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Abstract: Student mobility or academic mobility involves students moving
between institutions during their post-secondary education, and one of the
challenging tasks in this process is to assess the transfer credits to be offered
to the incoming student. In general, this process involves domain experts
comparing the learning outcomes of the courses, to decide on offering transfer
credits to the incoming students. This manual implementation is not only
labor-intensive but also influenced by undue bias and administrative com-
plexity. The proposed research article focuses on identifying a model that
exploits the advancements in the field of Natural Language Processing (NLP)
to effectively automate this process. Given the unique structure, domain
specificity, and complexity of learning outcomes (LOs), a need for designing
a tailor-made model arises. The proposed model uses a clustering-inspired
methodology based on knowledge-based semantic similarity measures to
assess the taxonomic similarity of LOs and a transformer-based semantic
similarity model to assess the semantic similarity of the LOs. The similarity
between LOs is further aggregated to form course to course similarity. Due to
the lack of quality benchmark datasets, a new benchmark dataset containing
seven course-to-course similarity measures is proposed. Understanding the
inherent need for flexibility in the decision-making process the aggregation
part of the model offers tunable parameters to accommodate different levels
of leniency. While providing an efficient model to assess the similarity between
courses with existing resources, this research work also steers future research
attempts to apply NLP in the field of articulation in an ideal direction by
highlighting the persisting research gaps.

Keywords: Articulation agreements; higher education; natural language pro-
cessing; semantic similarity

1 Introduction

With the significant growth in the enrollment of students in post-secondary institutions and the
growing trend of interest in diversifying one’s scope of education, there is an increasing demand among
the academic community to standardize the process of student mobility. Student mobility is defined
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as “any academic mobility which takes place within a student’s program of study in post-secondary
education [1].” Student mobility could be both international and domestic. While there are various
barriers to student mobility, offering transfer credits for students moving from one post-secondary
institution to another is considered one of the most critical and labor-intensive tasks [2]. Various
rules and regulations are proposed and adopted by institutions across different levels (provincial,
national, or international) to assess transfer credits, but most of these methods are time-consuming,
subjective, and influenced by undue human bias. The key parameter used in assessing the similarity
between programs or courses across institutions is learning outcome (LO), which provides context
on the competencies; achieved by students on completion of a respective course or program. To
standardize this assessment, LOs are categorized into various levels based on Bloom’s taxonomy.
Bloom’s taxonomy proposed by Bloom et al. [3] attempts to classify the learning outcomes into six
different categories based on their “complexity and specificity”, namely knowledge, comprehension,
application, analysis, synthesis, and evaluation.

Semantic similarity, being one of the most researched Natural language processing (NLP) tasks,
has seen significant breakthroughs in recent years with the introduction of transformer-based language
models. These language models employ attention mechanisms to capture the semantic and contextual
meaning of text data and represent them as real-valued vectors, that are aligned in an embedding space
such that the angle between these vectors provides the similarity between the text in consideration. In
an attempt to reduce the inherent complexity and bias, and exploit the advancements in the field of
NLP, we propose a model that determines the similarity between courses; based on the semantic and
taxonomic similarity of their learning outcomes. The proposed model

e ascertains taxonomic similarity of LOs based on Bloom’s taxonomy.
e Determines the semantic similarity of LOs using RoBERTa language model.
e provides a flexible aggregation method to determine the overall similarity between courses.

Section 2 discusses the background of the student mobility process and semantic similarity
techniques. Section 3 describes in detail the various components of the proposed methodology
followed by the discussion of results in Section 4. In Section 5, challenges in automating the process
of assessing transfer credit are outlined and the article concludes with the future scope of research in
Section 6.

2 Background

This section provides a brief overview of the student mobility process across the world and the
structural organization of learning outcomes. Various semantic similarity methods developed over
the years are discussed in the final sub-section thus providing an insight into the necessary concepts to
understand the importance of the research and the choices made to develop the proposed methodology.

