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Abstract: Traditional Wireless Sensor Networks (WSNs) comprise of cost-
effective sensors that can send physical parameters of the target environment
to an intended user. With the evolution of technology, multimedia sensor
nodes have become the hot research topic since it can continue gathering multi-
media content and scalar from the target domain. The existence of multimedia
sensors, integrated with effective signal processing and multimedia source cod-
ing approaches, has led to the increased application of Wireless Multimedia
Sensor Network (WMSN). This sort of network has the potential to capture,
transmit, and receive multimedia content. Since energy is a major source
in WMSN, novel clustering approaches are essential to deal with adaptive
topologies of WMSN and prolonged network lifetime. With this motivation,
the current study develops an Enhanced Spider Monkey Optimization-based
Energy-Aware Clustering Scheme (ESMO-EACS) for WMSN. The proposed
ESMO-EACS model derives ESMO algorithm by incorporating the concepts
of SMO algorithm and quantum computing. The proposed ESMO-EACS
model involves the design of fitness functions using distinct input parameters
for effective construction of clusters. A comprehensive experimental analysis
was conducted to validate the effectiveness of the proposed ESMO-EACS
technique in terms of different performance measures. The simulation out-
come established the superiority of the proposed ESMO-EACS technique to
other methods under various measures.
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1 Introduction

Recently, Wireless Multimedia Sensor Network (WMSN) has become the most preferred tech-
nological advancement to be incorporated in monitoring, surveillance and control applications
under several scenarios that include public security, industrial automation, visual surveillance, health
assistance, traffic control, etc. [1]. With cost-effective sensing and wireless techniques, WMSN has been
developed to function in distinct network architectures with the incorporation of internet service in
application-specific networks [2–4]. Internet of Things (IoT) concept has been conceived in the context
of convergent communication in which the conventional internet values are fused into Wireless Sensor
Network (WSN). WMSN is composed of source nodes that continuously stream or define the period
of time. In this case, huge volumes of data may flow via the network towards sink node.

In Ad Hoc networks that are comprised of lower-rate wireless personal range network technique,
namely IEEE 802.15.4 Medium Access Control (MAC) protocol [5], massive quantities of packets
cannot be transmitted owing to low bandwidth. Furthermore, several packets might get communicated
via Ad Hoc paths which quickly drains the energy in Sensor Nodes (SNs) [6]. In largescale networks,
when each and every node has to transmit the information to their corresponding terminus, it expends
the energy quickly due to long distance, huge quantity of information, and multiple-hop nature of
the transmission [7]. In addition to these, this sort of data dissemination may also result in network
disagreement. Clustering is a typical method used to accomplish scalable and efficient control in
networks [8] while it has various advantages to its credit; it enables the distribution of control through
network; stores energy; and minimizes network contention by allowing the locality of transmission.
The nodes communicate the information through a short distance to the corresponding Cluster Head
(CH). The CH aggregates this information into a small group of useful data [9,10]. Fig. 1 displays the
infrastructure of WMSN.

Figure 1: Structure of WMSN

Kadiravan et al. [11] aimed at achieving minimal count of energy deployment in their study. The
existing investigation work presented a novel Density-Based Clustering (DBC) approach to achieve
energy efficiency in WMSN. DBC method was mostly utilized for data collection in healthcare
environment and is mostly dependent upon three input parameters such as node centrality, Residual
Energy (RE) level, and distance. Besides, two static data collector points named ‘Super Cluster
Head (SCH)’ were also located. Yazici et al. [12] presented a fusion-based WMSN structure which



CMC, 2022, vol.73, no.2 4181

decreases the count of data broadcasted on network through intra-node processing. This infrastructure
explored three important problems: (1) the proposal of WMSN node in the detection of objects
using Machine Learning (ML) approaches; (2) this technique helps in enhancing the accuracy while
reducing the count of data transmitted by WMS node to Base Station (BS), and; (3) a novel cluster-
based routing technique to WMSN which utilizes less power than the existing techniques. In literature
[13], Randomized Boltzmann ML Clustering Algorithm (RBMLCA) was projected with randomized
technique. It contains optimized Quality of Service (QoS) parameters, clustering of nodes, and CH
development. In this altered clustering method to broadcast the data on multimedia sensor network,
RBMLCA approach achieved the optimum quality of evolution.

In the study conducted earlier [14], the researchers proposed to increase the lifespan of WMSN
network by reducing energy utilization of multimedia data broadcast. In order to accomplish this,
an optimum broadcast radius to transfer the sensor node and suitable election of optimum CH
at all the rounds were combined with energy utilization method so as to determine the best cost
model. Afterward, a novel hybrid optimized method named NC-GSO was developed by hybriding
Glowworm Swarm Optimization (GSO) and Dragonfly Algorithm (DA). In literature [15], the
researchers proposed a method to minimize four distinct objectives such as delay, packet loss, memory,
and the expected broadcast cost. An essential purpose of multi-objective function is to create different
optimum solution sets that are employed for evaluating the trade-off amongst distinct objectives.

