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Abstract: The network infrastructure has evolved rapidly due to the ever-
increasing volume of users and data. The massive number of online devices
and users has forced the network to transform and facilitate the operational
necessities of consumers. Among these necessities, network security is of prime
significance. Network intrusion detection systems (NIDS) are among the most
suitable approaches to detect anomalies and assaults on a network. However,
keeping up with the network security requirements is quite challenging due to
the constant mutation in attack patterns by the intruders. This paper presents
an effective and prevalent framework for NIDS by merging image processing
with convolution neural networks (CNN). The proposed framework first
converts non-image data from network traffic into images and then further
enhances those images by using the Gabor filter. The images are then classified
using a CNN classifier. To assess the efficacy of the recommended method,
four benchmark datasets i.e., CSE-CIC-IDS2018, CIC-IDS-2017, ISCX-IDS
2012, and NSL-KDD were used. The proposed approach showed higher pre-
cision in contrast with the recent work on the mentioned datasets. Further, the
proposed method is compared with the recent well-known image processing
methods for NIDS.

Keywords: Anomaly detection; convolution neural networks; deep learning;
image processing; intrusion detection; network intrusion detection

1 Introduction

As the internet becomes an integral part of life, online security and privacy have grown into a
paramount concern for the consumer. According to CISCO, the internet will have 5.3 billion users by
2023 [1]. To fulfill this increasing demand for the internet, the networks are constantly expanding. With
this expansion of network scale and scope, network security is becoming a major concern [2-4]. Despite
the recent progress in the field of network security, the ratio of successful network attacks is reasonably
high [5]. Such numbers of successful attacks, emphasize the need for an improved solution for network
security. In this situation, the network Intrusion detection systems (NIDS) based on machine learning
(ML) and deep learning (DL) are considered highly effective against malicious or invasive activity
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on the network [6—8]. The reason behind the efficiency of ML and DL algorithms is their ability to
learn and identify the patterns of both normal and malicious network traffic. However, the constant
mutation in attack patterns is challenging even for ML and DL-based approaches. To enrich both
ML and DL-based algorithms, researchers have looked into methods such as data pre-processing
steps, feature engineering, the fusion of classifiers, etc. [9,10]. Practically, DL-based approaches are
computationally expensive but highly accurate in NIDS. With the help of graphical processing units
(GPUs), DL-based algorithms are showing promising results in terms of complexity and efficiency
in several applications [l 1]. Among the DL algorithms, convolutional neural networks (CNN) are
considered as one of the most precise and efficient algorithms for detection and recognition tasks
[12]. Particularly in the area of computer vision [13—17] (i.e., object detection, pattern detection, image
classification, etc.), the applications of the CNN-based models are extremely effective [18]. Due to
the sensitive application of CNN, researchers are always looking to improve the detection ability of
CNN models [19]. This constant improvement in CNN modeling has urged researchers to explore
CNN for extracting and identifying critical patterns within the network traffic. Based on some of
the recent research publications, CNN has displayed remarkable prediction ability [20-22]. To utilize
CNN for NIDS, conversion of non-image network traffic into image format plays a significant part.
Most of the existing published work converts non-image network traffic into images by using 1D, 2D,
or 3D (dimension) matrix/arrays [23]. Whereas, some researchers enhance the form of these converted
images with the help of different algorithms. Such algorithms include fast Fourier transform (FFT)
[24], short-time Fourier transform (STFT), or using spectrograms based on the Fourier domain [25,26].
Apparently, the mentioned approaches do not consider the effect of features correlation when mapping
1D data to multiple dimensions. The disruption of correlation among feature representation can reduce
the precision of ML/DL-based NIDS [27]. To address such concerns, the process of converting non-
image data to image format should be improved.

In this paper, an improved framework to convert non-image network traffic to image format
is proposed. Based on the studies conducted for this research, it was clear that the process of
transforming non-image data into images plays an integral part in NIDS performance. With that in
mind, the Deeplnsight methodology is fused with a Gabor filter to transform non-image network
traffic into images for a CNN-based classifier [28,29]. The suggested idea contributes to the domain
of notable approaches in transforming non-image network traffic into an image-based dataset for
NIDS. The Deeplnsight [28] methodology for transforming non-image data into image format was
originally proposed for medical applications. As per the authors, it is very challenging yet crucial to
identify small variations in genomics data. This concern led to the development of the Deeplnsight
methodology. Based on the implementation, the Deeplnsight methodology presented well-organized
images and achieved high precision on a CNN-based classifier. This encouraged us to implement such
a methodology for network traffic data for NIDS. However, non-image data from the genomic field is
unlike the data from network traffic. Therefore, the DeepInsight method is fused with the Gabor filter
to present an effective and precise framework for NIDS. The Gabor filter is well-known for optimal
performance in spatial and frequency domains [30,31]. Merging the Deeplnsight with the Gabor filter
resulted in well-organized and refined images of network traffic for classification. Later the converted
images from four different intrusion detection datasets are classified using a CNN-based classifier.
The results highlight that the proposed method can identify different types of network attacks with
high precision. The key contributions of the paper can be summarized as follows:

e Proposing a unique framework for NIDS based on image processing. The proposed method
enables NIDS to achieve high precision due to the efficient conversion of non-image data to
image format.
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e The suggested approach also contributes to the domain of converting non-image datasets to
image formats.

e Implementing and presenting a comprehensive comparison between the proposed frame-
work and the traditional methods of converting non-image data into image format for DL-
based NIDS.

e The proposed framework is implemented on multiple datasets to highlight the efficiency and
general application of the suggested approach.

