larva, as well as two free pelagic stages, cercariaec and miracidia. Roundworms in host organism eggs,
which may pass through the large intestine and into the eco system with the faces. After entering
fresh water, the eggs initiate to hatch and grow into miracidia. The unrestricted miracidia then infect
the snail intermediate hosts, which is known as the larval development. The snails produce a large
number of cercariae and release them into the water via asexual reproduction. Free-moving cercariae
can damage the skin and enter the bloodstream, where they sophisticated into adults when humans
come into contact with water.

Schistosomiasis mathematical analysis is not new, but it is typically expressed in the form of
boundary value problems. Several researchers have used a deterministic approach to develop new
schistosomiasis approaches or modify existing ones [5—7]. Fractional calculus has been widely used
in real-world problems in recent years to describe genetic properties, energy dissipation effects,
cognition, and harm structures. The Riemann—Liouville (RL) and Caputo fractional operators are
excellent definitions of fractional differential equations, which are defined as the complexity of
a given polynomial function/its derivative and the heat dissipation feature as a kernel [§]. These
operators are non-local, according to this definition. The singularity caused by the energy decay kernel
function on the other hand, includes multiple considerable computational difficulties necessitating the
introduction of numerical solutions.

Fractional calculus (FC) was invented in the time of Newton, but it has recently piqued the interest
of many academics. Over the last thirty years, the most fascinating leaps in industry sectors have been
discovered within the structure of FC. The idea of the fractional derivative has been modernized due
to the complexities affiliated with the characteristic of inhomogeneity. The behavior of multifaceted
media with a diffusion process can be captured using fractional differential operators. It has been a
very valuable tool, but many problems can now be demonstrated more helpfully and precisely using
ordinary differential equations of any order. Many scholars began to work on simplistic calculus
to reveal their points of view while analyzing a wide range of complex phenomena as a result of
the rapid development of computational techniques with computer software systems. Many senior
researchers proposed various concepts for fractional-order and integral operators, which arranged
the foundation [9-14]. Many researchers have recently considered fractional calculus to be a more
efficient approach than integer-order calculus when examining real-world problems suggested using
mathematical models. For instance in [15], authors take into account the different derivative identified
with the assistance of the non-singular operative in order to examine the fibroid surveillance model in
[16], a new fractional concept along with a control scheme for the infection of dengue infection has
been efficiently and successfully highlighted in [17], researchers consider the computational method
in order to typify the efficiency while an For instance in [15], authors take into account the different
derivative identified with the assistance of the non-singular operative in order to examine the fibroid
surveillance model in [16], a new fractional concept along with a control scheme for the infection
of dengue infection has been efficiently and successfully highlighted in [17], researchers consider
the computational method in order to typify the efficiency while analyzing blood sugar levels and
infectious diseases. The mathematical and analytical results for the equations highlighting these models
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play an important role in depicting the nature of nonlinear problems in associated fields of science [ 18—
30].

Recent advances in fractional calculus (FC) theory have resulted in the creation of two notable
operators, Caputo—Fabrizio and Atangana—Baleanu. The new derivatives mentioned above have non-
singular kernels and do not use energy-distribution. The Atangana-Baleanu operator is mainly
focused on the simple Mittag-Leffler method, which has powerful forces because its diffusional
effects are collaborations with good assumptions. The Caputo—Fabrizio estimation is also based on
exponential law, which can be found in a variety of natural phenomena and has a fusion effect with
numerical depiction. These operators have demonstrated that they are the future for demonstrating a
variety of scientific progressions such as turbulent theory, life processes, heat flux problems, operations
research, and financial problems, among others [31-38].

This research is related to the development of a fractional order mathematical model focused on
the evolution of the schistosomiasis disease. The use of fractional order derivatives is implemented
to observe more precise performances of the mathematical equation. The novel fractional order
mathematical model solutions will be described using stochastic artificial neural network (SANN)
processes in conjunction with Levenberg-Marquardt backpropagation (LMBP), i.e., ANN-LMBP.

1. To solve the dynamic behavior of the schistosomiasis disease, the ANN system is proposed
effectively using LMBP optimization processes.

2. The consistent overlapped results obtained by LMBP and the Adams achievements verify the
proposed approach.

3. The performance is certified by using various statistics values to accomplish the numerical
performances of the schistosomiasis disease model.

