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Abstract: This paper presents a parallel method for simulating real-time 3D
deformable objects using the volume preservation mass-spring system method
on tetrahedron meshes. In general, the conventional mass-spring system is
manipulated as a force-driven method because it is fast, simple to implement,
and the parameters can be controlled. However, the springs in traditional
mass-spring system can be excessively elongated which cause severe stability
and robustness issues that lead to shape restoring, simulation blow-up, and
huge volume loss of the deformable object. In addition, traditional method
that uses a serial process of the central processing unit (CPU) to solve the
system in every frame cannot handle the complex structure of deformable
object in real-time. Therefore, the first order implicit constraint enforcement
for a mass-spring model is utilized to achieve accurate visual realism of
deformable objects with tough constraint error. In this paper, we applied the
distance constraint and volume conservation constraints for each tetrahedron
element to improve the stability of deformable object simulation using the
mass-spring system and behave the same as its real-world counterparts. To
reduce the computational complexity while ensuring stable simulation, we
applied a method that utilizes OpenGL compute shader, a part of OpenGL
Shading Language (GLSL) that executes on the graphic processing unit
(GPU) to solve the numerical problems effectively. We applied the proposed
methods to experimental volumetric models, and volume percentages of all
objects are compared. The average volume percentages of all models during
the simulation using the mass-spring system, distance constraint, and the
volume constraint method were 68.21%, 89.64%, and 98.70%, respectively.
The proposed approaches are successfully applied to improve the stability of
mass-spring system and the performance comparison from our experimental
tests also shows that the GPU-based method is faster than CPU-based
implementation for all cases.
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1 Introduction

Real-time physically-based simulation plays a crucial role in the computer animation industry.
Additionally, medical simulation particularly demands animation of the deformable object in real-
time and visually realistic animations to represent human organs and soft tissues [1]. Under these
circumstances, the applications related to physically-based simulation significantly require both fairly
high resolution of 3D mesh and high performance to obtain real-time animation of deformable objects
with smooth and responsive interactivity. However, it’s challenging to achieve the main goal of physical
simulation with dense mesh structure in real-time due to the large computation. The virtual surgical
training system, in particular, requires higher framerates since low framerates can cause glitches and
further problems that make users are motion sickness [2]. Therefore, various studies have focused on
modeling and simulating deformable objects that can be categorized into continuum mechanics-based
techniques, a discrete mass-spring damper technique, and position-based dynamics [3–5].

In continuum mechanics-based techniques, a finite element (FEM) method can deliver a precise
result of a deformable object simulation. In addition, FEM is used to represent soft tissues accurately
by controlling Young’s modulus and Poisson’s ratio parameter. However, the computational cost is also
high for an interactive simulation, therefore not suitable for real-time deformation. Nevertheless, some
researchers have improved FEM techniques to be used in real-time [3]. Mass-spring system (MSS) is
simple, easy to implement, and has parameter controllability [4]. The major advantage of MSS is low
computation cost. Hence, the result of MSS is inaccurate and unstable, hence potentially producing a
huge loss of volume during simulation. The springs in MSS can be nordinately elongated which cause
stability and robustness problems. The stability of MSS can be improved by enforcing the geometric
constraints on the springs, however it cannot be achieved in real-time performance using only CPU
due to the heavy computational cost.

The position-based dynamic (PBD) method is the superior approach that is widely used in various
real-time interactive simulations. Unlike FEM and MSS, it determines the projecting position directly
to satisfy the existing constraints in the system and omit the velocity layer [5]. PBD is a fast, stable,
and effective method however, its numerical result is not accurate compared to FEM and MSS.