2.1 Student Mobility

The movement of students across institutions for higher education has been in existence for
decades in the form of international student exchange programs, lateral transfers, and so on. Gov-
ernments across the world follow different measures to standardize the process to ensure transparency
and equity for students. According to the Organization for Economic Co-operation and Development
(OCED) indicators', there are approximately 5.3 million internationally mobile students. Mobile
students include both international students who cross borders to pursue education and foreign

Thttps://www.oecd-ilibrary.org/content/component/17d19¢d9-en
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students who are from a different nationality than the country of the host institution. Mobile students
face a wide range of barriers both academic and non-academic. Academic barriers include the lack of
necessary qualifications and non-transferability of credits, while non-academic barriers may include
social, cultural, financial, and psychological barriers. Governments across the world have taken
various measures to reduce these barriers to enable a smooth transition for students. The Bologna
process formed as a result of the Bologna declaration of 1999, provides guidance for the European
Higher Education Area comprising 48 countries in the standardization of higher education and
credit evaluation. In the United Kingdom, institutions like Southern England Consortium for Credit
Accumulation and Transfer (SEEC) and Northern Universities Consortium for Credit Accumulation
and Transfer (NUCCAT) oversee the collaboration between universities to allocate academic credits
which are treated as currency awarded to students on completion of requirements. Canada offers
provincial supervision of articulation agreements between institutions, with the provinces of British
Columbia and Alberta leading and the provinces of Ontario and Saskatchewan following yet way
behind. The Ontario Council on Articulation and Transfer (ONCAT) carries out funded research to
explore venues to increase the agreements between universities and colleges in Ontario. The credit
transfer system in the United States is decentralized and often carried out by non-profit organizations
designated for this specific purpose. In Australia, the eight most prominent universities established
the Go8 credit transfer agreement to offer credit to students who move between these institutions.
While there are various such governances on a national level, most international credit evaluations are
carried out in a need-based manner. In addition to being an academic barrier, credit evaluation also
has a direct impact on one of the most important non-academic barriers-the financial barrier. Hence,
all agencies offer special attention to make this process fair and accessible to the population of mobile
students worldwide.

2.2 Learning Outcomes

Credit evaluation is carried out by domain experts in the receiving institution by analyzing the
learning outcomes of the courses the students have completed in their previous institution. Learning
outcomes are often statements with two distinct components namely the action words and the
descriptor. The descriptor part provides the knowledge the students have learned in each course or
program and the action words provide the level of competency achieved for each specific knowledge
item. An example of learning outcomes for a computer programming course is provided in Fig. 1. The
taxonomy for educational objectives was developed by Bloom et al. [3] and later revised by Anderson
et al. [4]. The six levels of the original taxonomy are knowledge, comprehension, application, analysis,
synthesis, and evaluation. In the revised version, two of these levels were interchanged and three levels
were renamed to provide better context to the level of the acquired knowledge. Hence the levels of
the revised taxonomy are “Remember, Understand, Apply, Analyze, Evaluate, and Create.” Each level
encompasses sub-levels of more concrete knowledge items, and these are provided in Fig. 2. In order
to estimate the similarity between learning outcomes, it is important to understand their structure and
organization.
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Figure 1: Learning outcome
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Figure 2: Bloom’s taxonomy and corresponding illustrative verbs

2.3 Semantic Similarity

The semantic textual similarity (STS) is defined as the similarity in the meaning of text data in
consideration. Various semantic similarity methods proposed over the past two decades can be broadly
classified as knowledge-based and corpus-based methods [5,6]. Knowledge-based methods rely on
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ontologies like WordNet’, DBPedia’, BabelNet', etc. The ontologies are conceptualized as graphs
where the words represent the nodes grouped hierarchically, and the edges represent the semantic
relationship between the words. Rada et al. [7], followed a straightforward approach and introduced
the path measure in which the semantic similarity is inversely proportional to the number of edges
between the two words. However, this method ignored the taxonomical information offered by the
underlying ontologies. Wu et al. [8] proposed the wup measure that measured the semantic similarity
in terms of the least common subsumer (LCS). Given two words, LCS is defined as the common parent
they share in the taxonomy. Leacock et al. [9] proposed the /ch measure by extending the path measure
to incorporate the depth of the taxonomy to calculate semantic similarity in Tab. 1. Other knowledge-
based approaches include feature-based semantic similarity methods, that calculate similarity using
the features of the words like their dictionary definition, grammatical position, etc., and information
content-based methods that measure semantic similarity using the level of information conveyed by
the words when appearing in a context.