The paper is systematized as: Section 2 demonstrates the configuration of the fractional order
mathematical equation, Section 3 contains the stochastic contributions, Section 4 is created on
ANN-LMBP method, Section 5 is intended using simulation procedures, and the final part contains
concluding remarks.

2 Mathematical Form of The Delay Differential Two-Prey and One-Predator System Model

The model defines the total humanity at time ¢, symbolized by N (¢), into susceptible persons who
are uninfected with schistosomiasis W (g), those who have been infected with schistosomiasis 4(g), and
those who have healed from the kind of disease infection Q(¢). As a result, the whole social population
is N = W+ A+ Q. Furthermore, N, divides the total snail populations into vulnerable snails that
uninfected with schistosomiasis U and those that have been infested with schistosomiasis infectious
V. This indicates that N, = U + V represents the total vector population. The following non-linear
ordinary differential equations are derived from the interlinkages with the compartments.
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Tab. 1 contains characterizations of the mathematical model built on the schistosomiasis disease
of each parameter.

Table 1: Parameter characterization of the schistosomiasis disease

Parameters Details

A, Susceptible human rate

As Snail population

o Susceptible human infected with schistosomiasis
o, Effected with infection snail

8 Infected human to recovery class rate

y Loss immunity rate

B, B> Morality of snails and humans

ki, ki, ks, ky, ks ICs

The current research aims to provide numerical simulations of a fractional order mathematical
formula based on the schistosomiasis disease using artificial intelligence (Al) and ANN-LMBP. The
following is the structure of the fractional order mathematical model focused on the schistosomiasis
disease:

o)
% = A _aISW(S)—i_yQ(S)_ﬁlW(ﬁ‘), W, =k,
(r)
d9A(e) _ o, SW(e) — (B +9) A(e), A, = ko,
de®
(r)
LOE) 5+ 8 0, 0, = k.. o
de®
(t
d >E(8) =\, — Ole(E)E(E) - ,BzE(S), EO — k4’
de®
(t
dS(e) _ o, A(e)E(e) — B,S(¢). S, = k..
de®
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In this system, t is the fractional order derivative of the numerical schistosomiasis disease model.

3 Novel Stochastic Solvers Features

The current section demonstrates the stochastic operator performances when solving the frac-
tional order computational schistosomiasis disease model with ANN-LMBP. Stochastic software
solvers have been examined in the literature to solve complicated, singular, and rigid systems [39—
41]. Stochastic optimization algorithms have been recently used to perform simulation studies of
nonlinear computer virus propagation model [42], infection control model [43], Lane-Emden systems
[44], functional order approaches [45], and nonlinear dynamic HIV systems [46—49]. The purpose of
this work is to review and develop a fractional order mathematical schistosomiasis disease model using
mathematical procedures based on the ANN-LMBP. These references [50—54] present a number of
applications-based time-fractional derivatives. The following are some novel characteristics of ANN-
LMBP for solving the fractional order mathematical model:

e A design fractional order and numerical solutions are introduced to tackle the mathematical
schistosomiasis disease model.

e Using the stochastic ANN-LMBP methods, the numerical performance evaluation of the built
mathematical schistosomiasis model is provided.

e The proposed ANN-LMBP method is validated by computing the mathematical results of three
multiple varieties depending on fractional order derivatives.

e The accuracy and precision of the computing ANN-LMBP method are validated by comparing
obtained and citation (Adams-Bashforth-Moulton) discussions.

e The correctness of the ANN-LMBP method is obtained through absolute error (AE), which is
skillful in good procedures for performing mathematical schistosomiasis disease model.

e The stagnation, STs, correlation, MSE, and EHs measures validate the reliability and ser-
viceability of the constructed ANN-LMBP method for mathematical schistosomiasis model
solution.

4 Proposed Procedures: ANN-LMBP Method

This part of the study describes the proposed ANN-LMBP method for presenting the numerical
schistosomiasis disease model solutions. The proposed ANN-LMBP scheme is introduced in two
stages: the substantial performances of the ANN-LMBP method and the operational plans for solving
the mathematical schistosomiasis model using the ANN-LMBP method. The significant operator
performances-based L-MBNNs technique is provided.