Previously, various studies were focusing on the development of high-performance physics
simulators for virtual reality (VR) and augmented reality (AR) using graphic processing units (GPU)
[6]. Generally, GPUs are utilized mainly for image and animation rendering purposes, however, they
are also utilized for general computing. Compared to the traditional approach that implements on the
central processing unit (CPU), the GPU-based approach is extremely fast since the direct access to
the GPU buffer is more effective than streaming data from the CPU to the GPU buffer [7]. Moreover,
GPU-based approaches utilize parallel processing units that processes on muti-cores and thousands
of threads at once. Under these circumstances, research on 3D interaction simulation frameworks for
VR/AR using the GPU method has been developed to achieve real-time performance under large
calculations [8]. In addition, well-known general-purpose computing on the graphics processing unit
(GPGPU), compute unified device architecture (CUDA) and Open Computing Language (OpenCL)
are normally used as a GPGPU library for any GPU-based approaches [9]. However, it required
additional setup and configuration for it to support the graphic library that is not suitable for
lightweight applications [10].

Therefore, in this study, we proposed methods for deformable object simulation that use a 3D
volumetric model or tetrahedron model to represent the 3D object. The proposed method utilizes
parallel processing by using compute shader as GPGPU that existed on OpenGL Shading Language
(GLSL). The specific contributions of this paper are:
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• The stability of deformable object simulation using the mass-spring system is improved by
enforcing the distance constraint to the spring structure and enforcing the volume preservation
constraint as maintenance of the local volume during simulation.

• The numerical problem of the constraints system is solved by the parallel method in order to
accelerate the performance using compute shader that executes on GPU.

The rest of the paper is structured as follows. Section 2 gives an overview of the previous studies
on deformable object simulation. Section 3 presents the proposed method for implementing a mass-
spring system and first-order implicit constraint enforcement method based on process distribution on
compute shader for simulating object deformation. The data structure for GPU buffer to represent the
tetrahedron model for modeling and rendering is also described. Section 4 provides the performance
comparison of each method in various 3D objects. To compare the efficiency of each method for
deformable object simulation, the overall volume of the 3D object is computed for comparing under
the free-fall case. We also compared the performance difference between CPU and GPU-based
approaches correspondingly. Section 5 concludes the paper.

2 Related Work

FEM is widely used in various dynamic simulation applications due to its high precision and
high complexity, as more computing resources are available. The first work on the use of FEM on the
linear elastic object was presented in [11]. Later on, Bro-Nielsen et al. [12] reduced the complexity of
the volumetric model in order to speed up the result, a model he named as fast finite element models
(FFE).

Muller et al. [13] simulated deformable objects using a shape matching approach that found the
goal position of each point to satisfy the current state corresponding to the initialize state. They only
treat one global constraint for the whole deformed object. Later on, they proposed a position-based
dynamic (PBD) simulation supported by explicit integration method [5]. Their key idea was to control
the simulation through project positions instead of force. Furthermore, the general constraints can be
simply defined via constraint function. A Jacobi, and nonlinear Gauss-Seidel solver were used to solve
the dynamic equation of the PBD system.

A mass-spring-damper model is made by a number of nodes connected by springs where each
node can have more than one spring. Generally, there are three spring types of cloth models, however,
it’s not easy to extract all types of springs to represent general deformable object. Therefore, only
structural spring is easily extracted for both surface and volumetric models. Cover et al. [14] presented
the first real-time model for surgery simulation using the surface mesh mass-spring model. However,
the surface-based model was not well preserved to represent volumetric behavior since the interior
structure is not defined. Wang et al. [15] proposed a mass-spring model based on shape matching for
a mass-spring model that uses only surface mesh. Zhang et al. [16], used a mass-spring system on a
volumetric model based on tetrahedron to maintain the volume of the deformable object to construct
the soft tissues. Since the mass-spring model is weak in terms of shape restoration, they applied volume
conservation constraints on the tetrahedrons that exist in the model. Additionally, they employed the
PBD method for volume conservation constraints to characterize the volumetric model.

Provot [17] and Desbrun et al. [18] used constraint projection in mass-spring systems to prevent
springs from overstretching. The implicit constraint enforcement scheme, as according to Hong et al.
[19], predicts the correct magnitude of the constraint forces by using future time-steps. Different from
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the method used by Provot [17], this method is not moving the nodes instantly, instead, they used the
geometric constraint over the mass-spring model to prevent the excessive stretching of the springs.