Table 1: Formula of the semantic similarity distance measures taken into consideration for determining
verb similarity

S. no. Semantic similarity measure Formula
1
1 SiMuy, (8,
pan (11> 12) 1 + min_len (t,,1,)
2depth (1,
2 Simwu}) (tla tZ) p ( ]A)

depth (1)) + depth (t,)

minlength (1,, lz))
2 x maxdepth

3 Simye, (1, 1) —log (

Corpus-based semantic similarity methods construct numerical representations of data called
embeddings using large text corpora. Traditional methods like Bag of Words (BoW), Term Frequency-
Inverse Document Frequency (TF-IDF) used one-hot encoding techniques or word counts to generate
embeddings. These methods ignored the polysemy of text data and suffered due to data sparsity.
Mikolov et al. [10] used a simple neural network with one hidden layer to generate word-embeddings
when used in simple mathematical formulations, produced results that were closely related to human
understanding. Pennington et al. [11] used word co-occurrence matrices and dimension reduction
techniques like PCA to generate embeddings. The introduction of transformer-based language models,
which produced state-of-the-art results in a wide range of NLP tasks, resulted in a breakthrough in
semantic similarity analysis as well. Vaswani et al. [12] proposed the transformer architecture, which
used stacks of encoders and decoders with multiple attention heads for machine translation tasks.
Devlin et al. [13] used this architecture to introduce the first transformer-based language model,
the Bidirectional Encoder Representations from Transformers (BERT) that generated contextualized
word embeddings. BERT models were pre-trained on large text corpora and further fine-tuned to a
specific task. Various versions of BERT were subsequently released namely, ROBERTa [14]-trained
on a larger corpus over longer periods of time, ALBERT [15]-a lite version achieved using parameter
reduction techniques, BioBERT [16]-trained on a corpus of biomedical text, SCIBERT [17]-trained on

2https://wordnet.princeton.edu/
3https://www.dbpedia.org/

4https://babelnet.org/
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a corpus of scientific articles, and TweetBERT [1&]-trained on a corpus of tweets. Other transformer-
based language models like TS5 [19] GPT [20], GPT-2 [21], GPT-3 [22], etc., use the same transformer
architecture with significantly larger corpora and an increased number of parameters. Though these
models achieve state-of-the-art results the computational requirements render them challenging to
implement in real-time tasks [23]. Some of the other drawbacks of these transformer-based models
include the lack interpretability and the amplification of societal bias that exists in the training data
[24-26].

3 Methodology
This section describes in detail the three modules of the proposed methodology namely,

e Pass 1: Taxonomic similarity
e Pass 2: Semantic similarity
e Pass 3: Aggregation

Given the learning outcomes of the courses in comparison, Pass 1 generates a taxonomic_similarity_
grid, and Pass 2 generates a semantic_similarity_grid where the rows and columns are populated with
the learning outcomes, and the cells are populated with the taxonomic similarity value and the semantic
similarity value. These two grids are further passed on to Pass 3 where the final similarity between
learning outcomes is assessed factoring in both the similarity values and further aggregated to arrive
at the course level similarity. The architecture of the proposed model is presented in Fig. 3
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Figure 3: Proposed model architecture
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3.1 Pass 1: Taxonomic Similarity

A clustering-inspired methodology is proposed to determine the taxonomic similarity between
learning outcomes. Six different clusters, one for each level in Bloom’s taxonomy are initialized with a
list of illustrative verbs that best describe the cognitive competency achieved, specifically in the field of
engineering [27], as shown in Fig. 2. In this pass, the verbs in the learning outcomes are identified using
spaCy pos tagger’ and WordNet synsets [28], and then these verbs are used to determine the cluster to
which the learning outcomes are most aligned with. While encountering verbs already available in the
list, a straightforward approach is followed, and the learning outcomes are assigned to the respective
cluster. However, for learning outcomes with new verbs, an optimal cluster is determined based on
the semantic similarity between the new verb and the verbs in the existing clusters. The best measure
to calculate this similarity is determined as a result of the comparative analysis carried out between
various knowledge-based and corpus-based semantic similarity measures.

Algorithm 1: Best semantic similarity measure for verbs.

Input: D, [v,,v,,s] = SimVerb3500 dataset containing verb pairs (v,, v,) and associated semantic
similarity benchmark values s

wy= pretrained word2vec word embedding model

gl = pretrained Glo Ve word embedding model

wn = WordNet lexical knowledge base

Output: best_measure = the semantic similarity measure that achieves the best correlation to the
benchmark values.

