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Abstract: In order to accurately segment architectural features in high-
resolution remote sensing images, a semantic segmentation method based on
U-net network multi-task learning is proposed. First, a boundary distance
map was generated based on the remote sensing image of the ground truth
map of the building. The remote sensing image and its truth map were used
as the input in the U-net network, followed by the addition of the building
ground prediction layer at the end of the U-net network. Based on the ResNet
network, a multi-task network with the boundary distance prediction layer
was built. Experiments involving the ISPRS aerial remote sensing image
building and feature annotation data set show that compared with the full
convolutional network combined with the multi-layer perceptron method,
the intersection ratio of VGG16 network, VGG16 + boundary prediction,
ResNet50 and the method in this paper were increased by 5.15%, 6.946%,
6.41% and 7.86%. The accuracy of the networks was increased to 94.71%,
95.39%, 95.30% and 96.10% respectively, which resulted in high-precision
extraction of building features.

Keywords: Multitasking learning; U-net; ResNet; remote sensing image;
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1 Introduction

Remote sensing image analysis is a basic and practical research hotspot in remote sensing
science. The remote sensing image contains a wealth of features, which can be used in urban plan-
ning, agricultural monitoring, ecological services, and geological prospecting. Remote sensing image
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segmentation is one of the main strategies employed in remote sensing image analysis for effective
extraction of semantic information involving various features, which is of great significance to urban
decision makers, agricultural growers, and military personnel in national defense [1]. However, with the
continuous development of remote sensing technology and earth observation methods, the number of
aerial and satellite images has increased sharply [2]. Image resolution has continued to increase along
with the proportion of ultra-high resolution remote sensing images. However, the processing frequency
and difficulty have gradually increased. Initially, remote sensing image segmentation was completed
via visual interpretation by the staff. However, due to the prolonged and expensive features, computer-
assisted automated segmentation methods have become the focus of academic and research attention
[3], such as IsoData [4], K-Means [5], Maximum Likelihood Method [6], Random Forest [7], Support
Vector Machine (SVM) [8–10] and decision tree [11]. However, these methods utilizing spatial and
semantic information have lower accuracy and weaker segmentation capabilities, which prevent ultra-
high resolution image segmentation. In recent years, deep learning image analysis has made great
progress [12–14] in facilitating automated interpretation of high-resolution remote sensing images.

The use of deep learning-related models and methods to extract image features is highly accurate
and image segmentation has become a leading trend in image processing. TONG [15] used pseudo-
labels based on inversion resulting in supervision and fine-tuning of the pre-trained model. The
fine-tuned convolutional neural network combines block-by-block classification and hierarchical
segmentation to facilitate hybrid classification and construction of a large-scale land cover data set,
namely GID (http://captain.whu.edu.cn/GID/). Zhao et al. [16] used a multi-scale convolutional neural
network to extract land cover information from a variety of public data sets. This learning mechanism
can be combined with additional classifiers such as support vector machines and random forests. The
overall accuracy is as high as 91.12%, indicating that the multi-scale convolutional neural network has
strong practicability in object-based image classification. Dang et al. [17] used the AlexNet model
for the classification of forest land, cultivated land, water areas, and houses on 1,875 map spots
obtained from the geographical census. The accuracy of the classification of houses and cultivated
land was 99%. Insufficient training samples for woodland resulted in poor classification accuracies
of 43.59% and 62.73%, respectively. Li et al. [18] used the “CCF Satellite Image AI Classification
and Recognition Competition” dataset to classify vegetation, roads, buildings, waters and other land
types in a selected area of southern China using the U-Net model, with a final training accuracy
of 94%. Shi et al. [19] obtained good results using the transfer learning CNN to classify the land
use scenes of the experimental area map blocks based on satellite imaging. Sun et al. [20] migrated
the VGG11 network trained on the Carvana dataset to the coding structure of the U-Net network
for building extraction. They found that the pre-trained model rapidly converged to its stable value.
In view of the difficulty of fuzzy class and detail loss in semantic segmentation, Badrinarayanan
et al. [21] used Empty convolution to obtain an encoder without down-sampling and restored the
label to full resolution during training or similar to previous studies [22,23] involving features that
combine multiple resolutions. Kemker et al. [24] and Chen et al. [25] improved the decoder structure by
designing symmetric transposed convolutional layers and skip connections using probability models
and filters [26] or fusion of unsupervised segmentation [27]. The results of semantic segmentation
are post-processed. Gul et al. [28] proposed that optimal cooperative spectrum sensing based on
butterfly optimization algorithm. Kwon et al. [29] proposed data traffic reduction with compressed
sensing in an Artificial Intelligence of Things (AIoT) system. Islam et al. [30] reported land cover
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classification and its impact on land surface temperature in Peshawar using remote sensing, Jiang
et al. [31] proposed a crowdsourcing price game model for crowd sensing, Cheng et al. [32] proposed
crowdsensing based on compressed sensing of orthogonal matching pursuit algorithm image recovery.
Zhang et al. [33] reported a robust 3-D medical watermarking based on wavelet transform for data
protection, Sun et al. [34] reported robust reversible audio watermarking scheme for telemedicine
and privacy protection. Although the foregoing research yielded robust results in building feature
extraction, two serious challenges remained to be addressed [14]: 1©The building feature segmentation
method via post-processing steps is too complex and the integration between modules is difficult;