Human muscle dynamics have been modeled and simulated using volume preservation. Hong
et al. [20] modeled a mass-spring muscle with volume preservation on the surface mesh. Instead of
preserving the local volume of tetrahedral mesh, they used global volume preservation to maintain
the global volume of closed mesh topology that represents the deformable object. Zang et al. [21]
proposed a soft tissue grasping deformation model to simulate the grasping deformation using the
optimized backpropagation neural network to obtain the force and displacement of any mesh point
on the soft tissue epidermis.

3 Methodology

In this section, we present volume conservation techniques for a deformable object that respect
the force-driven method in GPU using parallel processing with different aspects and contributions.
We modeled deformable objects using the conventional mass-spring system, distance constraint
enforcement, and local volume preservation constraint for a mass-spring system that utilizes the Single
Instruction Multiple Data (SIMD) architecture of the GPU. Compute shader was used as kernel
program on the GPU for task distribution to obtain high performance.

3.1 Volumetric Model for Deformable Object

Due to the low cost of rendering, most computer-aided design (CAD) and modeling software
only work with surface mesh that are represented by a closed triangle. Therefore, the simulation of a
deformable object using surface mesh seems to be unrealistic due to the missing interior structure of the
topological mesh. The object can be squeezed when the large external force is given. Furthermore, the
cutting operations on surface mesh potentially restructure the entire mesh. However, an existing study
has presented an approach that adds the internal link to a surface mesh [22]. Also, feature selection
can be used to evaluate the selected feature set through a classifier to select the appropriate feature in
the geometric constraint datasets [23].

In this work, we used a tetrahedron model to represent the deformable object. The tetrahedron
model can be created by various programs and software, among these TetGen [24], generates tetra-
hedral meshes. TetGen generates polyhedral domain triangulations in three dimensions. It creates
meshes with well-shaped elements whose sizes are adjusted according to geometric features or sizing
functions provided by the user. The standard input file formats only supports .off file, .ply file, .stl file,
and .mesh file. To generate a tetrahedron model from a given surface mesh, TetGen uses a Delaunay-
based algorithm. They are capable of preserving any complex geometry or topology. TetGen employs
a constrained Delaunay refinement algorithm that maintains mesh quality. TetGen’s robustness is
improved by the use of advanced computational geometry technologies. TetGen also inserts the new
vertices inside the surface mesh and the new tetrahedron mesh itself in case the user wants to scale the
resolution of their mesh. Fig. 1 shows an example of the conversion from surface mesh to tetrahedron
mesh. The main output file format for tetrahedrons are:

• .node : a list of nodes or vertices of the mesh.
• .face : a list of triangular faces of the mesh.
• .ele : a list of tetrahedrons of the mesh.
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Figure 1: The conversion of a surface mesh to a tetrahedron mesh [22]

3.2 OpenGL Compute Shader

Since we used OpenGL as a graphic library for the rendering part, we employed OpenGL
Shading Language (GLSL) technology that existed since OpenGL 4.3 was released. In the rendering
pipeline, vertex shader, geometry shader, and fragment shader are sequentially executed on the graphic
processor to render the images on the display device. Particularly, compute shader is executed outside
the rendering pipeline to make the simultaneous thread computes the data in parallel for the non-
rendering purpose [25]. Compute shader script is programmed based on C programming syntax. There
is the concept of a workgroup to define the compute space for parallel processing.

When a compute operation is invoked, the user specifies the number of workgroups with which
it will be executed. These groups’ space is three-dimensional, hence, there are “X”, “Y”, and “Z”
groups where any of these can be one, allowing us to create a two-dimensional or one-dimensional
computation instead of a three-dimensional one. Each group has its local size with three-dimensional
(size can be one to allow two-dimensional or one-dimensional local processing). The specific size is
defined in compute shader script, where the number of threads is also define as invocation [26]. This
can be used to process image data, linear arrays from a particle system, a cloth model, and other
complicated 3D models as well [27].