I: S« 0

2: procedure VERB_SIMILARITY

3 for each (v, v,, s) € D,,., do

4 S+ =

5. wl < wv.embedding (v,)

6: w2 < wv.embedding (v,)

7: gl < glembedding (v,)

8 g2 < glembedding (v,)

9 synsetsl [syn,; ...syn; ] < wn.get_synsets(v,, POS :verb) > List of synsets
10: synsets2[syn,; . ..syny | < wn.get_synsets(v,, POS :verb) > List of synsets
11: for each syn,; € synsetsl do

12: for each syn, € synsets2 do

13: wup_sim_list[syn,; ] [syny | < cal_wup(syn,, syn,) >wup_similarity
14: path_sim_list[syn,; ] [syn, | < cal_path(syn,, syn,) >path_similarity
15: lch_sim_list[syn,; ] [syny | < cal_lch(syn,, syn,) > [ch_similarity
16: end for

17: end for

18: wup_sim < max(wup_sim_list[n])

19: path_sim < max(path_sim_list[n])

20: leh_sim < max(Ich_sim_list[n])

21: word2vec_sim < wv.similarity (wl, w2)

22: glove_sim < gl.similarity(gl, g2)

23: end for

(Continued)

Shttps://spacy.io/usage/v3
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Algorithm 1: Continued

24: measure_list+ = wup_sim, path_sim, Ich_sim, word2vec_sim, glove_sim
25: for each m € measure_list do

26: cor < get_pearson_correlation(S, m)

27: end for

28: best_measure <— max( cor)

29: return best_measure

30: end procedure

Three knowledge-based measures namely wup, Ich, and path are measured using WordNet
ontology. In this ontology, there are more than one synsets for verbs hence it is necessary to identify the
best synset. Given a verb pair, wup, Ich, and path select the first synset of the verbs, whereas wup_max,
lch_max, and path_max identifies the synset that has the maximum similarity with the verb pairs.
Gerz et al. [29] proposed SimVerb-3500 a benchmark dataset consisting of verb pairs with associated
similarity values provided by annotators using crowd-sourcing techniques. The performance of six
knowledge-based semantic similarity measures and word embeddings models (word2vec and GloVe)
on the SimVerb-3500 is compared and the results are depicted in Fig. 4. This pseudocode is provided

in Algorithm 1
”J | ] I I I I I

wup_max path_max Ich_max word2vec GloVe

Pearson Correlation

Semantic Similarity Models

Figure 4: Pearson’s correlation of various semantic similarity measures on Simverb3500 dataset. wup
[8], path [7], lch [9], word2vec [10], GloVe [11]

The best results are achieved by wup_max measure, hence used in the clustering process. Silhouette
width is defined as “the measure of how much more similar a data point is to the points in its own
cluster than to points in a neighboring cluster [30].” The silhouette width of a verb V; is measured as,

b= (1)

max (a;, b;)
where, g, is the average distance between the verb and the verbs in its own cluster and b, is the average
distance between the verb and the verbs in its neighboring cluster. The following equations formulate
the calculation of these distance measures.

2yjec(p 4 (V)
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V; represent the verbs in the same cluster C and V), represent the verbs in the neighboring cluster
C,.ie» the function d (Vl-, V,) and d (V,, V,) calculates the distance between the verbs in this case the
wup_measure.

The value of S ranges from —1 to 1 where values closer to 1 indicate that the data point is assigned
to the correct cluster. Based on this principle, when the model identifies a new_verb in a learning
outcome, the silhouette width for each cluster is determined and the learning outcome is assigned
to the cluster with maximum silhouette width. For learning outcomes with more than one verb, the
verb assigned to the highest taxonomic level determines the final cluster value of the learning outcome
in question. Since each cluster represents a corresponding level of competency in Bloom’s taxonomy,
the final taxonomic similarity between the learning outcomes is measured as,

taxonomic_similarity (lol, lo2) = abs (C,,; — C,,) 4)
where C,, and C,,, represent the cluster ids of the learning outcomes in comparison calculated as,
C/oi = max (C (Vl) ’ C (VZ) L C (V,,)) (5)

where n is the number of verbs in the learning outcome loi and C (v,) represents the respective
cluster of the verb v,. For two courses having m and n number of learning outcomes, a m x n
dimensional taxonomic_similarity_grid is constructed and populated with the respective taxonomic
similarity values. The pseudocode of Pass 1 is provided in Algorithm 2.

Algorithm 2: Pass_1: Taxonomic Similarity

Input: Slo_list = List of m learning outcomes from the sending institution

Rlo_list = List of n learning outcomes from the receiving institution.