2© The method of extracting different features via multiple different networks and combining these
features is hindered by complex networks, increased need for hardware equipment and a long learning
curve.

In brief, the U-net network based on ResNet can extract clear boundaries and segment accurate
target objects [25]. A deep network based on multi-task learning for training a variety of different
tasks on one network subject obviates the need for building different networks for multiple tasks
[27]. Therefore, this study builds a semantic segmentation network based on ResNet under the U-net
network framework. In order to further improve the accuracy of building feature extraction, a multi-
task learning strategy is used to add a boundary distance prediction layer to the network to extract the
complete building feature boundary for high-precision extraction of building features, while avoiding
waste of computing resources.

2 Model Establishment
2.1 Multitasking Network

The multi-task network proposed here uses multi-task learning, which not only enhances the
segmentation of architectural features during objective loss function, but also introduces the boundary
information to improve the final segmentation outcomes.

The multi-task network not only enhances the segmentation of the semantic information of the
building, but also extracts the boundary information of the building features during the early training
process. Based on the true value map of the building features, it is convenient to extract the edge, shape
and other related geometric information of the boundary of the building. In this paper, the distance
between the pixels of the building feature to the boundary is used as the training data for the network
to generate geometric attributes. The advantages of this training data for the network are as follows.
The boundary distance map can be quickly produced from the existing building ground truth map
via distance transformation. The loss function designed by the boundary distance map (such as mean
square error or negative logarithm) facilitates the calculation and learning of the boundary position
information of each pixel in the image by the network and implicitly capture its geometric properties.

Suppose Q represents the set of pixels at the boundary of the building and C represents the set of
pixels belonging to the building, for each pixel p in the image, the cutoff distance D(p) is:

D (p) = δ min
[

min
∀q∈Q

d (p, q) , R
]

,

δp =
{+1 (p ∈ C)

−1 (p /∈ C)

(1)
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In the equation above, d(p, q) is the Euclidean distance between pixel p and q; R is the truncation
threshold; the symbol δp denotes the weighting of pixel p, indicating whether the pixel was inside or
outside the building.

The continuous distance value is quantized uniformly for training. The boundary distance graph
is encoded as k-dimensional binary vector B (p) using one-HOT, i.e.,

D (P) =
K∑

k=1

rkbk (p) ,
k∑

k=1

bk (p) = 1 (2)

In the Eq. (2) above, rk is the distance of the corresponding k. The binary pixel distance graph
obtained by k represents the boundary distance graph of each pixel in the KTH boundary distance.

At this point, the data for the training multitask network has been generated. Fig. 1 illustrates
the training sample images and the corresponding semantic segmentation and boundary distance
truth values. Among them, pairs of similar images are used to test the robustness of the network and
the effectiveness of ground object segmentation for small-scale buildings. The third graph represents
the distance between the building features and the boundary. The larger the distance, the less the
pixel belongs to the boundary pixel, and the smaller the value the more likely the value is to be the
boundary pixel. Thus, the network trained by the boundary distance truth graph retains the boundary
information of the building features to the maximum.

