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Abstract: This paper presents a study of the segmentation of medical images.
The paper provides a solid introduction to image enhancement along with
image segmentation fundamentals. In the first step, the morphological oper-
ations are employed to ensure image detail protection and noise-immunity.
The objective of using morphological operations is to remove the defects in
the texture of the image. Secondly, the Fuzzy C-Means (FCM) clustering
algorithm is used to modify membership function based only on the spatial
neighbors instead of the distance between pixels within local spatial neighbors
and cluster centers. The proposed technique is very simple to implement and
significantly fast since it is not necessary to compute the distance between
the neighboring pixels and the cluster centers. It is also efficient when dealing
with noisy images because of its ability to efficiently improve the membership
partition matrix. Simulation results are performed on different medical image
modalities. Ultrasonic (Us), X-ray (Mammogram), Computed Tomography
(CT), Positron Emission Tomography (PET), and Magnetic Resonance (MR)
images are the main medical image modalities used in this work. The obtained
results illustrate that the proposed technique can achieve good results with a
short time and efficient image segmentation. Simulation results on different
image modalities show that the proposed technique can achieve segmentation
accuracies of 98.83%, 99.71%, 99.83%, 99.85%, and 99.74% for Us, Mammo-
gram, CT, PET, and MRI images, respectively.
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1 Introduction

Image modalities differ as they reflect the internal anatomy of the different body organs.
Morphology refers to the description of the shape and structure of the object in a specific image.
It depends on the set theory and relies more on the relative arrangement of pixels instead of on their
numerical values. The important parameters for structuring elements are shape, size, and origin. The
structuring element shape depends on the arrangement of ones and zeros in the matrix. The structuring
element acts as a window over which the interaction takes place. It also helps to characterize the image
objects or features. The mechanism of structuring element operation is similar to that of masks used
in spatial filtering. A structuring element is moved over the whole image [1].

Image segmentation [2–4] is the process of splitting an image into several non-overlapping
segments (sets of pixels, also known as image objects). The success of the image analysis process
depends on the accuracy of the segmentation process, but a successful segmentation of an image is
generally a difficult problem. The input is an image during an image pre-processing operation, and the
output is an enhanced high-quality image. Image segmentation is also an important tool in various
medical imaging applications. It simplifies delineating boundaries or edges of structures, organs, or
other regions of interest. Several techniques have been proposed for image segmentation. The active
contour is the most well-known technique because of its efficiency and speediness. This paper will
focus on medical image segmentation based on morphological operations, FCM, and active contour
models.

Tab. 1 summarizes some of the related work [5–17] in medical image segmentation and the metrics
of segmentation evaluation. This paper aims to develop a segmentation approach for different medical
image modalities. In particular, the main target is the segmentation of the tumor region of interest
(ROI). The proposed segmentation approach uses FCM combined with morphological operations and
the active contour model to delineate the tumor region in the medical image and classify it as benign
or malignant in future work. The motivation of this work is to enhance patient medical insurance by
providing greater and more accurate information for medical diagnosis. Furthermore, this paper aims
to detect, analyze and solve important and relevant medical problems.

Table 1: Summary of some related work in medical image segmentation

Ref. Segmentation
Technique

Metrics

Acc. Pr. Sens. Spec. D J MCC CPU
(Sec)

[5] Active Contour
Model Based on the
Computation of
Local Statistics

0.9700 - - - - - - -

[6] Weighted Ensemble
of Active Contours
(WACD)

0.9750 0.9500 0.9070 - 0.9550 - - -

[7] A Multi-Phase
Level-Set Model

- - - - - 0.9500 ±
0.053

- -

(Continued)
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Table 1: Continued
Ref. Segmentation

Technique
Metrics

Acc. Pr. Sens. Spec. D J MCC CPU
(Sec)

[8] Principal
Component Pursuit
(PCP) and Active
Contour (AC)
algorithm

- - - - - - - -

[9] Temporally
Consistent
Segmentation based
FCM Algorithm

0.9810 - - - - - - -

[10] Region-Scalable
Fitting Algorithm
(RSF)

- - 0.7991 0.9998 0.8691 0.7704 - -

Local Image Fitting
Algorithm (LIF)

- - 0.8156 0.9997 0.8722 0.7747 - -

Distance
Regularized
Level-Set Evolution
Model (DRLSE)

- - 0.8470 0.9998 0.9017 0.8223 - -

[11] An Adaptive Fuzzy
Level Set Model
(AFLSM)