The current study develops an Enhanced Spider Monkey Optimization-based Energy-Aware
Clustering Scheme (ESMO-EACS) for WMSN. The proposed ESMO-EACS model derives ESMO
algorithm by incorporating the concepts of SMO algorithm and quantum computing. The proposed
ESMO-EACS model involves the design of fitness function using distinct input parameters for effective
construction of clusters. A comprehensive experimental analysis was conducted to validate the effec-
tiveness of the presented ESMO-EACS technique in terms of performance under different measures.
The simulation outcome established the superiority of the proposed ESMO-EACS technique over
other techniques.

2 The Proposed Model

In this study, an effective ESMO-EACS technique is projected for WMSN. The proposed ESMO-
EACS model derives ESMO algorithm by incorporating the concepts of SMO algorithm and quantum
computing. The proposed ESMO-EACS model involves the design of fitness function using distinct
input parameters for effective construction of clusters.

2.1 ESMO Algorithm

In SMO approach [16], Food Seeking Procedure (FSP) characteristics of spider monkeys are
employed with Fission-Fusion Social Structure (FFSS). The four stages of the process are given
below.

• Once the spider monkeys initiate food scrounging, group measures are performed for food
division.

• The position of Local Leader (LL) is upgraded
• Group Leader (GL) upgrades the optimal location to other locals to search food
• The optimum location is upgraded by GL



4182 CMC, 2022, vol.73, no.2

Large groups are separated into many small groups while GL Limit (GLL) and LL Limit (LLL)
are taken into account to determine the optimum location.

F (S, d) = {1, r < p0, Else (1)

whereas, F (S, d) denotes the population distribution function, ‘S’ signifies the spider monkey at
location ‘d’, ‘r’ characterizes the arbitrary value within [0, 1] and ‘p’ denotes the possibility rate.
Furthermore, fitness rate is calculated for all the solutions and ‘S’ with optima fitness rate is chosen
as LL. The searching space is processed based on subsequent stages.

2.1.1 LL Phase

According to the local members and LL, the novel place of spider monkey is defined. The novel
location of the spider monkey is determined as follows.

P (S + 1, d) = {F (S, d) + r1 × (LL (m, d) − F (S, d)) + r2 × (F (N, d)) − (F (S, d)) , if r1

≥ PRF (S, d) ), Otherwise (2)

In Eq. (2), ‘r1’ and ‘r2’ indicate the arbitrary values within [0, 1] and [−1, 1], correspondingly.
Also, the location of ‘m’th LL from ‘d’th dimension are represented by ‘LL (m, d)’. ‘PR’ characterizes
the perturbation rate in FSP.

2.1.2 GL Phase

Here, the position of each object is upgraded on the basis of GL and local members. Now, the
novel location is evaluated as given herewith.

P (S + 1, d) = F (S, d) + r1 × (GL (d) − F (S, d)) + r2 × (F (N, d) − (F (S, d)) (3)

In which, GL (d) represents the GL in ‘d’th location. It can be processed by calculating the possible
rate with Fitness Rate (FR).

PYS = FRS

FRmax

× 0.9 + 0.1 (4)

Here, ‘FRS
′ symbolizes the fitness rate of ‘S’th object and ‘FRmax’ signifies the highest fitness rate.

Fig. 2 depicts the flowchart of SMO technique.

2.1.3 GL Learning Phase

Here, the location of GL is upgraded and the object with ‘Best Fitness Value’ (BFV) amongst the
population is chosen as GL. When the location of GL is not upgraded, then the optimal solution can
be increased to 1.

2.1.4 LL Learning Phase

The member with BFV is chosen as LL and upgraded. If the LL location is not upgraded, then
the global optimal solution can be increased to 1.
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Figure 2: Flowchart of SMO algorithm

2.1.5 LL Decision Phase

When the number of LL is higher than LL, the position of each object is upgraded and the novel
location of spider monkey can bedetermined as follows.

P (S + 1, d) = F (S, d) + r1 × (GL (d) − F (S, d)) + r2 × (F (N, d) − (LL (S, d)) (5)

2.1.6 GL Decision Phase

In this phase, the overall population is separated into small groups, once the amount of global
members is higher than GLL. Once the location of GL is not upgraded, then GL connects and frames
a single group.