The designed approach for solving the nonlinear fractional differential model is displayed in Fig. 1
and is based on the number of layer optimization procedures of the ANN-LMBP method. This study
statics performances are 78 percent, 11 percent, and 11 percent for training, certification, and checking
for tackling the fractional order computer simulation based on the schistosomiasis disease.
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1. Model: Fractional order schistosomiasis disease model
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5 Results and Discussions

In this portion, three different variability of fractional order differential equations of the math-
ematical schistosomiasis disease model using ANN-LMBP are presented. Each type mathematical
representation is as follows:

Case 1: Consider a fractional order mathematical model based on the schistosomiasis disease by
using

=051 =01, =012,8 =0.15, 8, =0.18,5§ = 0.2,y = 023, 1, = 0.23, o, = 0.3,
kl == 01, kz == 01, k3 = 03 and k4 == 04, k5 == 05.

'% = 0.1 —0.12S(e) W(e) + 0.230(e) — 0.15W (e), W, =0.1,
% = 0.12W () S(e) — (0.15+0.2) A(e), A4,=0.2,
% =0.2— (0.2340.15) Q(e), 0, = 0.3, 3)
% =0.23 - 0.34(e)E(e) — 0.15E(e), E, =04,
L) 01540 E) — 0155(). 5 =05

Case 2: Consider the use of a fractional order mathematical model based on the schistosomiasis
discase 7 = 0.7, A, = 0.1, ¢, = 0.12, 8, = 0.15, 8, =0.18, 86 = 0.2, y = 0.23, A, = 0.23, o, = 0.3,
ki =01k, =0.1,ks=03and k, =04, ks = 0.5.

'% =0.1-0.125() W (e) + 0.23Q(e) — 0.15W (), W, = 0.1,
% = 0.12W (&) S(e) — (0.15+0.2) A(e), A, =0.2,
% =0.2—(0.23 +0.15) Q(¢), 0, =0.3, )
% =0.23 - 0.34()E(e) — 0.15E(e), E, =04,
d(;:iff) = 0.154(¢)E(e) — 0.15S(e). S, = 0.5,
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Case 3: Consider a fractional order mathematical model based on the schistosomiasis disease by
usingt = 09,4, = 0.1, ¢, = 0.12, 8, = 0.15, 8, = 0.18, 6§ = 0.2, y = 0.23, A, = 0.23, o, = 0.3,
kl = 01, kz = 01, k} = 03 and k4 = 04, k5 = 05

% = 0.1 —0.125() W(e) + 0.230(e) — 0.15W (), W, = 0.1,
% = 0.12W(e)S(e) — (0.15 +0.2) A(e), A, =02,
4 % = 02— (0.23+0.15) Q(e), 0, =03, “
% =023 — 0.34(e) E(e) — 0.15E(e), E, =04,
_% =0.154(s)E(¢) — 0.15S(e). S, = 0.5.

The numerical representations using the outcomes of the fractional order mathematical schisto-
somiasis disease model are discussed utilizing ANN-LMBP method with 13 numbers of neurons and
data selection as 78%, 11%, and 11% for training, certification, and testing, respectively. Fig. 2 depicts
the structure of the input, hidden, and output neurons.

Hidden Output

Figure 2: Designed ANN-LMBP method for schistosomiasis disease

Figs. 3—5 show the fractional order mathematical schistosomiasis disease model developed using
the ANN-LMBP method. The perfect EHs, curves, validations, and STs for the fractional order
derivative mathematical schistosomiasis model are shown in Figs. 3 and 4. The best results of the
fractional order mathematical schistosomiasis disease model (SDM) were obtained at epochs 38, 41,
and 46, which were measured as 1.7573 x 1071°, 4.9824 x 107" and 8.6225 x10~'°. For the cases 1, 2
and 3, the gradient performances are 9.75 x 107%, 9.2105 x 10~%, and 8.4198 x 10~%. The graphical
methodologies demonstrate the convergence of the ANN-LMBP method for solving the fractional
order mathematical (SD) model. The profitability of the results and EHs for the fractional order
mathematical schistosomiasis disease (SD) model using the ANN-LMBP technique is shown in Fig. 4.
These result valuations compare the performances of the review literature and reference solutions.
The training, testing, and substantiation results for the fractional order mathematical (SD) model are
plotted. The second section of Fig. 4 discusses the EHs values, which are 1.97 x 107, —3.6 x 10, and
3.16 x 10~ for cases 1, 2, and 3. The correlation schemes for the fractional order mathematical (SDM)
using the ANN-LMBP method are shown in Fig. 5. Using the ANN-LMBP method, the correlation
for the fractional order mathematical (SD) model is found to be one. The precision of the ANN-
LMBP method for the fractional order mathematical (SD) model is labelled by its training, testing, and
substantiation accomplishments. Tab. 2 shows the MSE for the fractional order mathematical (SD)
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model by using ANN-LMBP method after verification, complexity, checking, training, generations,

and backpropagation.
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Figure 3: MSE and STs performances for the fractional order system
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Table 2: ANN-LMBP method for the fractional order mathematical schistosomiasis disease model