Cluster_list = {C1, C2, C3, C4, C5, C6} List of six clusters initialized with illustrative verbs, such that
Cl ={vl,v2...vn}is a list of n verbs

Output: taxonomic_similarity_grid = A m x n grid containing taxonomic similarity values between
sending and receiving learning outcomes.

1: procedure BUILD_TAXONOMIC_SIMILARITY_GRID

2. for each (slo) € Slo_list do

3 slo_verbs < detect_verbs(slo) > Find the verbs in the learning outcomes
4 for each sv € slo do

5 if sv € Cluster_list then

6: B(sv) < get_index(Ci) > [f'the verb is among the predefined verbs
7.

8

9

assign the corresponding cluster id.

else

; B(sv) < get_BestCluster(sv) > Assign the cluster id of the best cluster
10: based on the silhouette width
11: end if
12: end for
13: B(slo) < max(B(svl), ...B(svn))
14:  end for
15: > Repeat for learning outcomes from receiving institution

(Continued)
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Algorithm 2: Continued
16:  for each (rlo) € Rlo_list do

17: rlo_verbs < detect_verbs(rlo)

18: for each rv € rlo do

19: if v € Cluster_list then

20: B(rv) < get_index(Ci)

21: else

22: B(rv) < get_BestCluster(rv)
23: end if

24:  end for

25:  B(rlo) < max(B(rvl), ...B(rvn)
26:  end for

27: > Calculate taxonomic similarity

28:  for each (slo) € Slo_list do
29: for each (rlo) € Rlo_list do

30: taxonomic_similarity_grid[slo][rlo] < abs(B(rlo)—B(slo))
31: end for
32:  end for

33:  return taxonomic_similarity_grid
34. end procedure

3.2 Pass 2: Semantic Similarity

Recent transformer-based language models generate contextual word embeddings that are fine-
tuned for a specific NLP task, and various researchers have attempted to generate sentence embeddings
by averaging the output from the final layer of the language models [31]. However, Reimers et al. [32]
established that these techniques yielded poor results in regression and clustering tasks like semantic
similarity and proposed the Sentence BERT (SBERT) model to address this issue. SBERT is a modified
version of BERT-based language models where a Siamese network and triple network structures are
added to the final layer of the BERT network to generate sentence embeddings that capture the
semantic properties and thus can be compared using cosine similarity. They further compared the
performance of both SBERT and SRoBERTa language models in the STS [33] and SICK [34] bench-
mark datasets. Owing to the fact that the model is specifically designed for semantic similarity tasks,
the computational efficiency of the model architecture, and the significant performance achieved,
SRoBERTza is used in this pass to measure the semantic similarity of the LOs. SROBERTa uses the base
RoBERTa-large model with 24 transformer blocks, 1024 hidden layers, 16 attention heads, and 340 M
trainable parameters with a final mean pooling layer. The model is trained on the AIINLI dataset which
contains 1 million sentence pairs categorized into three classes namely ‘contradiction, entailment, and
neutral’, and the training data of the STS benchmark dataset. The semantic similarity between the
learning outcomes is determined by the cosine value between the embeddings as,

lol - l02
semantic_similarity (lol, l02) = o (6)

V2L o1y 102
The semantic_similarity_grid with the dimension of m x n is formed and the semantic_similarity
values are added to the cells. The output from the two initial passes is fed to the final pass for
aggregation. The pseudocode for Pass 2 is provided in Algorithm 3.
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Algorithm 3: Pass_2: Semantic Similarity

Input: Slo_list = List of m learning outcomes from the sending institution.

Rlo_list = List of n learning outcomes from the receiving institution.

model = Pretrained and fine-tuned SRoBERTa transformer-based semantic similarity model

Output: semantic_similarity_grid = A m x n grid containing semantic similarity values between
sending and receiving learning outcomes

1: procedure BUILD_SEMANTIC_SIMILARITY_GRID

2. for each slo, rlo € Slo_listRlo_list do

ﬁ
3 slo<— model. sentence_vectors (slo) > (et vector representation of learning outcomes
9
4 rlo < model sentence_vectors(rlo)
- —
5: semantic_similarity_grid[slo][rlo] < cos(slo,rlo) > Calculate semantic similarity
6:  end for
7. return semantic_similarity_grid
8. end procedure

3.3 Pass 3: Aggregation

The focus of the final pass is to provide flexibility in the aggregation process to enable the decision-
making authorities to accommodate the variations in the administrative process across different
institutions. Three important tunable parameters are provided to adjust the level of leniency offered
by the decision-making authority in providing credits namely, impact, sim_threshold, and lo_threshold
Given the taxonomic similarity grid and the semantic similarity grid from Pass 1 and Pass 2 the impact
parameter determines the percentage of contribution of both the similarities to the overall similarity.
The sim_threshold defines the value above which two learning outcomes are considered to be similar,
and finally, the lo_threshold determines the number of learning outcomes that need to be similar in
order to consider the courses in comparison to being similar. The higher the value of these three
parameters the lesser the leniency in the decision-making process.