The shader storage buffer object (SSBO) and image load-store operation are used to output the
result data in compute shader since there are no output variables in compute shader. Therefore, we
used SSBO for storing data in our proposed algorithm. SSBO stores a massive amount of structured
data as a linear array in memory that can be accessed by invocations. SSBO can be adjusted as read-
only, write-only, and read-write. Likewise, we use the std430 layout qualifier for initializing compute
shader since it does not need data packing before initializing the SSBOs.

3.3 Parallel Mass-Spring System for Tetrahedron Model

In a single tetrahedron, there are four points or nodes, linked by six straight edges and four
triangular faces. Fig. 2 illustrates the structure of a single tetrahedron. In the volumetric model
represented by a set of tetrahedrons, a pair of two nodes known as spring are extracted from
the tetrahedron where each spring must be unique since a single node can be shared with many
tetrahedrons. In the general mass-spring-damper model for cloth simulation, the representative types
of springs are classified into structural, shear, and flex (bend). Therefore, only structural springs can
be easily extracted from the tetrahedron model.



836 CMC, 2022, vol.73, no.1

Figure 2: Structure of tetrahedron

Each spring consists of two mass nodes as shown in Fig. 3. Where pi&pj denote the position of
those two nodes, and vi&vj are velocities. fi&fj are force act on both mass points to keep the spring
distance remain the same as initial distance L.

Figure 3: A spring structure in mass-spring damper model

Spring force acting on both nodes can be computed by Hooke’s law as shown in Eq. (1). Where
the stiffness and the damping of spring are denoted by ks and kd, respectively. The motion of equations
using the explicit Euler integration method is applied to update the next position and velocity at time
t + Δt where Δt is the integration timestep as shown in Eqs. (2) and (3). Note that force F is made by
the accumulation of internal and external forces.

fi = −fj =
[

ks

(∣∣pj − pi

∣∣ − L
) + kd

((
vj − vi

) · (
pj − pi

)∣∣pj − pi

∣∣
)]

pj − pi∣∣pj − pi

∣∣ (1)

v(t+Δt) = v(t) +
(

gravity + F
m

)
× Δt (2)

p(t+Δt) = p(t) + v(t+Δt) × Δt (3)

To perform the simulation, there are five SSBOs to store the arrays of data needed to compute
in the GPU as shown in Tab. 1. Where N, M, and T are the number of discrete nodes, the number
of springs that existed in the tetrahedron model, and the number of tetrahedron elements inside the
volumetric model, respectively.

Table 1: List of SSBO for GPU-based constraint enforcement

SSBO Size Description

Position SSBO N Contain the position of all tetrahedron points.
Velocity SSBO N Contain the velocity of all tetrahedron points.
Forces SSBO N Contain the force of all tetrahedron points.
Spring SSBO M Contain the spring of in tetrahedron model.
Tetrahedron SSBO T Contain the tetrahedron element in the tetrahedron model.
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Two compute shaders are required to perform the mass-spring system algorithm in GPU. Springs
can be solved in a node-centric or spring-centric manner. In the node-centric approach (See Tab. 2),
we assign an invocation or thread per node and loop over all spring affecting it to obtain a good load
balancing. After determining the total spring forces, the write operation per node is performed. On
the other hand, the spring-centric process a spring for a thread and scatter the force to each affected
node. Then a compute shader will invoke two blocks of buffer at the same time causing a problem of
data racing on writing data. Therefore, the atomic operation is required to scatter spring force to each
affected node (see Tab. 3).

Table 2: Node-centric algorithm

Input: SSBO position, velocity, force, spring

i = global index of invocation axis x
Initialize force = vec3(0)
for all Spring s affecting node i do:

force += calculate spring force s
end for
Force[i] = force

Table 3: Spring-centric algorithm

Input: SSBO position, velocity, force, spring

i = global index of invocation axis x
Initialize force = vec3(0)
i1,i2 = indices of nodes in Spring[i]
force = calculate spring force Spring[i]
atomically add Forces[i1] += force
atomically add Forces[i2] += −forces

As shown in Eq. (1), the spring equations are linearized and individually solved for each spring,
making it is easy to parallelize the algorithm. We then create a one-dimensional compute space for
computing force for all nodes (see Section 3.2). Fig. 4 illustrates the compute space for compute forces

where m =
⌈

M
1024

⌉
. Note that, this compute space is used for the spring-centric algorithm.