Figure 1: Visualization of training data

2.2 Multitasking Network Structure

The multi-task network architecture proposed in this paper is constructed based on U-net. U-
net is a network structure with complete symmetry between convolutional encoding and decoding.
It can capture features at different levels and integrates them through feature superposition. Features
of different levels or receptive fields of different sizes show different sensitivities to target objects of
different sizes. However, the U-net network has a simple structure. Although the location of building
objects can be accurately detected when it is used to extract building objects from remote sensing
images, the results often reveal a few round spots with different sizes. Most building objects cannot be
detected and substantial boundary information is lost. Therefore, the multi-task network presented in
this paper uses ResNet as the basic framework to reconstruct U-net network.

The residual block of the network is composed of two 3 × 3 convolutional layers and a shortcut
layer that completes feature dimension matching, The ResNet structure used is shown in Fig. 2:
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Figure 2: Residual block structure

It includes two components: contraction network and expansion network. The contraction
network is similar to the original contraction structure of U-net; however, the output results of each
layer are first activated via batch standardization (BN) and modified linear unit (ReLU) activation
function. The upsampling structure consists of a residual block and a 2 × 2 maximum pooling layer. In
the downsampling process, the image size is reduced 2-fold compared with the original image, and the
extracted features are increased by 2-fold. The expansion network is similar to the original expansion
structure of U-net. The upsampling component is composed of a residual block and a single 2 × 2
upsampling, which is the same as the compression network. The output results of each layer need to
be standardized in batches and activated using the activation function. Finally, a 1 × 1 convolution is
performed to output the corresponding results of the feature mapping.

(1) ReLU function as activation function. It is expressed as follows:

ReLU(x) = max(0, x) =
{

0, x < 0
x, x ≥ 0 (3)

(2) BN layer. From the perspective of the activation function, ReLU resolves the gradient satura-
tion problem to a large extent. However, in order to prevent data from falling into the saturation
zone during the training process, i.e., the phenomenon of gradient dispersion and slow network
convergence, the BN layer is introduced into the model.

The final network structure is shown in Fig. 3 below.

In order to obtain multi-scale features, the convolution decoding component was designed in series
with corresponding modules of the convolution coding structure. Each module in the convolutional
decoding structure includes an input corresponding to convolutional coding and a lower module to
ensure retention of high-frequency information by the convolutional decoding component. At the
end of the network, two convolution layers are added, which are respectively used to predict the
distance Hdist from each pixel in the image to the boundary of building features and the distance
Hseg used to predict the segmentation result of building features, based on the distance prediction
convolution layer. The two convolutional layers are accompanied by the corresponding SoftMax layer
to complete different prediction tasks, so that the multi-task network can fully utilize the semantic
and geometric attributes in the feature mapping of convolution decoding. Therefore, ResNet network
can be used as the feature extractor to address gradient loss caused by the increased number of
convolutional layers and extract effective image features in the convolutional coding component. The
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serial connection in the convolutional decoding structure can learn the features of multiple scales and
different network layers, which can increase the robustness of the network and improve the accuracy
of building segmentation. Finally, a multi-task prediction structure is added to enable extraction of
semantic and geometric attributes of the target object by the network.

Figure 3: Model structure

3 Experiment
3.1 Data Set and Data Set Amplification

In this paper, experiments were carried out on large-scale ISPRS Vaihingen [35] aerial remote
sensing image building object annotation data set. The sample images in this dataset include RGB
images with a spatial resolution of 0.3 m after orthography correction. The size of each image is 5 000
pixels × 5 000 pixels, covering an area of 1 500 × 1 500 m2. The data set annotates only two semantic
classes including architectural and non-architectural features, and the training sets contain complete
annotation truth values.

The goal of data augmentation is to generate new sample instances. In case of fewer training
samples, data augmentation is very useful for improving the robustness of the network. For remote
sensing images, many data augmentation methods are available including color dithering, random
cropping, horizontal/vertical flipping, shifting, rotation/reflection, noise, cutting, and switching fre-
quency bands. Since most remote sensing images are orthophotos, the changes are mainly reflected
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in the direction and scale. However, the images in the data set used in this article exhibit the same
spatial resolution without large-scale changes. Therefore, only three common augmentation methods
are used: horizontal/vertical flipping, rotation, and random cropping. An image block with a size
of 224 pixels × 224 pixels is randomly extracted from the original image and flipped horizontally
and vertically, and rotated at different angles. After data augmentation, the original data set can be
expanded 14-fold. It should be noted that only the original data training set is augmented, and the
validation set is no longer augmented.