The final_similarity_grid is built by aggregating the values from the previous modules, in the ratio
determined by the impact parameter as shown in Fig. 3. The LOs along the rows of the grid belong
to the receiving institution’s course hence traversing along the rows, the maximum value in the cells is
checked against the sim_threshold value to determine if the LO in the row is similar to any LO in the
columns. The course level similarity is derived by checking if the number of learning outcomes having
a similar counterpart meets the lo_threshold. The pseudocode for Pass 3 in Algorithm 4.

Algorithm 4: Pass_3: Aggregation
Input: SSG = semantic_similarity_grid, a m x n grid containing semantic similarity values between
sending and receiving
learning outcomes
TSG = taxonomic_similarity_grid, a m x n grid containing taxonomic similarity values between
sending and receiving
learning outcomes
o = parameter which determines the ratio of two similarity value in the overall similarity
B = value above which two learning outcomes are considered similar
y = number of learning outcomes with similar counterparts

(Continued)
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Algorithm 4: Continued

Output: 7C = Final Credit Decision
1: procedure COURSE _LEVEL _SIMILARITY

2 for each row, col € SSG do

3 for each row, col € TSG do

4 final_sim < (a x SSG[row, col]+ (1—a) x T SG[row, col])
5. if f'inal_sim >= f then

6: final_similarity_grid [row, column] < TRUE
7: else

8 final_similarity_grid [row, column] <— FALSE
9. end if

10: end for

11: end for

12: for each row € final_similarity_grid do

13: if Count(TRUE) >= y then

14 TC = Yes

15: else

16: TC = No

17: end if

18: end for

19: return 7C
20: end procedure

4 Dataset and Results
4.1 Benchmark Dataset

One of the major challenges in the given field of research is the absence of benchmark datasets
to compare the performance of the proposed system. Although there are existing pathways developed
manually, previous research show that most of them are influenced by bias (based on the reputation of
institutions, year of study, and so on) and administrative accommodations [35]. To create a benchmark
dataset devoid of bias, a survey was conducted among domain experts to analyze and annotate
the similarity between courses from two different institutions. A survey with learning outcomes
of 7 pairs of courses (sending and receiving) from the computer science domain was distributed
among instructors from the department of computer science at a comprehensive research university
in Canada. In order to avoid bias, the names of both the institutions were anonymized and explicit
instructions were provided to the annotators to assume a neutral position. Although the survey was
circulated among 14 professors only 5 responses were received. This lack of responses is mainly
attributed to the fact that most faculties are not involved in the transfer pathway development process,
and it is carried out widely as an administrative task. The survey questionnaire consisted of questions
to mark the similarity between the courses over a scale of 1 to 10 and a binary response (‘yes’ and ‘no’)
for whether or not credit should be offered to the receiving course. The course pairs were annotated
with a final decision value based on the maximum number of ‘yes’ or ‘no’ responses received from
the annotators. The results of the survey are tabulated in Tab. 2 where the responses ‘yes’ and ‘no’ are
color coded in ‘green’ and ‘red’ respectively. One of the interesting inferences from the survey results is
the agreement between the responses in the threshold value of similarity above which the annotators
were willing to offer credit. 4 out of 5 annotators offered credit only if they considered the similarity
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between the courses falls above 7 on the given scale of 1 to 10. It is also interesting to note that in spite
of having no information other than the learning outcomes the annotators differed in their level of
leniency which inspired the need to offer flexibility to control leniency in the proposed methodology.
For example, from Tab. 2 it is evident that while annotator ‘42’ has followed a more lenient approach
and offered credit for 6 out of 7 courses, annotator ‘45’ has adopted a stricter approach by offering
credit for only 1 out of the 7 courses.