Identically, to determine the new position and velocity of all nodes, we follow Eqs. (2) and (3).
The compute space for computing the new position every timeframe of simulation is demonstrated

in Fig. 5, where n =
⌈

N
1024

⌉
. In the node-centric algorithm, the compute space is the same as the

compute space for updating the node position.
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Figure 4: Compute space for GPU-based mass-spring system using the spring-centric scheme

Figure 5: Compute space for GPU-based mass-spring system using the node-centric scheme

3.4 Parallel Implicit Constraint Enforcement Scheme

The formula of constraint using Lagrange multipliers results in a mixed system of ordinary
differential equations (ODE) and algebraic equations. Using 3n generalized coordinate, we obtain
Eq. (4), where n denotes the total number of nodes.

q = [x1, y1, z1, x2, y2, z2 . . . xn, yn, zn]
T (4)

The vector of constraint Φ(q (t) , t) is made up of m elements of algebraic constraint. Then the
distance constraint between node i and j can be written as shown in Eq. (5), where r is the initial
distance.

Φ (q, t) = [
Φ1 (q, t) , Φ2 (q, t) . . .Φm (q, t)

]T
(5)

Φ = (
xi − xj

)2 + (
yi − yj

)2 + (
zi − zj

)2 − r2 (6)

The partial differentiation on this constraint concerning subscript q obtains a Jacobian matrix Φq

with an m × 3n size.

Φq (q, t) =
⎡
⎢⎣

a b 0 · · · 0
0 c d · · · 0
...

...
...

. . .
...

⎤
⎥⎦ (7)
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a =
{

∂Φ

∂xi

= 2
(
xi − xj

)
,
∂Φ

∂yi

= 2
(
yi − yj

)
,
∂Φ

∂zi

= 2
(
zi − zj

)}

b =
{

∂Φ

∂xj

= −2
(
xi − xj

)
,
∂Φ

∂yj

= −2
(
yi − yj

)
,
∂Φ

∂zj

= −2
(
zi − zj

)}
(8)

We also applied the local volume constraint over the tetrahedron model. As shown in Fig. 2, a
tetrahedron is made by four nodes (p1, p2, p3,p4), and the initial volume or rest volume of a single
tetrahedron element is denoted by V0, then the algebraic constraint of volume constraint can be written
as follows:

Φ = V − V0 (9)

Φ = 1
6

(p2 − p1) × (p3 − p1) · (p4 − p1) − V0 (10)

Same as distance constraint, the partial differentiation on volume constraint, we obtain a Jacobian
matrix Φq with a m × 3n size.

Φq (q, t) =
[

a b c d · · ·
...

...
...

...
...

]
(11)

a =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Φ

∂x1

= 1
6

(y3z2 − y4z2 − y2z3 + y4z3 + y2z4 − y3z4)

∂Φ

∂y1

= 1
6

(−x3z2 + x4z2 + x2z3 − x4z3 − x2z4 + x3z4)

∂Φ

∂z1

= 1
6

(x3y2 − x4y2 − x2y3 + x4y3 + x2y4 − x3y4)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

b =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Φ

∂x2

= 1
6

(−y3z1 + y4z1 + y1z3 − y4z3 − y1z4 + y3z4)

∂Φ

∂y2

= 1
6

(x3z1 − x4z1 − x1z3 + x4z3 + x1z4 − x3z4)

∂Φ

∂y2

= 1
6

(−x3y1 + x4y1 + x1y3 − x4y3 − x1y4 + x3y4)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

c =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Φ

∂x3

= 1
6

(y2z1 − y4z1 − y1z2 + y4z2 + y1z4 − y2z4)

∂Φ

∂y3

= 1
6

(−x2z1 + x4z1 + x1z2 − x4z2 − x1z4 + x2z4)