The remaining of the paper is arranged as follows: Section II will discuss the recent literature in
the field of DL-based NIDS. The section will also include the prominent approaches that used image
processing for DL-based NIDS. Section 3 presents an introduction to the DeeplInsight and the Gabor
filter as part of the proposed system model. The proposed methodology will be discussed in Section
4. Section 5 will highlight the experimented results of the suggested framework. The comparison
and discussion between the proposed framework and recent notable approaches will be elaborated
in Section 6 and Section 7 will conclude the paper.

2 Related Work

The ML-based NIDS has been used extensively in the past few years. However, shallow ML-
based methods are struggling to counter the diversity and complexity of evolving network attacks [32].
With the rapid advancements in DL algorithms, emerging DL-based NIDS are displaying improved
precision in detecting anomalies and intrusions [33]. However, achieving a high detection rate against
the ever-mutating attack methods is still a challenging task for DL-based algorithms. To address this
challenge researchers are always working on techniques to improve the detection rate of DL-based
NIDS. For instance, Shone et al. [34] presented a hybrid approach for intrusion detection systems
(IDS). The proposed IDS was a fusion of non-symmetric auto-encoder (AF) and random forest (RF).
Similarly, Marir et al. [35] proposed a hybrid method for IDS. The proposed method used a fusion of
deep belief networks and SVM for high precision IDS. Both the mentioned approach used a hybrid
classification. The method adopted by Shone et al. [34] suffered from a low detection rate of minority
classes whereas Marir et al. [35] had high computation requirements. The DNN-based hybrid method
proposed by [36,37] uses a deep neural network (DNN) as the basic classifier with gated recurrent units
(GRU), multi-layer perceptron (MLP), or supervised variational auto-encoder with regularization
(SAVAER-DNN) for IDS. Understandably, such hybrid approaches achieve a high detection rate
but suffer from high computational requirements. In the same way, Wei et al. [38], presented an
approach to optimize the architecture of a deep belief network (DBN) IDS. The authors merged
the clustering, searching, and other features of the fish swarm algorithm to optimize the particle
swarm optimization (PSO) approach for DBN-IDS. Based on the experimentation, the optimization
achieved higher detection but increased the complexity of the DBN-IDS model. On the other hand,
NIDS based on image processing is a relatively new approach but is proving to be highly effective. As
discussed earlier, the main concern for image-based NIDS is the transformation of non-image data
into image format. Some of the most common approaches to converting non-image data to images
involve multi-dimensional mappings, using the Fourier domain for image transformation, etc. For
instance, in the paper [39], the authors converted the 1D non-image data to a 2D image for a CNN-
based classifier. The proposed method achieved high accuracy in detecting most of the attacks, except
for the low-frequency attack of U2R. Researchers Todinas et al. [12] and Kim et al. [40] transformed
non-image datasets into four-channels RGB-A (Red, Green, Blue, and Alpha) and three-channels
RGB (Red, Green, and Blue) images respectively. Then the converted images were classified using a
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DL-ResNet50[12] and CNN-based classifier [40]. Excluding the low-frequency attacks, both classifiers
displayed high precision in detecting other attacks. The papers [24] and [25] proposed and implemented
Fourier domain-based approaches to transform the non-image datasets into images. Later a CNN-
based classifier was implemented for classification. Despite achieving high accuracy, the authors of
these papers used only one dataset for implementing the proposed model. Raising the question of
the general application of the proposed methodology for converting non-image data to images for
NIDS. In summary, hybrid approaches for NIDS are highly accurate in detecting anomalies. However,
computational cost and detection of low-frequency attacks are a concern for traditional ML-based
NIDS. Whereas image-based NIDS are relatively new but are highly effective in identifying anomalies
on the network. However, the process of transforming non-image data into an image is still an open
area for improvement.

Tab. 1 presents a summary of papers discussed in this section. The Tab. | also highlights the
absence of general application of the proposed approaches. As most of the approaches are implemented
on one or two datasets. Despite the overall effectiveness and efficiency, each model does have its
limitations. Studies in DL-based NIDS are relatively new and have plenty of room for improvement.
To this end, we explored and implemented an image-based NIDS with CNN as the classifier. The goal
is to construct a framework that is effective and efficient when it comes to anomaly detection. The
following section will present a detailed introduction to the components of the proposed methodology.

Table 1: Summary of the research papers discussed in the related work section

Reference  Proposed method Dataset

[29] Non-symmetric Deep Auto-Encoder (NDAE) KDD Cup 99, NSL-KDD

[30] Combination of a Deep Belief Network (DBN) and ICIDS2017, UNSW-NB15,
multi-layer ensemble support vector machines (SVMs). NSL KDD

[31] Fusion of Recurrent Neural Network (RNN), Gated KDD Cup 99, NSL-KDD
Recurrent Units (GRU), and Multi-Layer Perceptron
(MLP).

[32] Supervised Variational Auto-Encoder with NSL-KDD, UNSW-NBI15

Regularization (SAVAER) combined with a Wasserstein
GAN + Gradient Penalty (WGAN-GP).
[33] Deep Belief Network-based Intrusion Detection System NSL-KDD
(DBN-IDS) fused with Particle Swarm Optimization
(PSO) built on the adaptive inertia weight and learning

capacity.
[34] Multi-class NIDS model based on CNN classifier. KDD Cup 99, NSL-KDD
[12] The researchers suggested the transformation of UNSW-NBI15, BOUN
non-image datasets into four-channels RGB-A images. DDoS

Then the converted images were used to train a
DL-ResNet50 model.

[35] In this paper, the researchers recommended the KDD Cup 99,
conversion of non-image datasets for NIDS into three CSE-CIC-IDS 2018
channels (red, blue, and green) and greyscale images for
the CNN-based classifier.