- - - - 0.2286
±
0.1477

0.1350 ±
0.0661

- 7.51

[12] Hybrid Active
Contour Model

- - - - 0.9356 0.8790 - 3.2

[13] Morphological
Processing and
Watershed
Algorithm

- 0.9360 0.9800 - 0.9580 - - -

[14] Spatially
Constrained Fuzzy
c-Means Clustering
Algorithm
(SCFCM)

0.9989 - - - - - - -

[15] Fuzzy C-Means
Clustering Based on
Total Generalized
Variation
(TGVFCMS)

0.8684 0.7581 0.7723 - 0.7450 - - 6064

[16] Residual-driven
RFCM with
weighted �2-norm
fidelity (WRFCM)

0.8461 - - - 0.9842 - 0.9751 2.032
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The main contributions of this paper can be summarized as:

• It presents an efficient segmentation technique for different medical image modalities.
• It combines FCM with morphological operations, so that the tumor region segmentation is

represented by the membership functions of the tissues derived from the minimization of the
energy in the FCM.

• It adds both the global and local spatial information into the membership function to decrease
the sensitivity problem to the noise and intensity inhomogeneity in the image data.

• It employs the active contour model to delineate the ROI, which can be extracted.

This paper is organized as follows. Section 2 illustrates the proposed segmentation process. The
simulation results on Us, Mammogram, CT, PET, and MR images are given in Section 3. Section 4
handles the effect of different noise types on the segmentation process. Finally, Section 5 presents the
conclusions and future work.

2 The Proposed Image Segmentation Technique

The proposed image segmentation technique consists of four steps:

Step 1. Pre-processing and Enhancement using Histogram Equalization.

Step 2. Morphological Operations and FCM.

Step 3. Active Contour Segmentation.

Step 4. ROI Extraction.

The steps of the segmentation process are shown in Fig. 1. The proposed work is implemented on
different medical image modalities. Fig. 1a is a sample of Us breast image, Fig. 1b is a sample of X-ray
(mammogram) image, Fig. 1c is a sample of CT chest image, Fig. 1d is a sample of PET brain image
and Fig. 1e is a sample of MR brain image. All steps will be explained in the following steps.

Step 1. Pre-processing and Image Enhancement using Histogram Equalization

Image pre-processing actually means that the input image is fed to a particular algorithm to obtain
a better quality image. Image enhancement is known to be the digital image adjustment so that the
results are easier and simpler for analysis and display. Histogram equalization [18–24] is one of the
pixel brightness transformations techniques. It is a well-known contrast enhancement technique due
to its performance on almost all types of images.

Step 2. Morphological Operations and FCM

The main target of step 2 is removing the image imperfections by accounting for the form and
structure of the image using a collection of non-linear operations related to the shape or morphology
of features, and finding the cluster centers that maximize a similarity function or minimize the
dissimilarity function. This combination of morphological operation and FCM clustering algorithm
produces better segmentation results due to their advantages.

Step 3. Active Contour Segmentation

Segmentation methods based on the active contour model [25–27] outperform many of the
traditional image segmentation methods introduced in the literature. The Chan-Vese algorithm is
based on an energy minimization problem, which can be reformulated to be the easiest way to solve
the problem.



CMC, 2022, vol.73, no.2 3123

Original(a)Us, (b)Mammogram,  
(c)CT, (d)PET or (e)MRIimage

(a) (b) (c) (d) (e)

Figure 1: Steps of the proposed segmentation technique

3 Simulation Results and Discussions

Simulation results were carried out using MATLAB R2019a on a Dell machine, Core i5 processor,
8 Gbytes RAMs, and 320 Gbytes hard disk. Simulation results are conducted on five different examples
of the scanned image (Us, Mammogram, CT, PET, and MRI) [28,29].

To reveal the efficiency of the proposed technique, a sample of each different modality of medical
images is tested in the experiments. To assess the segmentation performance of the proposed technique,
the accuracy and similarity indices are calculated: the segmentation Accuracy (Acc.), Recall or
Sensitivity (Sens.), Precision (Pr.), Matthews Correlation Coefficient (MCC), Dice coefficient (D),
also known as Dice similarity index (F1 score), Jaccard (J) and Specificity (Spec.) [30]:

Acc. = TP
FN + FP + TP + TN

(1)

Sens. = TP
FN + TP

(2)
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Pr. = TP
FP + TP

(3)

MCC = TN × TP − FP × FN
sqrt ((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))

(4)

D = 2 × TP
2 × TP + FP + FN

(5)

J. = D.
2 − D.

(6)

Spec. = TN
TN + FP

(7)

where TP is the true positive, FP is the false positive, TN is the true negative, FN is the false negative.