∂Φ

∂y3

= 1
6

(x2y1 − x4y1 − x1y2 + x4y2 + x1y4 − x2y4)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

d =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Φ

∂x4

= 1
6

(−y2z1 + y3z1 + y1z2 − y3z2 − y1z3 + y2z3)

∂Φ

∂y4

= 1
6

(x2z1 − x3z1 − x1z2 + x3z2 + x1z3 − x2z3)

∂Φ

∂y4

= 1
6

(−x2y1 + x3y1 + x1y2 − x3y2 − x1y3 + x2y3)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12)
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In an implicit first-order constraint enforcement scheme, the relation between Lagrange multiplier
and constraint force is written as follows:

Mq̈ + ΦT
q λ = FA (13)

where M is a 3n × 3n diagonal mass matrix, FA is the accumulation of gravity force and constraint
forces affecting the node, λ is the Lagrange multiplier vector with m size, and Φq is the Jacobian matrix
size of m × 3n, which is made by partial differentiation of q.

The implicit constraint enforcement scheme has to solve the problem Φ (q, t) = 0. The kinematic
relationship between q and q̇, as well as the equation of motion, can be defined by the following
equation:

q̇ (t + Δt) = q̇ (t) − ΔtM−1ΦT
q λ + ΔtM−1FA (q, t) (14)

q (t + Δt) = q (t) + Δtq̇ (t + Δt) (15)

The constraint function of the next time is treated implicitly and can be written as Φ(q (t + �t) , t+
Δt) = 0. We then approximate the solution by using a truncated first-order Taylor series as follows:

Φ (q (t) , t) + Φq (q (t) , t) (q (t + �t) − q (t)) + Φt (q (t) , t)�t = 0 (16)

We can eliminate the implicit generalized coordinates q (t + �t), Eq. (17) is obtained:

Φq (q, t) M−1ΦT
q λ = 1

�t2
Φ (q, t) + 1

�t
Φt (q, t) + Φq (q, t)

(
1
�t

q̇ (t) + M−1FA (q, t)
)

(17)

Eq. (17) is simply the linear equation and can be expressed by Aλ = B, where A is the system
matrix, B is the right-hand side vector.

In previous work, we applied implicit constraint enforcement for real-time cloth simulation. The
parallel method of conjugate gradient solver was used to solve the Eq. (17). However, the performance
is poor compared to the conventional mass-spring system since the operation of the sparse matrix
becomes a bottleneck [28]. A similar approach has been applied to solve the PBD constraint, where
the non-linear Gauss-Seidel solver is used to solve each constraint equation separately, since each
constraint has a single scalar value to satisfy the constraints. Each constraint is linearized individually,
the solver is more stable than a global approach where the linearization is kept constant throughout
the global solution.

Therefore, we linearized the constraint equation and solved it individually to find each Lagrange
multiplier. Then, Eq. (17) seizes from being a linear solving algorithm as the system matrix and right-
hand side are scalar values. For distance constraint, we still required two compute shaders for calcu-
lating the constraint force and finding the new velocity and position. Tab. 4 shows the algorithm for
calculating constraint force using distance constraint. Identically, the implicit constraint enforcement
for volume preservation constraint linearized the tetrahedron volume constraint separately. Tab. 5
demonstrated the algorithm for calculating constraint force using volume constraint.

The compute space (see Section 3.2) for distance constraint solving is the same as spring force
solving using spring-centric. Fig. 6 demonstrates the compute space for volume constraint solving,

where t =
⌈

T
1024

⌉
and T is the total number of volume constraints.
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Table 4: Distance constraint solving algorithm

