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Abstract: The key-value store can provide flexibility of data types because
it does not need to specify the data types to be stored in advance and can
store any types of data as the value of the key-value pair. Various types of
studies have been conducted to improve the performance of the key-value
store while maintaining its flexibility. However, the research efforts storing
the large-scale values such as multimedia data files (e.g., images or videos) in
the key-value store were limited. In this study, we propose a new key-value
store, WR-Store++ aiming to store the large-scale values stably. Specifically,
it provides a new design of separating data and index by working with the
built-in data structure of the Windows operating system and the file system.
The utilization of the built-in data structure of the Windows operating system
achieves the efficiency of the key-value store and that of the file system extends
the limited space of the storage significantly. We also present chunk-based
memory management and parallel processing of WR-Store++ to further
improve its performance in the GET operation. Through the experiments, we
show that WR-Store++ can store at least 32.74 times larger datasets than the
existing baseline key-value store, WR-Store, which has the limitation in storing
large-scale data sets. Furthermore, in terms of processing efficiency, we show
that WR-Store++ outperforms not only WR-Store but also the other state-of-
the-art key-value stores, LevelDB, RocksDB, and BerkeleyDB, for individual
key-value operations and mixed workloads.

Keywords: Key-value stores; large-scale values; chunk-based memory management;
parallel processing

1 Introduction

As big data platforms have been actively used in various fields such as banking and Social Network
Services (SNS), not only has the data size increased, but also the data types become various [1–8].
Accordingly, if we fix the data types to be stored as in the relational databases, the supported data
types are not flexible, which becomes the limitation of the platform. For this case, the key-value store
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could be an alternative because it does not need to specify the data types to be stored in advance and
can store any type of data as the value of the key-value pair [9]. The representative key-value stores
are RocksDB, LevelDB, BerkeleyDB, and Redis.

For some applications, we need to manage large-scale values with various data types. For example,
various data types such as photos and videos can be used in SNS posts and email attachments. In
relational databases, these large-scale media data are defined and stored as a special data type, called
Binary Large Object (BLOB). BLOB refers to a collection of binary data stored as one entity in
the Database Management Systems (DBMS). BLOB data types cannot be efficiently handled in the
DBMS because the benefit of the structured storage cannot be utilized because of their unfixed data
types and variable data length [10]. Since the key-value store does not need to enforce a fixed data
type, it can be an appropriate alternative1,2.

There have been lots of research efforts to improve the performance of the key-value store while
maintaining its flexibility of data types: the performance optimization by reducing amplification that
occurred during compaction [11,12], the efficient merge of key ranges in the memory to resolve the
hardware bottleneck [13–15], improvement of the filter algorithm to support fast search of the keys
[16–19], performance improvement of mapping between keys and values by storing the hashtable in
GPU [20], and parameter tuning to optimize the performance [21]. However, the research efforts to
store the large-scale values such as multimedia data files (e.g., images, videos) in the key-value store
were limited. Recently, object storages such as Amazon S3, Apache Ozone, and Microsoft Azure have
been widely used in cloud environments to store large-scale data. Nevertheless, it is required to support
large-scale values in key-value stores because they have the advantage of storing data of various types
and sizes.

In this study, we propose a new key-value store, WR-Store++, by enhancing the existing key-
value store, WR-Store [22], so as to store the large-scale values. WR-Store is tightly coupled with the
built-in data structure in the Windows operating system, and consequently, it provides lightness and
comparable or even better performance than the existing key-value stores. However, it has a limitation
to the maximum data size to be stored due to the inherent characteristics of the used built-in data
structure. WR-Store++ overcomes the limitation by storing only the index part in the built-in data
structure and the entire data in the file system. Through the extensive experiments, we show that WR-
Store++ dramatically enhances the limitation in the data storage of WR-Store and has performance
advantages compared to the representative key-value stores, i.e., LevelDB, RocksDB, and BerkeleyDB,
in particular, for large-scale values. The contributions of this study can be summarized as follows:

1. Lightness and portability: WR-Store++ maintains the WR-Store’s advantages by utilizing
the built-in structure and the file system provided by the operating systems. It allows easy
installation and supports various computing environments including data centers, servers,
desktop PCs, and mobile devices. Once the Windows operating system is installed, we can
easily migrate the data between even different computing environments. Even if WR-Store++
depends on the Windows operating system, we can easily migrate the key-values stored in WR-
Store++ into the other key-value stores.