Fig. 2 shows samples of the Us breast images, Fig. 2b shows the Us images after pre-processing
stage, Fig. 2c shows the FCM and morphological stage output images, Fig. 2d shows the segmentation
results of the ROI produced by active contour model (the tumor is marked by a red contour),
and Fig. 2e shows the resultant ROI images. Fig. 3a shows samples of the mammogram original
images, Fig. 3b shows the mammogram images after pre-processing stage, Fig. 3c shows the FCM
and morphological stage output images, Fig. 3d shows the segmentation results of the ROI produced
by the active contour model, and Fig. 3e shows the resultant ROI images. Fig. 4a shows a sample of
the CT chest images, Fig. 4b shows the CT images after pre-processing stage, Fig. 4c shows the FCM
and morphological stage output images, Fig. 4d shows the segmentation results of the ROI produced
by active contour model, and Fig. 4e shows the resultant ROI images.

(a)

(b)

Figure 2: (Continued)
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(c)

(d)

Figure 2: A sample of the Us medical images (a) Us images, (b) Us images after preprocessing stage,
(c) FCM and morphological operation output images, (d) Segmented images after active contour, and
(e) The extracted tumor images

(a)

(b)

(c)

(d)

(e)

Figure 3: A sample of the Mammogram medical images (a) Mammogram images, (b) Mammogram
images after preprocessing stage, (c) FCM and morphological operation output images, (d) Segmented
images after active contour, and (e) The extracted tumor images
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(a)

(b)

(c)

(d)

(e)

Figure 4: A sample of the CT medical images (a) CT images, (b) CT images after preprocessing stage,
(c) FCM and morphological operation output images, (d) Segmented images after active contour, and
(e) The extracted tumor images

Fig. 5a shows samples of the PET brain images, Fig. 5b shows the PET images after pre-
processing stage, Fig. 5c shows the FCM and morphological stage output images, Fig. 5d shows the
segmentation results of the ROI produced by active contour model, and Fig. 5e shows the resultant
ROI images. Fig. 6a shows samples of the MRI brain images, Fig. 6b shows the MRI images after pre-
processing stage, Fig. 6c shows the FCM and morphological stage output images, Fig. 6d shows the
segmentation results of the ROI produced by active contour model, and Fig. 6e shows the resultant
ROI images. Tabs. 1–5 show the segmentation Accuracy (Acc.), Sensitivity (Sens.), Precision (Pr.),
F-Measure (FM), Matthews Correlation Coefficient (MCC), Dice (D), Jaccard (J), and Specificity
(Spec.) numerical results on different image modalities.
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(a)

(b)

(c)

(d)

(e)

Figure 5: A sample of the PET medical images (a) PET images, (b) PET images after preprocessing
stage, (c) FCM and morphological operation output images, (d) Segmented images after active
contour, and (e) The extracted tumor images

(a)

(b)

Figure 6: (Continued)



3128 CMC, 2022, vol.73, no.2

(c)

(d)

(e)

Figure 6: A sample of the MR medical images (a) MR images, (b) MR images after preprocessing stage,
(c) FCM and morphological operation output images, (d) Segmented images after active contour, and
(e) The extracted tumor images

Table 2: Performance evaluation metrics of the proposed algorithm on the Us images

Image modality Acc. Sens. MCC Pr. D J Spec.

Us images Case1 0.9883 0.9077 0.9991 0.9460 0.9512 0.9069 0.9999
Case2 0.9899 0.8909 0.8481 0.8640 0.8690 0.7683 0.9937
Case3 0.9965 0.8911 0.9811 0.9333 0.9340 0.8761 0.9995
Case4 0.9838 0.9217 0.9905 0.9459 0.9548 0.9136 0.9980
Case5 0.9981 0.9278 0.9968 0.9608 0.9611 0.9251 0.9999
Case6 0.9676 0.9430 0.8790 0.8910 0.9099 0.8346 0.9728

Average 0.9873 0.9137 0.9491 0.9235 0.9300 0.8707 0.9939

Table 3: Performance evaluation metrics of the proposed algorithm on Mammogram images

Image modality Acc. Sens. MCC Pr. D J Spec.