Input: SSBO position, velocity, force, spring constraint

i = global index of invocation axis x
i1,i2 = indices of nodes in Spring constraint [i]
λ = solve Eq. (17)
atomically add Forces[i1] += −ΦT

qi1
λ

atomically add Forces[i2] += −ΦT
qi2

λ

Table 5: Volume preservation constraint solving algorithm

Input: SSBO position, velocity, force, Tetrahedron constraint

i = global index of invocation axis x
i1,i2, i3 i4 = indices of nodes in Tetrahedron constraint [i]
λ = solve Eq. (17)
atomically add Forces[i1] += −ΦT

q1
λ

atomically add Forces[i2] += −ΦT
q2
λ

atomically add Forces[i3] += −ΦT
q3
λ

atomically add Forces[i2] += −ΦT
q4
λ

Figure 6: Compute space for GPU-based volume constraint solving scheme

4 Results

We implemented our proposed method to evaluate the efficiency of volume preservation. Exper-
iments were conducted for the CPU-based and GPU-based approaches to compare the performance
that measure in frame per second (FPS). Tab. 6 shows the specifications with which our experiment
was conducted on:
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Table 6: Experimental environment

Component Specification

OS Windows 10 Pro 10.0.1.19044 Build 19044
CPU Intel® Core™ i7-7700 3.60 GHz
RAM 32 GB
GPU NVIDIA GeForce GTX 1070, 8 GB V-RAM
IDE Microsoft Visual Studio 2013 Version

12.0.40629.00 Update 5
Libraries OpenGL 4.3, glfw 3.1, glm 0.9.9.8, glew 2.1.0,

TetGen 1.6.0

We used Stanford’s 3D model made by 3D scanning and available on the Stanford repository
[29]. The model data are stored in PLY file format. Therefore, we converted the surface model to the
volumetric model using TetGen. Fig. 7 shows a 3D model representing the deformable object.

Sphere model
• vertices: 482
• triangles: 960
• springs: 2,206
• tetrahedrons: 1,245

Torus model
• vertices: 2,304
• triangles: 4,608
• springs: 12,248
• tetrahedrons: 7,640

Bunny model
• vertices: 2,990
• triangles: 5,976
• springs: 16,701
• tetrahedrons: 10,724

Armadillo model
• vertices: 6,362
• triangles: 12,720
• springs: 35,442
• tetrahedrons: 22,721

Dragon model
• vertices: 22,998
• triangles: 46,485
• springs: 187,259
• tetrahedrons: 163,891

Asian Dragon model
• vertices: 82,814
• triangles: 93,924
• springs: 492,448
• tetrahedrons: 362,672

Figure 7: Volumetric model use in this simulation for performance comparison

To compare the simulation’s performance, the vertical synchronization (VSync) is turned off. The
maximum number of local sizes for our hardware is 1,536. Alternatively, we found the optimal number
to define the local size for general cases of deformable object simulation. The local size of a compute
shader for our proposed approach utilized only 1,024 invocations per workgroup. Fig. 8 shows the
performance comparison between CPU-based implementation and GPU-based based implement
methods.
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Figure 8: Performance comparison of deformable object simulation using CPU-based and GPU-based
approaches

In the naïve method using CPU-based, the mass-spring method is fast and achieves real-time
simulation for all cases compared to other methods. The mass-spring method achieved 32 fps for
the largest model (Asian dragon). However, only the Armadillo model could achieve real-time
performance for distance constraint and volume preservation constraint methods. A deformable
object simulation using our proposed method implemented on GPU achieved real-time performance
for all the cases. Although the usage of atomic operation in GPU processing is commonly less efficient,
the result showed that the mass-spring system that uses spring-centric is faster than the mass-spring
system that uses the node-centric method. This is because the dense connectivity of the springs in the
model leads to unbalancing of the amount of process per compute shader program. Also, our GPU
hardware is more suitable for this kind of problem, making the spring-centric is faster than the node-
centric approach.

As shown in the performance comparison, the mass-spring system is fast but problematic. The
simulation using 82k vertices and 93k triangles model still obtain real-time performance with 154
fps using the mass-spring system, 149 fps for distance constraint, and 150 fps for volume preservation
constraint method. Fig. 9 shows the minimum volume percentage for all experimental models in a free
fall with a simple flat surface as a collider. For the comparison, we used three methods; mass-spring
system, constraint enforcement with distance constraint, and constraint enforcement with volume
preservation constraint under 400 frames of the simulation. To perform the simulation with stable
behavior, we set the timestep to 0.001, and used 10 iterations per frame. The spring stiffness ks and
spring damping kd were set to 5000 and 15, respectively.