2. Extensibility: Due to the extensible structure of WR-Store++, it can provide much larger
storage than the existing WR-Store. In the experiments, we confirm that WR-Store++ can
support at least 32.71 times larger dataset than WR-Store while even some of the commercial

1BerkeleyDB C API Reference, https://docs.oracle.com/cd/E17276_01/html/index.html

2RocksDB Integrated BlobDB, http://rocksdb.org/blog/2021/05/26/integrated-blob-db.html
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key-value stores cannot support such dataset or their performances degrade dramatically by
the actual experiments.

3. Efficiency: We show that the overall performance of WR-Store++ is comparable to or
even better than the commercial key-value stores, LevelDB, RocksDB, and BerkeleyDB. In
particular, the performance improvement of WR-Store++ over the other key-value stores
becomes larger as the value size increases: by up to 3.71∼44.78 times for the PUT operation;
1.91∼2.19 times for the GET operation; 37.97∼2456.91 times for the DELETE operation.
Three kinds of workloads combining multiple operations confirmed the efficiency of WR-
Store++. Specifically, WR-Store++ outperforms BerkeleyDB by 1.69∼1.79 times, RocksDB
by 2.59∼2.99 times, and LevelDB by 2.22∼2.39 times, respectively. We also present chunk-
based memory management and parallel processing of WR-Store++ to further improve its
performance in the GET operation by employing the chunk-based memory management
and parallel processing, improving the basic WR-Store++ by 6.39 times and 8.66 times,
respectively.

In Section 2, we describe the related work. In Section 3, we explain the background knowledge
required to understand the proposed method. In Section 4, we propose the structure of WR-Store++
and processing algorithms. We also present the ideas for further improvement of WR-Store++. In
Section 5, we show the experimental results by comparing WR-Store++ and the commercial key-
value stores. In Section 6, we describe the discussions for the proposed WR-Store++. In Section 7, we
present conclusions and future work.

2 Related Work

The key-value store is designed to store data with arbitrary types as a key-value pair by storing
the entire data as the value in the form of binary. The key is the unique identifier of the data entries;
the value is the actual data to be stored. The data types supported for the value can be various from
structured data such as numbers and fixed-size characters to unstructured data [9]. The key-value
stores provide simple three operations: (1) PUT, (2) GET, and (3) DELETE. The PUT operation takes
a key-value pair as the input and stores it in the storage. If the input key already exists in the storage,
it overwrites the value for the key. The GET operation takes a key and returns the corresponding
value for the key from the storage. The DELETE operation takes a key and deletes the corresponding
key-value pair from the storage.

Various types of studies conducted to improve the performance of the key-value store. It has
been known that storages based on the Log-Structured-Merge tree (LSM tree), such as LevelDB, have
performance problems that consume more resources than the original data size during the compaction,
called amplification that leads to the CPU bottleneck. Consequently, its performance degrades as
the data size increases [11,23]. To relieve the amplification, keys and values were separately managed
[11]; the index was optimized [12]. To resolve the CPU bottleneck, the frequency of compaction,
which requires heavy CPU costs, was adjusted [13,14]; the compaction process was eliminated by
residing the entire index in the memory [15]; GPU was adapted to store and manage the hashtable
[20]. The hashtable in GPU was further improved so as to flexibly respond to various workloads
[24]; the workload was separately analyzed according to various data domains [25]. To improve the
overall storage performance, the data replication, which allows for improving the data availability,
was delayed [26]; a programmable network interface card was adapted to improve remote direct key-
value access performance [27]; the settings such as cache and write buffer sizes were tuned depending
on the underlying hardware [21].
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There have been various studies to efficiently search the keys. The performance of the Bloom filter
was improved [16]; a decoupled secondary index was employed [17]; an elastic bloom filter was adapted
to respond flexibly to data hotness [18]. Instead of the Bloom filter, the Cuckoo filter was employed
[19] to improve the query performance.