Table 2: Survey results for the proposed benchmark dataset

Al A2 A3 Ad A5 Final
annatotion

1 COMP 4121 COMP 4121

2 COMP 5341 COMP 5341 COMP 5341 COMP 5341 COMP 5341 COMP 5341
3 COMP 3321 COMP 3321 COMP 3321 COMP 3321
4 COMP 4321 COMP 4321

5 COMP 3519

6 COMP 5470 COMP 5470 COMP 5470 COMP 5470
7 COMP 5471

4.2 Results and Discussion

The results of the proposed model are provided in Tab. 3. In order to provide context to the
need for the proposed methodology, the results of the model are compared to the results obtained
when only the semantic similarity of the learning outcomes is considered. The proposed model at a
neutral setting achieves 85.74% agreement with the human annotation by annotating 6 out of the 7,
credit decision correctly, while the semantic similarity model achieves only 54.75% agreement. For
the neutral setting of the proposed model, the three parameters in the aggregation pass are set as
follows. The impact parameter is set at 0.30 meaning that the semantic similarity contributes 70% to
the overall similarity and the taxonomic similarity contributes to the remaining 30%. The sim_threshold
is set at 0.65, meaning that the overall similarity should be more than 65% in order for the learning
outcomes to be similar to each other. The lo_threshold is set at 0.5 which considers that at least half
of the available learning outcomes have similar counterparts. In order to demonstrate the options for
flexibility, the proposed model is run by modifying the lo_threshold parameter. As shown in Tab. 4.
for the lenient setting the lo_threshold parameter is set at 0.33 and 0.66 and the model achieves an
agreement of 85% with the most lenient annotator and the strictest annotator, respectively. Similarly,
lowering the impact parameter makes the model more aligned to being strict and vice versa. However, it
is important to understand that increasing the impact of taxonomic similarity to a higher percentage
result in determining the overall similarity based on only two or three action words in the learning
outcomes. Decreasing the sim_threshold will make the model more lenient and increasing it will make
the model stricter. The results of the model at various parameter settings are tabulated in Tabs. 5 and 6
in APPENDIX A. Since the proposed model calculates similarity based on Bloom’s taxonomy and text
data of the learning outcomes, the model can be used across universities and departments. This ensures
that the model is not only flexible in terms of leniency but also accommodate changing scenarios.
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Table 3: Performance comparison of the proposed model with human annotation

S. no. Human Semantic similarity Proposed methodology-neutral
1 COMP 4121 COMP 4121 COMP 4121
2 COMP 5341 COMP 5341 COMP 5341
3 COMP 3321 COMP 3321 COMP 3321
4 COMP 4321 COMP 4321 COMP 4321
5 COMP 3519 COMP 3519 COMP 3519
6 COMP 5470 COMP 5470 COMP 5470
7 COMP 5471 COMP 5471 COMP 5471
Agreement out of 7 4 6

Table 4: Performance of variations of proposed models with specific annotators

S. no. Most lenient Proposed Most strict Proposed
annotator model-lenient annotator model-strict
1 COMP 4121 COMP 4121 COMP 4121 COMP 4121
2 COMP 5341 COMP 5341 COMP 5341 COMP 5341
3 COMP 3321 COMP 3321 COMP 3321 COMP 3321
4 COMP 4321 COMP 4321 COMP 4321 COMP 4321
5 COMP 3519 COMP 3519 COMP 3519 COMP 3519
6 COMP 5470 COMP 5470 COMP 5470 COMP 5470
7 COMP 5471 COMP 5471 COMP 5471 COMP 5471
Agreement out of 7 6 6

5 Challenges and Future Works

One of the important limitations of this research is the fewer number of data points in the
benchmark proposed which is attributed to the limited availability of quality learning outcomes,
limited response from domain expert annotators, and cost. It is pertinent to understand that there
are unique challenges to be addressed in the attempt to automate articulations to overcome these
limitations. Although the existing transformer-based models achieve near-perfect results in benchmark
datasets, a thorough understanding of these datasets brings to light one of their major shortcomings.
Rogers et al. [36] conclude in their survey with a clear statement on the limitations of the benchmark
datasets, “As with any optimization method, if there is a shortcut in the data, we have no reason to
expect BERT to not learn it. But harder datasets that cannot be resolved with shallow heuristics are
unlikely to emerge if their development is not as valued as modeling work.” Chandrasekaran et al.
[37] established the significant drop in performance of these models with the increase in complexity
of sentences. The comparison of the complexity of the learning outcomes in the proposed benchmark
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dataset to the sentences in the STS dataset is shown in Fig. 5, which clearly indicates that learning
outcomes are more complex.