(Continued)
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Table 1: Continued
Reference Proposed method Dataset

[19] In this work, the researchers suggested fast Fourier NSL-KDD
transformation (FFT) to convert non-image data to
image format for a CNN-based classifier.

[20] The researcher proposed a short-time Fourier transform  CIC-IDS2017
(STFT) based spectrogram to convert the non-image
dataset into images for a CNN-based classifier

3 System Model Components

This section presents an overview of both the Deeplnsight and Gabor filters. As the proposed
model is based on the fusion of the mentioned components, it is necessary to have an understanding
of how these components work.

3.1 Deeplnsight Methodology

As mentioned earlier, the Deeplnsight methodology [28] was proposed due to the absence of
highly precise approaches for converting non-image data into image format. A general overview of
how Deeplnsight converts non-image data to image format can be seen in Fig. 1.
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Figure 1: Graphical representation of the Deeplnsight approach (a) Conversion from feature vector to
a matrix. (b) Process of converting feature vector to image pixels

The procedure of transforming non-image data into images by using the DeepInsight method is
based on two steps. In the first step, the feature vector is converted into a feature matrix by using
transformation. The placement of features in the Cartesian coordinates is based on the resemblance
of features. Once the features are plotted into a feature matrix, the second step is initiated. In this
step, the feature values are mapped based on the feature matrix. This process will generate unique
images of each sample (feature vector) and will result in a dataset of images. The newly created dataset
can be used to train and predict different classes. For an in-depth understanding of the Deeplnsight
methodology, both the paper and code (Matlab, Python) can be accessed online [41].
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3.2 Gabor Filter

In image processing, the Gabor filter is used in numerous applications i.e., feature extraction, edge
detection, texture analysis, etc. Gabor being a linear filter plays a key role in modifying, extracting,
improving, or representing digital graphical data [42]. These filters have also shown remarkable
localization properties in both frequency and spatial domains. The Gabor filters can be considered
as special kinds of band-pass filters. Based on the configuration, they allow a particular band of
frequencies to pass while stopping the others. The parameter settings for the Gabor filter depend
on the task. For instance, analyzing texture and extracting features from images are two different
types of tasks. Mentioned two tasks will require different parameter settings for the Gabor filter.
To implement the Gabor filter, two types of parameters are configured. First, the parameters that
define how the Gabor filter will be. Second, which features will the Gabor filter react to [31]. A 2D
Gabor filter can be considered as a sinusoidal signal of specific frequency and direction, regulated by
a Gaussian wave. To represent the orthogonal direction, the Gabor filter has both real and imaginary
components. The complex, real and imaginary equations of the Gabor filter can be represented as

Egs. (1)—(3) respectively. Both the real and imaginary components can be used separately or can be
shaped into a complex number component [43].
) xr 4+ yiyr . X/
g(xaya)"799¢a V) _exp (_T exp (l (27T7+¢)) (1)
/? Zys? /
Rlg (v.0:1.0,9.1)) = exp (2 L) cos (207 +9) &)
20? A
12 2y /
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where:

X/ = xcos + ysin6,

yI = —xsind + ycoso,

A = Wavelength of the sinusoidal part,

0 = Controls the positioning of the Gabor function,

y = Spatial aspect ratio,

o = The standard deviation of the Gaussian covering,

¢ = The phase offset error of the sinusoidal function.

The parameters A, 6, y, o, and ¢ define the form of the Gabor function.

4 Proposed Methods

In this section, each module of the proposed idea will be discussed in detail. The framework
proposed for the NIDS based on the fusion of image processing, Gabor filter, and CNN is illustrated
in Fig. 2. The proposed approach is composed of four modules. The modules are data pre-processing,
converting non-image datasets to image datasets, extracting features and patterns from images, and
CNN-based classification. The main objective of proposing this framework is based on two factors.
First, to highlight the importance of using an efficient algorithm for image generation rather than
simply converting 1D flow into 2D or 3D images. The second is to explore methods of image
enhancements for NIDS based on image processing. Recent researchers are exploring methods such
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as the Fourier domain, spectrogram-based images, frequency domain, etc. for image generation or
enhancement. In this paper, the Gabor filter is fused with the image generation process to refine the
quality of generated images. Further details on the Gabor filter and its significance are discussed in
the upcoming section.

2. Converting Non-image data to images 3. Extracting the image features and patterns
1. Pre-Processing

Pre-processing/
— Cleaning/ —
Encoding Dataset

Dataset . ;
Deepinsight: non-image to image Image dataset
conversion

4. Classification
Attack | TT1
Prediction | -— - |
Normal -
CNN

Normalization

I
-9 — b — S
=
L7 Test Dataset Train Dataset
Gabor Filter

Figure 2: Illustration of the proposed framework

4.1 Pre-Processing

To validate the effectiveness and generality of the proposed framework, four benchmark NIDS
datasets CSE-CIC-IDS2018 [44], CICIDS-2017 [45], ISCX-IDS 2012 [46], and NSL-KDD [47]
were implemented. All the mentioned datasets were cleaned by removing missing values, duplicate
samples, and infinite data samples. Datasets CSE-CIC-1DS2018, CICIDS-2017, and ISCX-IDS 2012
had 79, 79, and 82 features respectively with numeric values. In the CIC-IDS 2017 dataset, two
classes Heartbleed and Infiltration were dropped due to a low number of samples. The three classes
representing web attacks were merged into one class of web attacks. The NSL-KDD dataset contains
feature attributes that are both numerical and non-numerical. To convert the non-numeric values to
numeric values the one-hot encoding was used [48]. The one-hot encoding creates additional binary
columns in the dataset to replace the categorical feature. For example, in the NSL-KDD dataset, one
non-numeric feature ‘protocol\_type’ had non-numeric values i.e., tcp, udp, and icmp. To manage the
non-numeric feature attributes, one-hot encoding was implemented. As a result the values of tcp, udp,
and icmp were converted to 001, 010, and 100 respectively. After the encoding, the one feature column
‘protocol\_type’ was replaced by three new feature columns. To avoid any biasing, all the datasets
were balanced by using the synthetic minority over-sampling technique and edited nearest neighbors
(SMOTE-ENN) [49]. Tab. 2 represents each dataset after the pre-processing stage.