There also have been studies to improve key-value store performance in a distributed environment
composed of multiple nodes. Multidimensional hashing was adapted for managing attributes other
than the key [28]; remote direct memory access was employed [29]; an active distributed key-value
store was proposed to specify a node where a new key-value pair is inserted [30]; the arrangement of
data items to nodes was optimized according to the access frequency [31].

There have been limited research efforts for dealing with large-scale values in the key-value stores.
Atikoglu et al. [25] performed an analysis on five large-scale workloads where data up to 1 MB are
used as the large-scale value. However, it is still small-sized compared to the dataset we are targeting
in this study. In our experiments, the size of a value reaches 914.77 MB and the total size of the dataset
is 13.59 GB in a defined mixed workload. Such large-scale datasets have been mainly managed by
object-based storages [32]. Recently, the object-based storages are mainly provided on cloud services
such as Amazon S3, Microsoft Azure Blob Storage, and Google Cloud Storage. Studies to compare
their performance have been conducted [33,34], but their detailed implementations are not disclosed.
We aim to support large-scale values in the key-value stores while maintaining their advantages to
support flexible data types. Therefore, we do not compare our method with the object-based storages,
but with the existing representative key-value stores.

3 Background
3.1 Windows Registry

The Windows registry is a hierarchical database, which is originally designed to be used by the
Windows operating system. The registry contains information such as users’ profiles and application-
specific information, which are referenced by the operating system and the applications during the
operation3. Because the access to the registry occupies a large portion of the Windows programs,
the access patterns to the registry of the program were analyzed and used to improve the program
performance [35]. The registry consists of multiple branches according to the characteristics of the
stored data. Each branch is stored in the disk as an individual file, called a hive, for persistent data
storage. Tab. 1 shows the list of the hives and their description4.

Table 1: Names of hives and their description

Hive names Description

HKEY_CURRUNT_USER(HKCU) Contains the configuration information for the user
who is logged on. This information is associated with
the user’s profile.

(Continued)

3Microsoft Description of the registry, https://docs.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users#description-of-
the-registry

4Microsoft Inside the Registry, https://docs.microsoft.com/en-us/previous-versions//cc750583(v=technet.10)
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Table 1: Continued
Hive names Description

HKEY_USERS(HKU) Contains all the actively loaded users’ profiles on the
computer

HKEY_LOCAL_MACHINE(HKLM) Contains configuration information particular to the
computer (for any users)

HKEY_CLASSES_ROOT(HKCR) Contains information about registered applications
HKEY_CURRENT_CONFIG(HKCC) Contains information about the hardware profiles that

are used by the local computer at system startup

Fig. 1 shows the structure of the registry. As shown in the left panel of Fig. 1, we can rep-
resent the parent-child relationship using the key and subkey of the registry. Hence, the registry
has a tree structure, and consequently, we can utilize it as the index for the data storage, which
has not been considered before WR-Store [22]. For example, the registry key shown in Fig. 1
can be modeled as a leaf node in the index, and the path from the root node to the leaf node
becomes “Computer\HKEY_CURRENT_USER\ AppEvents\EventLabel\ActivatingDocument.”
Hence, the path to the leaf node consists of multiple subkeys, such as AppEvents and EventLabel,
and we can store multiple values in the key as shown in the right panel of Fig. 1.

Figure 1: The structure of the windows registry

Each value in the registry consists of multiple attributes: (1) name, (2) type, and (3) data. The name
attribute serves as a unique identifier to distinguish the values of the key. The type attribute provides
various data types. The representative types are REG_BINARY for storing binary data, REG_SZ
for storing text data, and REG_DWORD for storing 32-bit integers. The data attribute stores the
actual value to be stored following the defined type. In the example of Fig. 1, the name attribute is
“DispFileName”; the type attribute is REG_SZ; the data attribute is “(@ieframe.dll, -10231)”.
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3.2 WR-Store