Mammogram images Case1 0.9971 0.9951 0.8104 0.8967 0.8933 0.8072 0.9971
Case2 0.9996 0.9821 0.9910 0.9863 0.9865 0.9734 0.9999
Case3 0.9984 0.9615 0.9649 0.9624 0.9632 0.9290 0.9992
Case4 0.9944 0.9102 0.9995 0.9510 0.9528 0.9098 1.0000
Case5 1.0000 0.9963 1.0000 0.9981 0.9982 0.9963 1.0000
Case6 0.9978 1.0000 0.7951 0.8907 0.8859 0.7951 0.9978

Average 0.9978 0.9742 0.92681 0.94753 0.9466 0.9018 0.9990
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Table 4: Performance evaluation metrics of the proposed algorithm on the CT images

Image modality Acc. Sens. MCC Pr. D J Spec.

CT images Case1 0.9989 0.9261 0.9422 0.9336 0.9341 0.8763 0.9995
Case2 0.9996 0.9786 0.9622 0.9702 0.9703 0.9424 0.9997
Case3 0.9983 0.9211 0.9552 0.9371 0.9378 0.8829 0.9994
Case4 0.9993 0.9742 0.9395 0.9563 0.9565 0.9167 0.9995
Case5 0.9994 0.9810 0.9837 0.9821 0.9824 0.9653 0.9997
Case6 0.9996 0.7766 0.9125 0.8416 0.8391 0.7228 0.9999

Average 0.9991 0.9262 0.9492 0.9368 0.9367 0.8844 0.9996

Table 5: Performance evaluation metrics of the proposed algorithm on the PET images

Image modality Acc. Sens. MCC Pr. D J Spec.

PET images Case1 0.9990 0.9881 0.9803 0.9837 0.9842 0.9689 0.9994
Case2 0.9931 0.8488 0.9793 0.9083 0.9094 0.8338 0.9992
Case3 0.9995 0.9759 0.9849 0.9801 0.9804 0.9615 0.9998
Case4 0.9985 0.9702 0.9684 0.9685 0.9693 0.9404 0.9992
Case5 0.9995 0.9819 0.9900 0.9857 0.9860 0.9723 0.9998
Case6 0.9993 0.9862 0.9893 0.9874 0.9877 0.9758 0.9997

Average 0.9981 0.9585 0.9820 0.9689 0.9695 0.9421 0.9995

Visual results of the Us breast image, shown in Fig. 2, reveal the importance of each step in the
segmentation approach. According to Fig. 2b, the preprocessing step output images, it is apparent that
the Us images are sharpened and histogram equalized. This process increases the image contrast and
helps to obtain accurate segmentation. The morphological operations and FCM, shown in Fig. 2c,
are considered the first stage of segmentation. The active contour model segmentation delineates the
tumor region of interest, as shown in Fig. 2d. These results are the second stage of segmentation. The
delineated tumors are then extracted, as shown in Fig. 2e. The quantitative results for the Us images
are given in Tab. 2. The algorithm is applied to six cases of Us breast images. Finally, the average value
of each metric is calculated. These results show that the proposed approach can achieve an average
segmentation accuracy of 0.9873.

Fig. 3 shows the visual results of the mammogram images. The enhancement step increases the
image contrast and improves the image quality, and bright pixels are enhanced significantly. The results
of the morphological operations and FCM, shown in Fig. 3c, segments the FCM clusters, and the
active contour outlines the tumor region of interest, as shown in Fig. 3d. Finally, the tumors are
extracted, as shown in Fig. 3e. The quantitative results for the mammogram images are given in Tab. 3.
The algorithm is applied to six cases of mammogram images. The average value of each metric is
calculated. The proposed segmentation approach can achieve a segmentation accuracy of 0.9990 on
the six cases.
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Fig. 4 illustrates the results of the proposed segmentation approach applied to the CT chest
images. The enhancement results, shown in Fig. 4b, considerably enhances and improves the image
contrast. The results of the morphological operations and FCM, shown in Fig. 4c, divide the images
into adjacent regions as shown in Fig. 4d. Finally, the proposed approach extracts the tumors in each
image, as shown in Fig. 4e. The segmentation metrics for the CT images are given in Tab. 4, and the
average segmentation accuracy reached 0.9991.