3.2 Experimental Results and Analysis

In model training, the batch size was set to 32, while the momentum was set to 0.9, and the learning
rate is 0.001. Training is regularized by weight decay and dropout regularization of two denses (dropout
ratio is set to 0.5). The experiment uses Keras as the developmental framework, and the models are
trained for 40 iterations, with an average of 25 h for each network model. The following figure is a
graphic representation of the function of the loss rate of the training set and the validation set of the
model. In order to verify the performance of the proposed semantic method segmentation, we define
an intersection-union ratio (IoU), suggesting that the predicted result and truth graph are derived from
the intersection of buildings divided by their union.

(A, B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B|−|A ∩ B| (4)

In the formula: A denotes the building predicted by different methods and B is the building in the
truth graph.

In this study, the superiority of the method has been verified by deepening the coding and decoding
layers of the semantic segmentation network, and adding the boundary prediction layer based on
cascaded multi-task learning to build the U-net network. Towards this end, the remote sensing images
of 5 cities were selected and the method was compared with the FCN. Combining the MLP method
(FCN + MLP) [17], the U-net network was based on VGG16 (VGG16) [24]. The experimental results
of THE U-net network based on VGG16 (VGG16 + boundary prediction) and the U-net network
built based on ResNet50 (ResNet50) [25] were compared and analyzed. At the same time, we added
only ordinary remote sensing images and real values of remote sensing images to the model to train the
model, and added ordinary remote sensing images and the real value of boundary distance to conduct
two ablation experiments. The experimental results are presented in Tab. 1.

As shown in Tab. 1, the multi-task network discussed in this paper has the following advantages.
The U-net network built with deeper coding and decoding layers yields better segmentation of building
features. As shown in Tab. 1, the FCN + MLP method uses a simple 4-layer convolutional coding layer
to build FCN, followed by the use of MLP to combine the feature maps of different layers resulting in
the final building feature prediction. Although the MLP combines feature maps from different layers,
due to its shallow coding and decoding layers, it is impossible to fully extract the changing features
of the building, resulting in poor feature extraction. VGG16 and ResNet50 networks were utilized to
verify the importance of the depth of the encoder and the decoding layers in the construction of the
U-net network. The network weights of the coding layer in the newly constructed U-net network were
initialized using the network weights pre-trained by VGG16 and ResNet50 networks on ImageNet
[28]. The network weights of the decoding layer were initialized via Gaussian distribution. Tab. 1
presents the experimental results of U-net networks constructed by different networks: Compared with
FCN + MLP method, the IoU mean values of VGG16 network [24], VGG16 + boundary prediction,
ResNet50 network and the proposed method were improved by 5.15, 6.94, 6.41 and 7. At 86 hundred
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points, Acc average points increased to 94.71%, 95.39%, 95.30% and 96.10%, indicating that it is
difficult to extract the deep abstract features of remote sensing image for building object segmentation
task using the FCN + MLP method. Compared with VGG16 network, the mean values of IoU and
Acc in ResNet50 network increased by 1.26% and 0.59%, respectively.

Table 1: Experimental results of different models

Model Accuracy IOU Accuracy of
training with
unbounded
distance to
ground truth

Accuracy of
ground-truth
images without
remote sensing

FCN+MLP 94.42 64.47 87.34 86.23
VGG-16 94.71 69.82 88.23 89.36
VGG-16+boundary
prediction