WR-Store [22] was the first key-value store utilizing the Windows Registry as the storage. WR-
Store directly stores the key-value pair in the Windows Registry. Hence, WR-Store stores the key of
each key-value pair in the name attribute of the registry value and its value in the data attribute of the
registry value. With various types of registry values, the Windows Registry can store data of variable
sizes. In addition, WR-Store utilizes the hierarchical structure of the Windows Registry based on the
key-subkey relationship for indexing the key-value pairs. Fig. 2 shows an example of how WR-Store
stores the key-value pairs. WR-Store builds its own storage under a specific path in the registry. Here,
we suppose that “Computer\HKEY_CURRENT_ USER\test” is used as the path for the storage
where “test” is the key-value store name. WR-Store can build the index with multiple depths using
the key-subkey relationship of the registry. Here, we assume that the depth of the index is 2. Then, for
inserting a key-value pair {13, “2091534”}, WR-Store finds the leaf subkey to store the key, 13. Finally,
{13, “2091534”} is stored in the found subkey, “Computer\HKEY_ CURRENT_USER\test\07\2b”.
Hence, 13 is stored in the name attribute of the registry value and “2091534” in the data attribute of the
registry value, respectively. We note that each registry entry can store multiple key-value pairs. Hence,
in the example, another key-value pair, where the key is 9752, was already stored.

Figure 2: The structure of WR-Store

Through the comparative experiments with the representative persistent key-value stores, i.e.,
LevelDB, BerkeleyDB, and RocksDB, WR-Store showed comparable or even better performance.
In particular, as the data set size increases, it showed better performance, indicating the potential
for supporting large-scale values. However, WR-Store has an inherent limitation in storing the entire
large-scale data sets in the registry because the registry is originally designed so as to store metadata in
small sizes. Microsoft recommends storing values under 2 MB, limiting the application. In this study,
we target the applications to store large-scale values such as images and videos. To this end, we need
to resolve the limitation of WR-Store in storing the large-scale values.
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4 WR-Store++: A Key-Value Store Based On Windows Registry for Storing Large-Scale Values
4.1 Basic Concept

Fig. 3 shows the structure of WR-Store++ consisting of two parts: index and data storage. WR-
Store++ employs key-value separation [11,17] for supporting large values in key-value stores. Key-
value separation is a technique separating the key and the value and storing only the pointer of
the value along with the key in the index and actual values in a separate region. For WR-Store++,
in the data storage, actual values are stored as an individual file in a specified path in the file system;
in the index, the path for the data file is stored, instead of storing the value itself. As shown in Fig. 3,
values stored in the data storage can be accessed through the paths for them stored in the index. In
addition, we maintain metadata of the value in the index for the convenience of processing: (1) the
size of the value and (2) and the stored time. Consequently, by extending the storage in the Windows
Registry into that of the file system, we can utilize the data storage of WR-Store++ as large as the
disk space.

Figure 3: The structure of WR-Store++

4.2 Operations for WR-Store++
Algorithm 1 shows the algorithm of the PUT operation for WR-Store++. It takes the key-value

pair as the input; it stores the input value in the data storage and stores metadata in the index. First,
we obtain a path in the file system to store the value and store the input value as a new file in the
data storage. Next, in the index, we search the leaf node to store the input key-value pair and create a
new registry entry in the leaf node. We store the path of the value stored in the data storage and the
metadata in the index. If the key to be inserted already exists in the index, we update the file in the
data storage and insert a new entry for the key-value pair in the index. Hence, the existing entry for
the key-value pair is not immediately removed, but just marked as invalid. These invalid entries are
removed by periodical compaction of the index.
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Algorithm 1: PUT operation of WR-Store++

Algorithm 2 shows the algorithm of the GET operation. It takes the key as the input and retrieves
the value. First, we search the index; if the input key has the corresponding entry in the index, we refer
to the absolute path indicating a file stored in the data storage. Then, we read the value from the file
and copy it into the memory.

Algorithm 3 shows the algorithm of the DELETE operation. It takes the key to delete the key-
value pair from the WR-Store++. First, we search the index; if the corresponding key exists in the
index, we delete the corresponding value, i.e., a file storing the value, from the data storage and delete
the entry from the index.