Table 2: Details of CSE-CIC-1DS2018, CIC-IDS 2017, ISCX-IDS 2012, and NSL-KDD datasets after
pre-processing

Dataset ISCX2018 ISCX-2017 ISCX 2012 NSL-KDD
Number of features 79 79 82 123
Number of classes 10 11 5 5

Number of 899,441 2,519,738 1,703,784 351,133
samples

(Continued)
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Table 2: Continued

Dataset ISCX2018 ISCX-2017 ISCX 2012 NSL-KDD
Names and Benign: 89811 BENIGN: 225412  BruteForceSSH: Dos: 73875
samples of each Bot: 89991 Bot: 229731 392492 Probe: 65262
class Brute Force-Web:  DDoS: 229186 DDoS: 337141 R2L: 62433

89942 DoS GoldenEye:  HTTPDoS: 341806 UZ2R: 75304

DDOS 229713 Infiltration: 319241 normal: 74259

attack-HOIC: DoS Hulk: 228473 Normal: 313104

89999 DoS Slowhttptest:

DDOS attack- 229136

LOIC-UDP: 90000 DoS slowloris:

DoS attacks- 228970

GoldenEye: 89851 FTP-Patator:

DoS 229823

attacks-Slowloris:  PortScan: 229939

89887 SSH-Patator:

FTP-BruteForce: 229562

90000 Web Attack:

SQL Injection: 229793

89963

SSH-Bruteforce:

89997

4.2 Converting Non-Image Data to Image Format

The four NIDS datasets (i.e., Tab. 1) were transformed into image datasets using the pipeline
illustrated in Fig. 1. After the pre-processing, the datasets were transformed using the Deeplnsight
python tool [41]. The kernel principal component analysis (KPCA) [50,51] was used to map the dataset
features from their original space into a 2D space. Due to KPCA, the dataset features are likely to be
linearly separable. The obtained points in the Cartesian plane represent the features from the dataset.
The acquired points only represent the location of features in 2D space, not the feature itself or its
attributes. After plotting the features, the convex hull algorithm [52] is used to create the smallest
rectangle possible to represent the plotted features. To facilitate the CNN classifier, the rectangle
representing the features is rotated (i.e., horizontal or vertical). As the image must be presented in
a framed form to the CNN classifier. Then, the Cartesian coordinates are transformed into pixels.
During this transformation, some features are averaged due to the limitation of pixels. This limitation
is caused by the size of the image. The resultant frame of pixels will represent the positions of the dataset
features. The next step is the mapping of feature attributes to the obtained pixel locations. In the case
of overlapping pixels, the respected features are averaged and assigned the same location. Therefore,
it is vital to select a suitable size for image representation. An image with a small size and overlapping
features may not be a good representation of a non-image dataset. Alternatively, dimension reduction
can be a solution to avoid a high number of overlapping pixels. Fig. 3 represents a more elaborate
working of the Deeplnsight methodology [53].
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Figure 3: Converting non-image dataset to image dataset using the DeeplInsight methodology

4.3 Gabor Filter Implementation

After the conversion of non-image data to image format the third step of the proposed method
is initiated. In the third step, the Gabor filter starts extracting features from the images generated by
the Deeplnsight methodology. To the best of our knowledge, an approach to fuse the Gabor filter
with image processing for NIDS is never being done before. On the other hand, recent research on
enhancing images for ML or DL-based NIDS are highlighted in the earlier section of the paper.
The Fourier transform is well versatile for operating in the frequency domain. However, during the
transformation, it loses information in the time domain i.e., when a signal occurs or for images where
particular frequencies occur in the input image. Whereas the Gabor transformation overcomes this
issue by windowing the base function of the Fourier transform with a Gaussian impulse. The resulting
transformation gives a sense of when and where a particular frequency occurred. Subsequently, the
Gabor filter is a generalized 2D approach of the Gabor transformation [54]. As the filter used in
the Gabor transformation is the Gabor filter, which makes it a more appropriate candidate for
extracting information from images. Eq. (2) represents the mathematical representation of the Gabor
filter implemented for the experimentation. For the proposed framework, a bank of Gabor filter
was implemented to identify the most suitable yet general filter for the four datasets. Based on the
experimentation the parameter settings in Fig. 4 were identified as the most suitable parameters for
the Gabor filter. The Gabor filter was then applied to the images of all four datasets.