For the dragon model, the conventional mass-spring system, the minimum volume preservation
was 0.04% of the total volume. On the other hand, the volume preservation using distance constraint
on mass-spring model obtain a minimum volume of 71.04%. The volume preservation on the mass-
spring model well preserves the dragon model with the minimum loss of 92.54% of total volume. The
minimum percentage of volume preservation of an Asian dragon model using mass-spring, distance
constraint, and volume constraint were 0.01%, 40.2%, and 86.62%, respectively.
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Figure 9: Minimum percentage of volume preservation for the three methods

Fig. 10 shows the average volume percentage for all experimental models using the mass-spring
system, distance constraint, and volume constraint. The average volume percentage was at least 58.6%
for the mass-spring system approach and 77.89% for the distance constraint method. The proposed
volume constraint obtained an average of 95.09% for the largest volumetric model. Therefore, the
average volume percentage of all models during the simulation using the mass-spring system, distance
constraint, and the volume constraint method were 68.21%, 89.64%, and 98.70%, respectively. These
show that the mass-spring system is not well preserved and is poor in terms of shape restoration while
the distance constraint approach obtains better results. Overall, the proposed approach of volume
preservation constraint deliver sophisticated result with significant improvement for the percentage
of the deformable object’s volume. The volume preservation constraint approaches are successfully
applied to improved the stability of mass-spring system for the large and complex model of the
deformable object. Fig. 11 shows the snapshots of the simulation we conducted.
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Figure 10: Average percentage of volume preservation for the three methods
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Figure 11: (a) Snapshots of the simulation using the Stanford armadillo model. (b) Snapshots of the
simulation using the Stanford dragon model

5 Conclusion

We proposed a method to design and implement the simulation of volumetric objects based
on the mass-spring system and constraint enforcement method that applied CPU-based and GPU-
based methods. The mass-spring system required a suitable parameter to achieve stable and effective
behavior. Therefore, a constraint-based method is stable and well preserves the volume of the 3D
objects compared to a mass-spring method. The average volume percentage of all models during the
simulation using the mass-spring system, distance constraint, and the volume constraint method were
68.21%, 89.64%, and 98.70%, respectively. The performance result also proves that the constraint-
based approaches are not as fast as the mass-spring system. However, the distance constraint on the
mass-spring model to preserve the local element (tetrahedron) is more efficient than the conventional
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mass-spring system. Our local volume preservation constraint on the mass-spring model is the
more efficient and well-preserved global volume of a volumetric object compared to the other two
methods. Hence, the volume preservation constraint provides good shape restoration ability for the
incompressible soft-body object. The usage of compute shader, executed in GPU processing, made
our proposed approaches faster than the traditional CPU-based method. Furthermore, the simulation
using 82k vertices and 93k triangles model produced real-time performance with 154 fps using the
mass-spring system, 149 fps for distance constraint, and 150 fps for volume preservation constraint
method.

However, the limitation of our deformable object simulation is that it requires the pre-processing
stage to construct the tetrahedron model using the TetGen library from the given surface model. On the
other hand, the compute shader is not supported with float-type data for an atomic operation, for this
reason, we utilize the NVIDIA extension, which provides the additional extension library for floating-
point operation. Also, our proposed approach might not run in different environments besides the
NVIDIA GPU model, which is an open problem for a multi-GPU-based approach. Another limitation
is that we only defined the one-dimensional workgroup and the number of invocations per workgroup
as 1024. However, the adaptive size for local workgroup remains a question and an important topic
for future research. On the other hand, we did not apply self-collision detection and response while it
is an important part of physically-based simulation.

In future work, we will apply global volume preservation constraints on the deformable object
to speed up the performance, since the volume of the surface model can be simply calculated using
the divergence theorem. We will also focus on the complex biological characteristics of the soft tissue
model. Besides that, we will focus on self-collision detection and the response part without a significant
computational burden. In addition, the human organs model can be represented using our proposed
approach and interact in real-time which is beneficial for virtual surgery using AR/VR devices.
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