Algorithms 2 and 3: GET and DELETE operations of WR-Store++
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4.3 Chunk-Based Storage Structure

In the basic version of WR-Store++, we store the entire value in a separate file. However, it incurs
repeated disk input/output (IO) and random access to the file system when a large number of key-value
pairs is accessed. Thus, we present chunk-based WR-Store++ where we map a file into a large-scale
chunk and a value into a block in the chunk. This improves the performance of the GET operation
because we can retrieve each value only by moving the file pointer to the target block in the chunk,
which could already reside in the memory by the previous operations to access other blocks in the
same chunk, instead of occurring a disk IO whenever the operation occurs. Fig. 4 shows chunk-based
WR-Store++. Because the block size would be various, we need to store additional metadata of the
value, i.e., a starting point of the block and the block size. In addition, we assign the chunk key to
distinguish the chunks and manage the metadata of the chunks, i.e., the absolute path of the chunk
file, the last offset of the file stream of the chunk file, and the entire key range that is covered by the
chunk.

Figure 4: The structure of chunk-based WR-Store++

In the PUT operation, we retrieve the chunk file using the absolute path stored in the index. Then,
we move the file pointer to the last offset of the chunk file and write the input value as a new block at
the last offset of the chunk file. Finally, we update the last offset of the chunk file and the key range
of the chunk. We store the metadata of the block, i.e., the starting offset in the chunk file and the
block size. If the input key already exists, the old ones are marked as invalid and removed through
reallocation, which is completely the same process as basic WR-Store++.

In the GET operation, if the input key exists in the index, we read the path of the chunk file and
the metadata of the block, i.e., the starting offset and the block size. Then, we move the file pointer
to the starting offset for the block in the chunk file and read the block as much as the block size and
copy it to the memory.

In the DELETE operation, we only mark the block invalid in the index, which will be removed by
the periodic reallocation. For the reallocation in chunk-based WR-Store++, we reorganize the chunk
only with valid elements, excluding the others. Hence, for each chunk file, we relocate the blocks in
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ascending order by the key. This process is similar to the compaction of the LSM tree, and through
this, invalid blocks and the corresponding entries in the index are removed to reduce storage waste.

4.4 Parallel-GET for WR-Store++
To further improve the performance of the GET operation in WR-Store++, we design Parallel-

GET for WR-Store++. For this, we divide each block into multiple sub-blocks, and then, assign each
sub-block to each thread, enabling the parallel processing for the block. First, we obtain the block size
and the starting offset of the block in the chunk file. Second, we calculate the starting offset and size of
each sub-block considering the number of threads. Third, we move the file pointer of each thread to the
starting offset of each sub-block. Then, the assigned threads read all the sub-blocks simultaneously.
Without storing additional metadata in the index, we can calculate the starting offset and size for each
sub-block by dividing the sub-blocks evenly.

5 Performance Evaluation
5.1 Experimental Environments and Methods

Tab. 2 shows the list of the datasets used in the experiment. All data sets are copyright-free items
collected from Wikimedia5. To use large-scale values, the datasets are composed of images and videos,
the maximum size of data is 645 MB. In order to exclude the performance variation due to caching
of the operating system, 100 different datasets of the same size for each DATA ID are used. That is,
for each DATA ID, we repeat the experiments to measure the processing time for PUT, GET, and
DELETE operations by 100 times with random keys. Then, we remove the outliers, the top 7% and
the bottom 7%, and obtain the averaged processing time for the remaining results. We use the bytes
processed per millisecond (bytes/millisecond) to measure the throughput of the key-value store.

Table 2: Datasets used in the experiment for a single operation performance evaluation

DATA ID 1 2 3 4 5 6 7 8

SIZE (kb) 19 415 2,043 4,626 12,774 96,156 270,295 661,410

We fix the DELETE operation of all the key-value stores to completely erase data including both
the actual values and the corresponding index entries. In the case of LevelDB and RocksDB, the values
are not deleted immediately, instead, they are marked as invalid and deleted at once when executing
the compaction. Therefore, for the fair performance comparison, we perform one compaction after
all DELETE operations in a single experimental set, removing all the data.