After the completion of the third module (i.e., as shown in Fig. 2) the four non-image datasets
CSE-CIC-IDS2018, CICIDS-2017, ISCX-IDS 2012, and NSL-KDD are finally converted into image
datasets. The images created by datasets CSE-CIC-IDS2018, CICIDS-2017, and NSL-KDD were
padded by the Deeplnsight method to acquire perfect pixel representation [55]. The images dataset
of ISCX-IDS 2012 did not require additional padding. Tab. 3 represents the final image size for each
dataset.
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Figure 4: Gabor filter parameters for the implementation
Table 3: Final Image size of each dataset for classification
Dataset CSE-CIC-IDS 2018 CICIDS-2017 ISCX-IDS 2012 NSL-KDD
Image size 9%9 9%9 9%9 12 %12

4.4 CNN-Model Configuration

The fourth and final stage of the proposed framework is normalization and then classification.
The normalization process scales the values of the image dataset between 0 and 1. In this paper, a
CNN-based classifier is implemented due to its potential to achieve high accuracy and computational
efficiency [56]. It is also among the most prominent classifier in recent research publications. Imple-
menting a CNN-based classifier also provides ground for comparing the proposed framework with
recent prominent methods. The sequential CNN model implemented for the experiments consists of
12 layers. The layers consist of an input layer, three conv2D layers, four dropout layers, flatten layer,
and three dense layers including an output layer. The kernel size for each convolutional layer is 3.
Activation function Relu is applied on the convolutional layers and the dense layers. Whereas, softmax
is used as an activation function for the output layer. A dropout of 0.2 is used for the dropout layers.
For training, an Adam optimizer with a 0.001 learning rate is implemented. The sparse categorical
cross-entropy is used as a loss function. The CNN model is implemented by using the python library
Keras. Tab. 4 represents the summary of the parameter settings for the CNN model. The next section
will present the implementation and results of the proposed framework.
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Table 4: Summary of the CNN-model parameters

Parameter Details

Model Sequential

Layers Input,Conv2D,Dropout,Flatten, Dense,Output
Kernel size 3x3

Activation function Relu, Softmax

Dropout 0.2

Optimizer Adam

Learning rate 0.001

Loss function sparse categorical cross-entropy

5 Implementation and Results

The system used for the experimentation is an Intel Xeon Gold (32 cores, 64 threads) processor
with RTX2080ti GPU and 192 GB of RAM. For the framework implementation, python (v 3.6)
programming language with GPU-enabled Tensor Flow (v 2.3.1) on the Keras framework is used.
The Deeplnsight tool based on python is publicly accessible [41]. The tool was downloaded and
fused with the proposed approach. The Gabor kernel is created using the cv2 library [57]. Then
filter2D method is convolved with the Gabor filter to extract the specific patterns from the images
[58]. To highlight the general application of the proposed framework four different NIDS benchmark
datasets were used. After converting the NIDS datasets to image datasets with the help of the
proposed method, each dataset was classified using the CNN classifier. To evaluate the efficiency
of the CNN classification accuracy, precision, Fl-score, recall, Cohen’s kappa coefficient [59], and
receiver operating characteristics (ROC) [60] are measured as performance evaluation metrics. The
classification accuracy, precision, recall, and the F1-score were computed using Eqs. (4)—(7).

TruePositive + TrueNegative

A = 4
ccuracy Total 4)
o TruePositive
Precision = — — %)
TruePositive + FalsePositive
Recall — TruePositive ©)

TruePositive + FalseNegative

F1 — score = 2 x Precz:szion x Recall 7
Precision + Recall

The accuracy represents the correlation of correctly predicted events to the total number of events.
Precision is the percentage of correctly classified attacks to all the samples classified as attacks. The
recall is the ratio of all the correctly predicted attack samples to all the samples that are actual
attacks. The F1-score is the harmonic mean of the precision and recall. An F1 score is a statistical
approach for examining the accuracy of a classification model. The TN (True Negative) and TP
(True Positive) are the correctly classified attack and normal events respectively. Whereas, FN (False
Negative) and FP (False Positive) are incorrectly classified events as normal and attack, respectively.
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The kappa coefficient score is a handy measure to compute the efficiency of a classification model when
performing multi-class classification. Mathematically kappa coefficient («) is represented as Eq. (8).

K = Do — Pe (8)
1 —p.

where ‘p,’ is the general accuracy of the classification model and ‘p,’ signifies the compromise between
the classification model estimates and the accurate class values as if occurred by chance. Whereas, the
ROC curve is a visual representation of the classification model at all prediction thresholds. Tab. 5
presents the classification results of each dataset based on the proposed framework. Each model is
trained for 100 epochs with an 80/20 ratio of train and test datasets respectively. The mentioned epochs
and ratios are based on empirical studies [7,9].

Table 5: Classification results of each dataset based on the proposed framework

Dataset CSE-CIC-IDS 2018 CICIDS 2017 ISCX-IDS 2012 NSL-KDD
Accuracy 98.18% 98.70% 92.50% 99.36%
F1 score 98.18% 98.69% 92.20% 99.36%
Precision 98.22% 98.70% 92.22% 99.35%
Recall 98.18% 98.69% 92.23% 99.37%
Kappa score 97.98% 98.57% 91.61% 99.20%

5.1 Dataset CSE-CIC-IDS 2018

The proposed framework achieved an overall accuracy of 98.18% on the CSE-CIC-IDS 2018
dataset. Fig. 5 represents the normalized confusion matrix and ROC of each class in the dataset. Based
on Fig. 5, the overall detection of each class is highly efficient. The labels in the ROC graph represent
each class label as in the classification matrix respectively i.e., Class 0 is Benign, Class 1 is Bot, and so
on. Based on the ROC, it is clear that the proposed framework achieved high accuracy in classifying
each class.