The fourth modality is the PET brain images, shown in Fig. 5. The PET image quality is very
low. Firstly, the images are converted into grayscale, and then the proposed approach is applied. The
preprocessing step, shown in Fig. 5b, does not improve image quality. Therefore, the segmentation
process may not give the desired results. Subsequently, the output of step 3 shown in Fig. 5c, hardly
results in good results due to the very low quality of the acquired PET original images. As shown in
Figs. 5d and 5e, the active contour model segmentation delineates and extracts the tumor region. The
quantitative results for the PET images are given in Tab. 5. The proposed approach can achieve an
average segmentation accuracy of 0.9981.

Fig. 6 gives the results of the proposed segmentation approach applied to the MRI brain images.
As shown in Fig. 6b, the enhancement results considerably enhance and improve the image contrast.
The results of the morphological operations and FCM, shown in Fig. 6c, splits the images into sub-
regions as shown in Fig. 6d. Finally, the proposed approach extracts the tumors in each image, as
shown in Fig. 6e. The segmentation metrics for the MRI brain images are given in Tab. 6, and the
obtained average segmentation accuracy is 0.9978. The proposed approach shows excellent perfor-
mance for delineating and extracting the tumor boundaries with good quantitative and qualitative
results.

Table 6: Performance evaluation metrics of the proposed algorithm on the MR images

Image modality Acc. Sens. MCC Pr. D J Spec.

MR images Case1 0.9980 0.9554 0.9825 0.9678 0.9688 0.9395 0.9994
Case2 0.9989 0.9890 0.9838 0.9858 0.9864 0.9732 0.9993
Case3 0.9994 0.9705 0.9465 0.9581 0.9583 0.9200 0.9996
Case4 0.9984 0.9925 0.9728 0.9817 0.9826 0.9657 0.9986
Case5 0.9974 0.9865 0.9581 0.9708 0.9721 0.9457 0.9979
Case6 0.9948 0.9796 0.9355 0.9545 0.9570 0.9176 0.9957

Average 0.9978 0.9789 0.9632 0.9697 0.9708 0.9436 0.9984

4 Noise Effect on the Segmentation Process

It is well known that the histogram can describe the distribution characteristics of image data. It
is simple to perform segmentation if the histogram has a number of peaks. Speckle noise with 0.05
variance was added to the Us images, and Gaussian noise with 0 mean and 0.02 variance was added to
the other image modalities. The original image histogram has one or two obvious peaks on contrary
to the noisy image histogram, which has no obvious peaks. Fig. 7 shows a comparison of distribution
characteristics of image data for the original image and noisy image.
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(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 7: Comparison of distributions of data for original images and noisy images (a) Original images
(b) The original images histograms, (c) Noisy images, and (d) Noisy images histograms

Tabs. 7 to 11 give the performance evaluation metrics of the proposed technique on different image
modalities in the presence of noise. Tab. 12 illustrates the execution time (in seconds) of the proposed
technique on the different image modalities.

Table 7: Performance evaluation metrics of the proposed algorithm on the noisy Us images

Image modality Acc. Sens. MCC Pr D J Spec.

Noisy Us images Case1 0.9898 0.8776 0.8565 0.8617 0.8669 0.7651 0.9942
Case2 0.9962 0.8834 0.9750 0.9261 0.9269 0.8638 0.9994
Case3 0.9979 0.9559 0.9622 0.9580 0.9590 0.9213 0.9990
Case4 0.9952 0.9819 0.9759 0.9762 0.9789 0.9587 0.9969
Case5 0.9234 0.5668 0.9846 0.7135 0.7194 0.5618 0.9981
Case6 0.9853 0.9302 0.9902 0.9510 0.9592 0.9217 0.9979

Average 0.9813 0.8659 0.9574 0.8977 0.9017 0.8320 0.9975
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Table 8: Performance evaluation metrics of the proposed algorithm on the noisy Mammogram images

Image modality Acc. Sens. MCC Pr. D J Spec.

Noisy Mammogram images Case1 0.9977 0.8724 0.9970 0.9315 0.9305 0.8701 0.9985
Case2 0.9971 0.8201 0.9880 0.8988 0.8963 0.8120 0.9998
Case3 0.9966 0.9546 0.7255 0.8307 0.8245 0.7013 0.9969
Case4 0.9963 0.9572 0.8812 0.9166 0.9176 0.8478 0.9972
Case5 0.9991 0.9670 0.9311 0.9484 0.9487 0.9024 0.9994
Case6 0.9921 0.9444 0.9725 0.9540 0.9582 0.9198 0.9971

Average 0.9964 0.9192 0.9158 0.9133 0.9126 0.8422 0.9981

Table 9: Performance evaluation metrics of the proposed algorithm on the noisy CT images

Image modality Acc. Sens. MCC Pr. D J Spec.