For the performance evaluation of the key-value store when various types of operations perform
continuously, we defined three kinds of mixed workloads according to the different portions of read
and write operations: (1) read heavy, (2) write heavy, and (3) read write average. Tab. 3 shows the ratio
of the size of the used datasets and the portion of operations used in each workload. Each workload
consists of a total of 100 operations. Each UPDATE operation is defined as a pair of DELETE for
an existing key-value pair and PUT of a new key-value pair. Initially, we load all the datasets used for
the workload, and then, each workload was performed. We measured the total elapsed time taken to
perform the workload.

5Wikimedia, https://commons.wikimedia.org
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Table 3: Datasets used in the experiment for mixed workload performance evaluation

Value size Ratio Operation Read heavy Write heavy Read write average

∼100 MB 70 GET 65 20 45
∼500 MB 25 PUT 20 40 30
∼1 GB 5 UPDATE 15 40 25

5.2 Experimental Results
5.2.1 Comparison with WR-Store

Fig. 5 shows the experimental results of WR-Store [22] and WR-Store++ as the data size
increases. We observe that WR-Store becomes significantly slow in DATA ID 6, and the operating
system becomes unstable from DATA ID 7, even failing to measure the performance. On the other
hand, WR-Store++ works stably even in DATA ID 8, i.e., inserting DATA ID 8 100 times in a row
(i.e., datasets of 64.5 GB), showing that WR-Store++ can manage at least 32.74 times larger datasets
than the existing WR-Store considering only a given dataset.

Figure 5: Performance evaluation of WR-Store and WR-Store++
When we compare the performance between WR-Store and WR-Store++ from DATA ID 1 to

6, in the PUT operation, WR-Store++ outperforms WR-Store about 1.96∼4.07 times, showing the
significant overhead of WR-Store in storing large-scale values. In the GET operation, WR-Store++
outperforms WR-Store more significantly as the data set increases, i.e., 28.09 times faster for DATA
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ID 6. In the DELETE operation, they are comparable to each other until DATA ID 5, however, there
is a clear improvement of WR-Store++ over WR-Store for DATA ID 6.

5.2.2 Comparison With the Existing Key-Value Stores

Fig. 6 shows the experimental results of WR-Store++ and the existing key-value stores as the
data size increases. The results show that WR-Store++ outperforms the existing key-value store for
large-scale values. In the PUT operation, WR-Store++ significantly outperforms the other storage.
Specifically, it shows a performance improvement of 1.74∼44.78 times compared to BerkeleyDB,
2.53∼15.8 times to LevelDB, and 1.69∼3.72 times to RocksDB. In the GET operation, we confirm that
the performance of WR-Store++ is rather degraded compared to the other storages for the datasets
up to DATA ID 4, which are relatively small-sized. However, in DATA ID 5, the performance of
WR-Store++ overwhelms those of the other storages, and its performance advantage is maintained
until DATA ID 8. WR-Store++ shows a performance improvement of 1.16∼1.93 times compared
to BerkeleyDB, 1.03∼1.91 times to LevelDB, and 1.17∼2.19 times to RocksDB from DATA ID 5 to
DATA ID 8. In the DELETE operation, the performance advantage of WR-Store++ is constantly
maintained for all the data sets, and in particular, the performance improvement of WR-Store++
increases as the data size increases. Specifically, WR-Store++ shows rather poor performance
compared to BerkeleyDB at DATA ID 1, but outperforms BerkeleyDB in DATA ID 8 by about
2456.91 times. WR-Store++ shows a performance improvement of 1.09∼37.97 times compared to
LevelDB and by 2.22∼162.9 times to RocksDB.

Figure 6: Performance evaluation of WR-Store++, BerkeleyDB, RocksDB, and LevelDB for individ-
ual operations

We also observe that LevelDB and RocksDB, which are based on an LSM tree that is efficient for
write operations, show better performance in PUT and DELETE operations compared to BerkeleyDB
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based on B+-tree. Instead, BerkeleyDB shows relatively better performance in the GET operation. We
note that, in the case of LevelDB, the PUT operation does not work due to a memory error of LevelDB
in DATA ID 8, and thus, all the operations on DATA ID 8 cannot be performed. This supports the
results of previous studies [11] reporting that LevelDB has limitations in processing large amounts
of data.