5.2 Dataset CIC-IDS-2017

The proposed model was able to achieve an overall accuracy of 98.70% on the CIC-IDS-2017
dataset. The dataset has eleven classes and Fig. 6 represents the confusion matrix and ROC of each
class. Based on Fig. 6, it can be seen that the proposed model was able to detect each class with
high precision. The labels in the ROC graph represent each class label as in the classification matrix
respectively i.e., Class 0 is BENIGN, Class 1 is Bot, and so on. Based on the ROC, it is clear that the
proposed framework was able to detect each class with high accuracy.
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Figure 5: Confusion matrix and ROC of the CSE-CIC-IDS 2018 dataset
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Figure 6: Confusion matrix and ROC of the CICIDS-2017 dataset

5.3 Dataset ISCX-IDS 2012

The overall accuracy of dataset ISCX-IDS 2012 based on the proposed model is 92.50%. Which
is slightly lower as compared to the other datasets. Based on the confusion matric in Fig. 7, the
classes BruteForceSSH, DDoS, and Infiltration were detected with high precision. Whereas the classes
HTTPDoS and Normal were not detected with high accuracy and achieved a detection rate of 88%
and 87% respectively. The ROC curve of the dataset ISCX-IDS 2012 can also be seen in Fig. 7. The
labels in the ROC graph represent each class label as in the classification matrix respectively i.e., Class
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0 is BruteForceSSH, Class 1 is DDoS, and so on. Based on the ROC, the proposed framework was
able to detect a majority of the classes with high precision.
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Figure 7: Confusion matrix and ROC of the ISCX-IDS 2012 dataset

5.4 Dataset NSL-KDD

The NSL-KDD dataset achieved a high precision of 99.36% on the proposed framework. Fig. &
represents the confusion matrix and ROC of the NSL-KDD dataset. Based on Fig. 8, each class was
detected with almost 100% accuracy. The labels in the ROC graph represent each class label as in the
classification matrix respectively i.e., Class 0 is Dos, Class 1 is Probe, and so on. Based on the ROC
graph, the proposed framework was able to detect each class of the dataset with good accuracy.
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6 Comparison and Discussion

The implementation results indicate that the suggested framework displayed high precision on
all four datasets. However, apart from the implementation results, the proposed framework must be
compared with recent notable approaches. To highlight the capability of the proposed framework, four
different approaches to converting non-image datasets to image format for NIDS are implemented and
compared. The four approaches are:

e Using the Fast Fourier Transformation (FFT) [24] to convert non-image datasets to image
format for a CNN-based NIDS.

e Using the spectrogram images generated by short-time Fourier transform (STFT) [25] to
convert non-image dataset to image format for a CNN-based NIDS.

e Converting non-image dataset to a 2D gray-scale image [40] for a CNN-based NIDS.

e Using the Deeplnsight methodology to convert non-image data to image format for a CNN-
based NIDS.

The flow for implementing the comparison methods can be seen in Fig. 9. Tab. 2 represents
the datasets presented to the comparative approaches for image conversion. To provide comparable
grounds for evaluation, the proposed framework and comparison methods were implemented with
the same parameter settings. Such as the datasets after pre-processing, and the CNN model for
classification. While the approach for converting the non-image datasets to image format was based
on the method described in the papers [24, 25], and [40]. The FFT is an optimized and fast algorithm
of the discrete Fourier transformation (DFT). The DFT can be represented as Eq. (9). To generate the
FFT-based images, 5184 sampling points were taken as per the process explained in the paper [24].

3. Classification (each dataset was classified separately)

2. Converting Non-image data to 9 |
1. Pre-Processing image datasets | Image dataset-a | >
a) Fast Fourier Transformation (FFT) 9 :
Pre'P"":_ESSi"Sr‘r b) Short-time Fourier transform (STFT) Image dataset- b |
> Cleaning/ > + Spectrogram images - 9 | *
Encoding
Dataset ) 2D-Grey Scale image Image dataset- ¢ | Prediction
d) Deeplnsight 9 l f }
l Normal Attack
Image dataset- d
Figure 9: Flow of implemented comparison approaches
N-1
7]-271101
X (k) = E x(me? N ke{0,1,...,N—1} )]
n=0

where X (k) is the signal sampling in the time domain. To implement the STFT based spectrogram
images, the STFT of a discrete-time signal x[n] can be represented as Eq. (10) [25].

oo

x[n] =X (m,w) = Z x [1n] wy,[n — me7” (10)

n=—00
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The x[n] = (f., 15, .-, fo_1)represents the input vector with ‘f” as features of the dataset. While ‘w2’
represents the time and ‘@’ represents the angular frequency. The mathematical representation of the
hanging window function (w,, [#]) can be seen as Eq. (11).

a)/l,,[l’l]z%(1—COS(2JT%))OSHSN—1 (11)

where ‘N’ presents the length of observation time. The final step of generating the spectrogram images
is based on Eq. (12).

Spectogram = (m,w) = |STFTx[n]|> = |X (m, ) |’ (12)

With the help of Egs. (10) to (12), all four datasets were converted into spectrogram-based
images datasets. The paper [40], presented two different methods of generating images from the non-
image datasets. Method one presented an approach to generate a 3-channel RGB (Red, Green, Blue)
image. While method two presented a one-channel 2D gray-scale image. Both methods follow the
same process to generate the initial image for RGB and grey-scale conversion. After the initial pre-
processing, the features of the dataset are re-scaled between the values of 0 to 255. Then 2D images of
13x 9 and 13 x 6 pixels are generated for the NSL-KDD and CSE-CIC-IDS 2018 datasets respectively.
For comparison purposes, the 2D gray-scale images of four datasets were generated based on the
process defined by authors Kim et al. [40].

The fourth approach implemented is based on the Deeplnsight methodology of converting non-
image data to image format. This implementation highlights the image classification results without
the fusion of the Gabor filter. The results highlight that the fusion of the Gabor filter with Deeplnsight
was able to achieve a much higher classification accuracy as compared to the images based on the
Deeplnsight approach. As compared to the relative approaches, the proposed framework in this paper
is implemented on four different datasets. While the comparative work is implemented on one of two
datasets. This highlights the fact that the proposed framework is generally applicable and can achieve
high precision results. Tab. 6, represents the classification results and kappa score of each comparative
approach implemented on the CSE-CIC-IDS 2018 dataset. The proposed algorithm achieved an
accuracy of 98.18%, which is the highest among all the implemented comparison approaches.