95.93 71.61 90.56 92.65

ResNet50 95.30 71.08 90.34 93.34
Our model 96.10 72.52 93.23 90.17

In order to verify the advantages of the multi-task network with boundary distance prediction
proposed in this paper, we added the boundary distance prediction layer to the U-net network based
on VGG16 and ResNet50. Thus, the boundary distance prediction layer Hseg was not only used to
segment the result prediction layer, but also the distance prediction layer Hdist was added. A large
number of experiments reported the highest segmentation accuracy of remote sensing image building
features using the proposed method to create the boundary distance map and generate training data,
when truncation distance R = 20 in Formula (1) and interval number K = 10 in Formula (2). As shown
in Tab. 1, the mean values of IoU and Acc of VGG16 + boundary prediction method are 1.79% and
0.62% higher than those of VGG16 segmentation, respectively. The mean values of IoU and Acc in this
method are 72.53% and 96.10%, respectively. The segmentation accuracy of building features in remote
sensing image is the highest. Therefore, the joint boundary layer distance prediction of multitasking
network enhances the classification accuracy, as the boundary layer distance prediction via U-net
network in the training process was combined with the main body of the multitasking network
layer (layer encoding and decoding) to construct geometric features and predict segmentation layer-
restricted construction features of the boundary information. Thus, a higher precision of semantic
segmentation can be obtained.

In order to further verify the effectiveness of the method in this paper, the segmentation results of
different remote sensing image building features are presented in Tab. 2.

As can be seen from Tab. 2, among the results of building features extracted from five remote
sensing images by different methods, only the segmentation of FCN + MLP square show an obvious
“circular spot”, while the results obtained via other methods are very close to the truth value. As shown
in Tab. 2, compared with FCN + MLP method, IoU and Acc values of the other four methods are
greatly improved, resulting in enormous differences in the results of segmentation. In addition, the
size of the 5 images listed in Tab. 2 is 500 pixels × 500 pixels, which is only 1/10,000 of the remote
sensing image of one scene, suggesting poor visual effects. However, after careful observation of the
segmentation results of images 1 and 2, the method presented in this paper can be used to segment
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small-scale building features more accurately than the other four methods. As shown in figure 4 in
Tab. 2, due to the small spacing between the building objects, it is easy to merge different degrees
resulting in the appearance of rough edges during segmentation, while the phenomenon of rough edges
in the segmentation results of ResNet50 is reduced. As shown in the figure, the segmentation results
of the VGG16 + boundary prediction method and the proposed method are closer to the truth value,
with accurate and distinct boundaries.

Table 2: Segmentation results of different remote sensing image buildings

Image 
number

Remote 
sensing 
image

FCN+MLP VGG16 VGG16+
boundary 
prediction

ResNet
50

Method 
of this 
article

Truth 
value

True 
value of 
boundary 
distance

1

2

3

4

5 

Nonetheless, the VGG16 + boundary prediction method and the method in this paper are very
close to the true value of the boundary distance. The complete boundary of the building ground can
be identified from the five sets of images. Therefore, the features of remote sensing images extracted
using the multi-task network with the boundary prediction layer are better than the single-task network
under the same framework. In addition, the multi-task network with the boundary prediction layer
facilitates the extraction of the boundary of the building features using the U-net network, resulting in
additional geometric information associated with the building features for the prediction layer of the
segmentation result. The method described in this paper is significantly better than the method used
for VGG16 + boundary prediction, which demonstrates that the U-net network with deeper coding
and decoding layers is more effective in extracting the details of remote sensing image building features.
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4 Conclusion

In order to achieve high-precision segmentation of building features in remote sensing images,
this study proposes a multi-task learning U-net network based on ResNet50. The network mainly
improves the semantic segmentation of architectural features in remote sensing images using a deeper
ResNet network to build a U-net network, and a cascaded multi-task learning protocol to combine
the constructed U-net network with the geometric boundary information of the building features
providing input to FCN for effective semantic segmentation. The experimental results show that the
method can increase the mean IoU of the semantic segmentation of remote sensing image features to
72.53%. The average value of Acc increased to 96.10%, which is partially accurate and timely for the
actual remote sensing image segmentation of building features. In practice, the segmentation accuracy
of remote sensing image building features in Xinxiang High-tech Zone reached 86.93%. However, the
depth of the network reported in this paper is still limited, and its boundary distance uses simple
Euclidean distance. Therefore, we plan to use ResNet101 and ResNet200 networks to continue to
deepen the coding and decoding layers of the U-net network, and use Markov distance to generate
boundary distance prediction maps to improve the semantic segmentation accuracy of remote sensing
images.
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