Fig. 7 shows the experimental results of WR-Store++ and the existing key-value stores on mixed
workloads. We indicate that WR-Store++ clearly outperforms the existing key-value stores for all the
workloads. Specifically, in the write-heavy workload, WR-Store++ outperforms BerkeleyDB by 1.69
times, RocksDB by 2.99 times, and LevelDB by 2.29 times. In the read-heavy workload, WR-Store++
outperforms BerkeleyDB by 1.74 times, RocksDB by 2.59 times, and LevelDB by 2.39 times. In the
read-write average workload, WR-Store++ outperforms BerkeleyDB by 1.79 times, RocksDB by 2.64
times, and LevelDB by 2.22 times.

Figure 7: Performance evaluation of WR-Store++, BerkeleyDB, RocksDB, and LevelDB for mixed
workloads

5.2.3 The Effectiveness of Chunk-Based and Parallel-GET WR-Store++
To validate the effects of chunk-based and Parallel-GET WR-Store++, we compare the perfor-

mance of basic WR-Store++, chunk-based WR-Store++, and Parallel-GET WR-Store++ with 2
threads for the GET operation. Fig. 8 shows their experimental results. Chunk-based WR-Store++
generally outperforms basic WR-Store++ because a whole chunk is read into memory once, and
then, the data is read by moving only the file pointer within the chunk. In particular, the performance
of chunk-based WR-Store++ improves as the data size increases, showing that it outperforms basic
WR-Store++ up to 19.67 times in DATA ID 5.

The performance of Parallel-GET WR-Store++ is rather poor when the data size is small due to
the additional overhead of dividing the target block into small sub-blocks and allocating the resources
to manage them. However, its performance overwhelms that of basic WR-Store++ as the data size
increases. Specifically, as the data size increases, the performance of Parallel-GET WR-Store++ is
improved up to 22.87 times compared to basic WR-Store++ in DATA ID 5 and up to 1.24 times
compared to chunk-based WR-Store++ in DATA ID 6.
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Figure 8: Performance evaluation of WR-Store++, chunk-based WR-Store++, and Parallel-GET
WR-Store++ for the GET operation

Fig. 9 shows the performance of Parallel-GET WR-Store++ as the number of threads varies.
The performance is affected by the following two factors: (1) overhead of allocating tasks to each
thread and (2) improvement due to parallel processing of multiple threads. Regardless of the data
size, the overhead for (1) is fixed, but it increases as the number of threads increases. Therefore, when
the data size is small, the overhead affects much. The larger the size of the dataset is, the greater the
improvement of parallel processing is. That is, in DATA ID 1, the performance becomes degraded as
the number of threads increases. However, as the size of the dataset increases, a clear performance
improvement is observed as the number of threads increases: in DATA ID 8, Parallel-GET WR-
Store++ with 5 threads outperforms that with 2 threads up to 1.2 times, which outperforms basic
WR-Store++ up to 22.26 times.

Figure 9: Performance evaluation of Parallel-GET WR-Store++ as the number of threads varies

6 Discussion

Stability of WR-Store++: WR-Store++ manipulates the Windows registry that is also accessed
by the other processes. However, it only accesses a newly created path in the registry (i.e., . . . /HKEY_
CURRENT_USER/DBName/ . . . ), and it does not cause conflict because the other processes do not
access the path.

Portability of WR-Store++: We can divide the migration into two cases considering target
environments. First, we can migrate the entire datasets stored in WR-Store++ into any environments
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where the Windows operating system runs, including the desktops, servers, and cloud environments.
The detailed steps are as follows:

1. Step A) Export the index from a source machine. We store the index as a file with the extension
of. reg, which is a file format for directly importing the exported registry in the file into another
Windows registry, by using the Windows Registry API6 and Windows CLI7.