Case MSE Performance Gradient Mu Epoch Time
S

[Training] [Verification] [Testing]

1 3.38 X 8.62 X 394 x 3.38 X 8.42 x 1 X 46 2
10709 10710 10—09 10709 10708 10710

2 1.17 X 1.75 X 7.11  x 1.18 X 9.75 x 1 X 38 1
10—09 10—10 10—10 10—09 10—08 10—10

3 3.98 X 1.38 X 7.82 x 3.99 X 921 x 1 X 41 2
10—11 10—11 10—11 10—11 10—08 10—11

The correctness of the proposed ANN-LMBP method for the fractional order mathematical (SD)
model is observed in Figs. 6 to 7 based on the result comparison and AE performances. The calculated
form of the numerical solutions has been drawn to solve the nonlinear model using the ANN-
LMBP method. The matching of the calculated and reference results has been illustrated in Fig. 6.
These plots present the precision of the ANN-LMBP method for the fractional order mathematical
schistosomiasis disease model. The performances of AE to solve the fractional order mathematical
(SD) model using the stochastic paradigms are plotted in Fig. 7.
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Figure 7: AE for the performances for the fractional order system

The AE is provided based on the not infected with schistosomiasis ¥ (¢), infected with schistoso-
miasis A(g), recovered from infection Q(e), susceptible snail not afflicted with schistosomiasis disease
E(e) and susceptible snail afflicted with this disease S(g). It is observed that the not infected with
schistosomiasis W (¢) lie around 10=* to 107%, 10=% to 10~ and 10~ to 10~ for the case 1, 2 and 3.
The AE for the people infected with schistosomiasis 4(¢) lie around 10~ to 10~*, 10~ to 10~ and
107" to 107 for the case 1, 2 and 3. The AE for the people recovered from infection Q(¢) found 10~
to 107, 107 to 107" and 10~ to 107 for the case 1, 2 and 3. Similarly, the AE for the behaviors
E(e) & S(¢) found 10~ to 107%, 107% to 107" and 107 to 10~ for the case 1, 2 and 3. These best AE
values represent the exactness of proposed ANN-LMBP method for the fractional order mathematical
(SD) model.

6 Conclusion

In this presents study the numerical solutions of the fractional order mathematical model are pre-
sented based on the schistosomiasis disease. The goal of finding fractional order numerical solutions is
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to improve the accuracy of the mathematical model performance. The nonlinear mathematical system
is divided into five dynamics, susceptible snail not infected with (SD) E(¢), susceptible snail afflicted
with (SD) S(e), not infected with schistosomiasis ¥ (¢), recovered from infection Q(e), and infected
with schistosomiasis 4(g) order systems have never been used before by using the intended stochastic
ANN-LMBP. It has been discovered that those who are not infected with schistosomiasis W (g). To
demonstrate the correctness of the ANN-LMBP method, numerical presentations of three different
value parameters based on fractional order will be conducted. To solve the nonlinear fractional order
system, thirteen neurons have been presented. This study statics performances are 78%, 11%, and
11% for training, certification, and testing for tackling the fractional order mathematical model
based on schistosomiasis diseases. To determine the correctness of the ANN-LMBP method, the
calculated values were compared to the Adams-Bashforth-Moulton. The MSE efficiency is reduced to
locating numerical solutions of the ANN-LMBP technique for solving the fractional order derivative
mathematical model based on the schistosomiasis disease. The ANN-LMBP method capability and
dependability are demonstrated using numerical representations based on STs, EHs, MSE, correlation,
and regression. The ANN-LMBP method achieves precision by using a fractional order mathematical
model and comparing the obtained and reference results.

In future given methodology can be implemented to many fractional and integer order systems of
utmost significance [55-65].
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