Table 6: Results of the proposed framework and implemented comparative approaches on dataset
CSE-CIC-IDS 2018

CSE-CICIDS2018 Proposed FFT STFT + Spectogram  2D-grayscale Deeplnsight

Accuracy 98.18% 97.12% 97.80% 97.09% 96.79%
F1 score 98.18% 97.12% 97.74% 97.07% 96.78%
Precision 98.22% 97.19% 97.88% 97.08% 96.73%
Recall 98.18% 97.13% 97.72% 97.08% 96.78%
Kappa score 97.98% 96.80% 97.56% 96.77% 96.43%

The confusion matrix and ROC of the proposed framework can be seen in Fig. 5. Whereas the
confusion matrix of each implemented comparative approach on the CSE-CIC-IDS 2018 is shown in
Fig. 10. The ROC graph of the implemented approaches are highlighted in Fig. 11.
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Figure 11: The ROC of each implemented comparative approach on dataset CSE-CIC-IDS 2018

Tab. 7 represents the classification results and kappa score of each comparative approach imple-
mented on the CIC-IDS 2017 dataset. The proposed algorithm achieved an accuracy of 98.70%,
which is the highest among all the implemented comparison approaches. The 2D-gray scale image
implementation was also able to achieve an accuracy of 98.49%, which is very good.

The confusion matrix and ROC of each implemented comparative approach on the CIC-IDS 2017
can be seen in Figs. 12 and 13 respectively.
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Table 7: Results of the proposed framework and implemented comparative approaches on dataset

CIC-IDS 2017

CIC-IDS 2017 Proposed  FFT STFT + Spectogram  2D-grayscale Deeplnsight
Accuracy 98.70% 97.65%  98.18% 98.49% 89.59%
F1 score 98.69% 97.62%  98.14% 98.48% 89.66%
Precision 98.70% 97.67%  98.15% 98.49% 90.93%
Recall 98.69% 97.63%  98.16% 98.48% 89.57%
Kappa score 98.57% 97.41%  98.01% 98.25% 88.55%
1.0 1.0
BENIGN i§::0.020.010.030.02 0 0 ©0 O 0.010.02 BENIGN{EE! 0 001 0 003 0 ©0 001 0O O O
Bot 0.014KE 0 0 0 O Bot-0.010EE o o 0o 0 0 0o 0O O
DDo5- 0 (1] 0.3 poos001 0o BEEl 0 0 © O O O O O 0.8
DoS GoldenEye- 0 0 DoS GoldenEye-0.04
DoS Hulk- 0 0 0.6 DoS Hulk0.01 0 0 0.6
DoS Slowhttptest- 0 o DoS Slowhttptest-0.01 0 0
DoS slowloris- 0 1] 0.4 DoS slowloris- 0 0 0 0.4
FTP-Patator- 0 0 FTP-Patator-0.01 0 0
PortScan- 0 o 02 Portscan- © © O s
SSH-Patator- 0 0 0 9 -0 SSH-Patator0.01 0 0
Web Attack- 0 0 00010 0 0 0 0 0O R b WebAttack- © 0 0 0 ©0 ©0 0 ©0 0 00238
= % UV O = & v E E E ¥ e i i e & & & o e 0.0
o] o = 35 c 8 8 B U =z 8§ v o x _ 3 =
2"8¢z:8:848:¢ EEEEEEEREE
5 2833 iiigs 8 EEEREREE
S " 38k g2 § EgE"p ¢
a “ g
[=]
(a) FFT (b) STFT+Spectogram
1.0
BENIGN 4/:0.020.020.050.080.01 0 0.03 0 0.010.02
BENIGN E0.030,020.010.030.010.010.020.030.050.03
Bot0.028E 0 00010 0 O O O O i
e Bot0.0LCENO2 0 O O O 00140 O
DDos0.01 0 $KF0D030.04 0 0 0O 0O O O cossoor oM o060 0 0 O b b 0.8
DoS GoldenEye0.02 0 0.03%£0.08 0 0 0 0 0 0 DoS GoldenEye0.01 0 0 SEE 00010 0 0 0 O
DoS Hulk0.02 0 0.00.06%K 0 0 0 0 0 O 0.6 BGS HilK 0108 00105 0 .04 © 0.6
DoS Slowhttptest 0.01 0 0.010.010.0 1UEY, 00 0 O DoS Slowhttptest: 0 0 0 0
DoS slowloris0.010.01 0 0 0 0O &&F 0 (1] 0.4 DoS slowlorisD.0L 0 © © L0.4
FTP-Patator- 0 0 0 0 0 O 1] FTP-Patator- 0 0.02 0 0 O©
PortsScan- 0 O 0 0 O O i PortScan- 0 0 O O O -
SSH-Patator- 0 0 0 0.010.01 0 SSH-Patator- 0 0 O 0 O
Web Attack0.01 0 0 0.020010 0 0 0 oK WebAttack- 0 0 0 0 0 0 O O O 0.08% s
e RO G o A G g e :
55853885553 S2886388833¢%
Z °§a2:3FELEE 8 “fg2gsEss
£ s 8@ £ & & o s 8 £ % 4 + 8
e 8 § v d & £ 8 I 3 uw a2
5] 5 4k g = 2 w8
a 5 A 8 -
v
(=] 8 (=]

(c) 2D-grayscale

(d) Deeplnsight

Figure 12: Confusion matrix of each implemented comparative approach on dataset CIC-IDS 2017
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Figure 13: The ROC of each implemented comparative approach on dataset CIC-IDS 2017

Tab. 8 represents the classification results and kappa score of each comparative approach imple-
mented on the ISCX-IDS 2012 dataset. The proposed algorithm achieved an accuracy of 92.50%,
which is the highest among all the implemented comparison approaches.