2. Step B) Retrieve the dataset from a source machine. We retrieve a directory in a file system in
which the data storage for WR-Store++ resides.

3. Step C) Migrate the exported index to a target machine. We migrate the index to the target
machine by executing the exported file in Step A) in the target machine.

4. Step D) Migrate the dataset to a target machine. We copy the entire directory retrieved by Step
B) under the same file path in the target machine.

Second, we can migrate WR-Store++ to other key-value stores regardless of the running
operating system, including from the local machines to cloud environments, as follows.

1. Step A) Export the index from a source machine. We perform the previous Step A) in the
same way.

2. Step B) Retrieve the dataset by the key-value pair. We retrieve the key from the index by Step
A) directly and the data by following the file path stored in the value of each key from the
index.

3. Step C) Convert the exported index and data into key-value pairs. We construct the key and the
value retrieved in Step B) to the data structure used in each key-value store: Slice for LevelDB
and RocksDB, and Dbt for BerkeleyDB.

4. Step D) Migrate the key-value pairs into the other key-value stores. We insert the key-value
pairs created in Step C) using the insert API of each key-value pair: Put(WriteOptions(), key,
value) for LevelDB and RocksDB, and put(db, NULL, &key, &value, 0) for BerkeleyDB).

Consistency of WR-Store++: While a process accesses an entry in the Windows registry, other
processes are allowed to modify the same entry. The transacted APIs8, to open and close the registry
entry, provide a strong consistency to the entry. In this study, however, we use the normal open and
close APIs to the registry entry because the registry entries for WR-Store++ are only used by WR-
Store++.

7 Conclusions and Future Work

In this study, we proposed a new key-value store, WR-Store++, by enhancing the existing key-
value store, WR-Store, which is tightly coupled with the built-in data structure in the Windows
operating system. WR-Store becomes more efficient as the data size increases, but it has a limitation
to the maximum data size to be stored due to the inherent characteristics of the used built-in data
structure. WR-Store++ overcomes the limitation by storing only the index part in the built-in structure
and the entire data in the file system. Through the extensive experiments, we showed that WR-Store++
can dramatically extend the data storage of WR-Store and has the advantage to manage large-scale

6Windows Registry reg export : https://docs.microsoft.com/ko-kr/windows-server/administration/windows-comm ands/reg-export

7A Windows built-in command “REG EXPORT [Target Key Path] [Extracted File]” exports all the entries stored under [Target Key Path] into a file [Extracted File].

8Windows Registry Writing and Deleting Registry Data, https://docs.microsoft.com/en-us/windows/win32/sysinfo/w riting-and-deleting-registry-data
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values for the key-value store compared to the representative key-value stores, LevelDB, RocksDB,
and BerkeleyDB.

WR-Store++ was designed for a single-machine key-value store in this study. However, since
there is a limitation in the amount of information that can be managed in a single machine, the
necessity of extending the key-value store to a distributed environment increases. WR-Store++ has
the advantages in deploying it on various computing environments because it can be run in any
environment where Windows operating system runs and can be easily migrated into the other key-value
stores. Accordingly, we plan to extend WR-Store++ to a distributed environment involving multiple
nodes with different computing environments. First, we need to design architectures in distributed
environments. We can extend WR-Store++ into distributed environments in two directions: (1)
master-slave architecture and (2) serverless architecture. In the master-slave architecture, the master
node manages the status of slaves and the datasets covered by each slave, and the slaves are responsible
for storing and managing the actual datasets. In the serverless architecture, the managed datasets
are automatically assigned to the nodes by partitioning the entire scope of datasets by a hash-based
method. We evaluate the performance of those architectures using real-world workloads, and then
choose the most appropriate architecture for a given workload. We expect that this architecture can be
further extended to an edge computing-based federated learning framework composed of a Windows
server and Windows mobile devices. Second, transacted APIs are required to guarantee strong consis-
tency while multiple processes are running. However, in distributed environments, strong consistency
will generate massive performance overheads, and they need to be compromised considering the
availability. We plan to design a new sophisticated locking mechanism for the distributed environments.
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