Noisy
CT
images

Case1 0.9996 0.7766 0.9125 0.8416 0.8391 0.7228 0.9999
Case2 0.9995 0.8616 0.9257 0.8928 0.8925 0.8059 0.9998
Case3 0.9983 0.8409 0.9407 0.8886 0.8880 0.7986 0.9996
Case4 0.9996 0.9786 0.9622 0.9702 0.9703 0.9424 0.9997
Case5 0.9993 0.9742 0.9395 0.9563 0.9565 0.9167 0.9995
Case6 0.9994 0.9810 0.9837 0.9821 0.9824 0.9653 0.9997

Average 0.9992 0.9021 0.9440 0.9219 0.9214 0.8586 0.9997

Table 10: Performance evaluation metrics of the proposed algorithm on the noisy PET images

Image modality Acc. Sens. MCC Pr. D J Spec.

Noisy
PET
images

Case1 0.9845 0.7002 0.7744 0.7285 0.7355 0.5816 0.9935
Case2 0.9805 0.5210 1.0000 0.7145 0.6850 0.5210 1.0000
Case3 0.9921 0.7864 0.8837 0.8296 0.8322 0.7126 0.9973
Case4 0.9962 0.9679 0.8473 0.9037 0.9036 0.8241 0.9967
Case5 0.9753 1.0000 0.3497 0.5839 0.5181 0.3497 0.9749
Case6 0.9866 0.9947 0.6827 0.8183 0.8097 0.6803 0.9864

Average 0.9858 0.8283 0.7563 0.7630 0.7473 0.6115 0.9914

It is shown that the proposed approach can achieve average segmentation accuracies of 0.9813,
0.9964, 0.9992, 0.9858, and 0.9892 for Us, mammogram, CT, PET, and MRI images. Furthermore,
results show good accuracy and similarity results for the noise-free and noisy images. Obviously, com-
bining morphological operation with the FCM algorithm can improve the distribution of the image
data and facilitate the segmentation process. In addition, morphological operations can maintain
the object boundaries and eliminate the noise effect. The proposed technique has low complexity,
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as shown in Tab. 12. It is easy to obtain good results for image segmentation with the introduction
of membership and morphological operations filtering. The illustrated results show that the proposed
technique can segment and extract the tumor region successfully even in the presence of different noise
types.

Table 11: Performance evaluation metrics of the proposed algorithm on the noisy MRI images

Image modality Acc. Sens. MCC Pr. D J Spec.

Noisy
MR
images

Case1 0.9943 0.9949 0.8565 0.9204 0.9205 0.8528 0.9943
Case2 0.9949 0.9784 0.9041 0.9379 0.9398 0.8864 0.9956
Case3 0.9980 0.8333 0.8876 0.8591 0.8596 0.7538 0.9992
Case4 0.9941 0.9644 0.9140 0.9358 0.9385 0.8842 0.9956
Case5 0.9706 0.9476 0.6832 0.7907 0.7940 0.6583 0.9721
Case6 0.9836 0.9885 0.7530 0.8551 0.8548 0.7465 0.9833

Average 0.9892 0.9511 0.8330 0.8831 0.8845 0.7970 0.9900

Table 12: The execution CPU time (in s) of the proposed technique on the different image modalities

Image
Modality

Us Mammogram CT PET MRI

CPU time (s) 2.7 1.6 1.3 1.7 1.4

5 Conclusions and Future Work

This paper introduced an efficient image segmentation framework to reduce the influence of noise
and improve the segmentation quality. By introducing morphological operations, the local spatial
information of the image is utilized to improve the segmentation effect. Because it is possible to
suppress noise while preserving the contour of objects, a trade-off has easily been achieved between
noise suppression and detail preservation. Moreover, morphological operations are able to provide
good reconstructed results for images corrupted by different types of noise. Furthermore, the FCM
membership filtering is employed to exploit the local spatial constraints. The obtained outcomes
illustrated that the proposed technique gives good segmentation findings without tuning parameters
for different modalities of medical images. The future work will focus on presenting an efficient
segmentation stage and a classification stage for tumors in different multi-modality medical images as
an effective tool for identifying malignant ultrasonic breast tumors from benign ones.
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