The confusion matrix and ROC of each implemented comparative approach on the ISCX-IDS
2012 can be seen in Figs. 14 and 15 respectively.
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Table 8: Results of the proposed framework and implemented comparative approaches on dataset
ISCX-IDS 2012

ISCX-IDS 2012 Proposed FFT STFT + Spectogram 2D-grayscale  Deeplnsight
Accuracy 92.50% 88.85%  91.50% 92.09% 78.78%
F1 score 92.20% 88.30%  91.30% 91.79% 75.56%
Precision 92.22% 88.54%  91.47% 91.95% 82.99%
Recall 92.23% 88.36%  90.91% 91.91% 77.91%
Kappa score 91.61% 86.03%  90.46% 90.10% 73.40%
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Figure 14: Confusion matrix of each implemented comparative approach on dataset ISCX-IDS 2012
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Figure 15: The ROC of each implemented comparative approach on dataset ISCX-IDS 2012

Tab. 9, represents the classification results and kappa score of each comparative approach
implemented on the NSL-KDD dataset. The proposed algorithm achieved an accuracy of 99.36%,
which is the highest among all the implemented comparison approaches.

The confusion matrix and ROC of each implemented comparative approach on the NSL-KDD
can be seen in Figs. 16 and 17 respectively.
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Table 9: Results of the proposed framework and implemented comparative approaches on dataset

NSL-KDD
NSL-KDD Proposed  FFT STFT + Spectogram  2D-grayscale Deeplnsight
Accuracy 99.36% 96.89% 95.55% 84.45% 74.28%
F1 score 99.36% 96.89% 95.55% 84.26% 73.22%
Precision 99.35% 96.90% 95.59% 84.92% 77.33%
Recall 99.37% 96.92% 95.57% 84.19% 73.86%
Kappa score 99.20% 96.11% 94.43% 80.53% 70.64%
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Figure 16: Confusion matrix of each implemented comparative approach on dataset NSL-KDD
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Figure 17: The ROC of each implemented comparative approach on dataset NSL-KDD

Based on the results of the implemented competitors, the proposed framework achieved higher
precision. The main cause behind the enhanced performance of the proposed methodology can be
attributed to the transformation of non-image data into images. As the proposed methods use KPCA
for better mapping of features as compared to the other approaches. Due to the KPCA, the images
created are an improved representation of the non-image dataset. For instance, the KPCA takes into
account the correlation between features of the dataset. Further, the use of the Gabor filter helps the
CNN in identifying the most prominent features of each class. In terms of complexity, the Gabor filter
plays a crucial part in the proposed framework. For the Gabor filter, the complexity depends on the
size of the image. The computing and representation of the filter response at a single point is O(M?),
where M represents the height and width of the particular point. If the filter is applied to an image of
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N x N size, the complexity can be represented as O(M?>N?) [61]. Tab. 10 represents the comparative
time complexity of the proposed algorithm. Python function ‘time’ is implemented to compute the run
time of each algorithm. The time computation is performed for the phase of converting non-image
data to image format. As the remaining processes of all the competitive methods are the same i.e.,
data preprocessing, classification using CNN, etc. Based on Tab. 10, it can be seen that the proposed
approach is efficient in terms of time. On the contrary, the 2D-grayscale and Deeplnsight approaches
are efficient in time consumption but they lack the effectiveness in identifying network anomalies.

Table 10: Time (s) consumed by each algorithm in converting non-image data to image format

Dataset Proposed FFT STFT + Spectogram  2D-grayscale Deeplnsight
CSE-CICIDS2018 9.52 110.36 34.9 5.38 9.41
CIC-IDS-2017 25.97 324.98 36.27 12.54 25.1
ISCX-IDS 2012 16.89 1727.22  209.48 8.41 16.38
NSL-KDD 4.5 44.24 15.5 3.1 4

In the proposed framework, the images created by the four datasets were relatively small i.e.,
Tab. 3. Due to the small size of the images, the complexity is relatively low. Still, recent research has
significantly reduced the complexity of the Gabor filter [62,63]. Such advancements can lead to a
much-improved yet low computational implementation of the Gabor filter. Research in the use of
image processing with DL for NIDS is relatively new and holds great potential for improvement. Due
to the phenomenal growth and developments in the fields of image processing and DL, studies such
as the framework presented in this paper can encourage researchers to explore and improve methods
of converting non-image data into image format.

7 Conclusion

In this study, a new framework for transforming non-image datasets into image datasets is
presented. The transformation is based on the fusion of the Deeplnsight methodology with the
Gabor filter. The transformed images present an efficient interpretation of non-image datasets. Such
representation can assist a CNN in understanding deep and useful patterns from the presented images.
Based on the understanding, a CNN model can predict network anomalies and threats with high
accuracy. To evaluate the efficiency and general application of the recommended framework, four
different intrusion detection datasets were implemented. The proposed framework achieved high
accuracy on all four datasets. In contrast with the existing work the proposed method can effectively
predict low-frequency attacks with low computational requirements. Further, the implementation
of four different datasets highlights the general application of the proposed model. The paper also
presents an implementation and comparison of recent methods that transform non-image datasets
into image format for NIDS. For future work, it is planned to explore methods that can assist in
identifying appropriate parameters for implementing the Gabor filter on network flow. Identifying
such an approach can avoid the need to implement a bank of Gabor filters on the non-image datasets.
Further, we plan to evaluate the potential of the proposed framework with a variety of other ML-based
classifiers.
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