Mean Value comparison of Readability indices

20 18.74

FK CL AR Lw GF Agar_score

[ Learning Outcomes [0] STS dataset [l SICK dataset

Figure 5: Comparison of the readability indices of the learning outcomes used in the proposed dataset
and the existing benchmark datasets (STS and SICK dataset)

Also, the introduction of domain-specific BERT models shows clear indications that though
the transformer models are trained using significantly large corpora with millions of words in their
vocabularies, a domain-specific corpus is required to achieve better results in domain-specific tasks.
Learning outcomes are not only complex sentences but also contain domain-specific terminologies
from various domains. Identifying these research gaps in semantic similarity methods is essential
to contextualize and focus future research on addressing them. In addition to the technological
challenges, it is also important to understand the challenges faced in the field of articulation. One
of the approaches to enhance the performance of existing semantic similarity models is to train
them with a large dataset of learning outcomes with annotated similarity values. However, learning
outcomes are often considered to be intellectual properties of the instructors and are not publicly
available. While almost all universities focus on building quality learning outcomes, most learning
outcomes are either vague or don’t follow the structural requirements of learning outcomes [38].
Even if a significant amount of learning outcomes is collected, annotation of their similarity requires
expertise in subject matter and understanding of the articulation process. This annotation process is
considerably more expensive than the annotation of English sentences as well. For example, one of the
popular crowdsourcing platforms charges $0.04 for annotators with no specification and $0.65 for an
annotator with at least a master’s degree. Furthermore, the selection of annotators with the required
expertise needs manual scrutiny using preliminary questionnaires and surveys which makes the process
time-consuming. Finally, articulation agreements are developed across different departments, and it is
imminent to provide a clear understanding of the model and its limitations to encourage automation
of the process. The proposed model allows transparency and flexibility in the assessment of credit
transfer and future research will focus on addressing these limitations by adding more course-to-course
comparisons to the benchmark, developing domain-specific corpora, tuning the semantic similarity
models with the aid of datasets, and also on ways to improve the generation of learning outcomes
through automation.

6 Conclusion

The assessment of transfer credit in the process of student mobility is considered to be one of the
most crucial and time-consuming tasks, and across the globe, various steps have been taken to mitigate
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this process. With significant research and advancements in the field of natural language processing,
this research article attempts to automate the articulation process by measuring the semantic and
taxonomic similarity between learning outcomes. The proposed model uses a recent transformer-based
language model to measure the semantic similarity and a clustering-inspired methodology is proposed
to measure the taxonomic similarity of the learning outcomes. The model also comprises a flexible
aggregation module to aggregate the similarity between learning outcomes to course-level learning
outcomes. A benchmark dataset is built by conducting a survey among academicians to annotate the
similarity and transfer credit decisions between courses from two different institutions. The results of
the proposed model are compared with those of the benchmark dataset at different settings of leniency.
The article also identifies the technical and domain-specific challenges that should be addressed in the
field of automating articulation.
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Appendix A.

Table 5: Performance of the proposed model on varying sim_threshold parameter

S. no. Human annotation sim_threshold = 60 sim_threshold = 65 sim_threshold = 70
1 COMP 4121 COMP 4121 COMP 4121 COMP 4121
2 COMP 5341 COMP 5341 COMP 5341 COMP 5341
3 COMP 3321 COMP 3321 COMP 3321 COMP 3321
4 COMP 4321 COMP 4321 COMP 4321 COMP 4321
5 COMP 3519 COMP 3519 COMP 3519 COMP 3519
6 COMP 5470 COMP 5470 COMP 5470 COMP 5470
7 COMP 5471 COMP 5471 COMP 5471 COMP 5471
Agreement out of 7 4 6 4

Table 6: Performance of the proposed model on varying impact parameter
S. no. Human annotation impact =20 impact = 30 impact =40
1 COMP 4121 COMP 4121 COMP 4121 COMP 4121
2 COMP 5341 COMP 5341 COMP 5341 COMP 5341
3 COMP 3321 COMP 3321 COMP 3321 COMP 3321
4 COMP 4321 COMP 4321 COMP 4321 COMP 4321
5 COMP 3519 COMP 3519 COMP 3519 COMP 3519
6 COMP 5470 COMP 5470 COMP 5470 COMP 5470
7 COMP 5471 COMP 5471 COMP 5471 COMP 5471

Agreement out of 7 4 6 4
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