In order to improve the efficiency of SMO, ESMO method is acquired by quantum computing
model. It could be a process of computing component that alters the method based on quantum theory
as quantum entanglement, quantum measurement, and state superposition. The two fundamental
states |0〉 and |1〉 make a qubit that is established as a linear incorporation of both states as shown
below.

|Q >= α |0 + β| 1. (6)

|α|2 indicates the likelihood of detection form |0〉, |β|2 epitomizes the likelihood of detection form
|1〉, then |α|2 + |β|2 = 1. The n-qubits quantum is given below.

� =
2n−1∑
x=0

Cx|x >,
2n−1∑
x=0

|Cx|2 = 1. (7)
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The rotation gate is illustrated by mutation operation in order to create a quanta technique-
amended solution and it finally determines the global optimum solution [17]. The rotation gate can be
described below.[

αd (t + 1)

βd (t + 1)

]
=

[
cos

(�θ d
) −sin

(�θ d
)

sin
(�θ d

)
cos

(�θ d
) ] [

αd (t)
βd (t)

]
for d = 1, 2, . . . , n. (8)

�θ d = � × S
(
αd, βd

)
, �θ d symbolizes the rotation angle of qubit, however, � and S

(
αd, βd

)
characterizes the size and direction of rotations.

2.2 Application of ESMO Algorithm for Clustering Process

Degree, RE, and distance are assumed to be ineffectual CH Selection (CHS). The sensor node
(SN) with maximal RE and degree with minimal distance is deemed to be CHS [18].

The RE of SNs (x), whereas communicating k bits to destination SN (y) on distance d, is expressed
as follows.

RE = E − (
ET (k, d) + ER(k)

)
(9)

whereas E represents the current energy of SNs and ET refers to the energy utilized to sense the data.

ET (k, d) = kEe + KEad2 (10)

Here, Ee signifies the energy of electrons and Ea stands for the much-needed amplified energy,
ER(k) defines the energy dissipated for receiving the data and is demonstrated as follows

ER(k) = kEe (11)

The most important parameter for CHS is Average distance (AvgD) to neighboring SN. AvgD
signifies the average of distance values to SNs to its single hop adjacent SN that is defined as follows.

AvgNBDisti =
∑NBi

j=1 dist
(
i, nbj

)
NBi

, (12)

whereas dist
(
i, nbj

)
refers to the distance in SN to neighboring jth SN. Their neighbor nbj

For time sample t, the degree of SNs signifies the count of neighboring nodes which occur from
SN. It is formulated as follows.

Degx = |N (x)| (13)

In which N (x) = {
ny/dist (x, y) < transrange

}
x �= y, and dist (x, y) denotes the distance between

two SNs, nx and ny, transrange refers to the broadcast range of SNs.

3 Experimental Validation

The current section discusses about the experimental validation of ESMO-EACS approach under
distinct aspects. Tab. 1 and Fig. 3 demonstrate the comparative Network Stability (NSB) analysis
results accomplished by ESMO-EACS model under several nodes. The results indicate that the
proposed ESMO-EACS model produced the maximum performance with improved NSB over other
methods. For instance, on 250 nodes, ESMO-EACS model offered a high NSB of 544 rounds, whereas
LEACH, GA, BFSA, and BSFA-TF models obtained the least NSB values such as 408, 492, 531, and
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544 rounds respectively. Moreover, on 1000 nodes, the proposed ESMO-EACS model achieved a high
NSB of 763 rounds, whereas LEACH, GA, BFSA, and BSFA-TF models gained the least NSB values
such as 370, 589, 659, and 694 rounds respectively.

Table 1: NSB examination results of ESMO-EACS and other existing models

Network stability (Rounds)

No. of nodes LEACH GA BFSA BFSA-TF ESMO-EACS

250 280 408 492 531 544
500 301 462 546 589 634
750 360 536 572 674 728
1000 370 589 659 694 763

Figure 3: Comparative NSB analysis results of ESMO-EACS and recent models

Tab. 2 and Fig. 4 exhibit the comparative analysis results in terms of Network Lifetime (NLT)
accomplished by ESMO-EACS model under numerous nodes. The results infer that the proposed
ESMO-EACS model produced the maximum performance with improved NLT over other methods.
For instance, on 250 nodes, ESMO-EACS model offered a high NLT of 894 rounds, whereas LEACH,
GA, BFSA, and BSFA-TF models achieved lesser NLT values such as 742, 813, 830, and 865 rounds
respectively. Furthermore, on 1000 nodes, the proposed ESMO-EACS model delivered a better NLT
of 982 rounds, whereas other methods such as LEACH, GA, BFSA, and BSFA-TF models gained the
least NLT values such as 892, 913, 956, and 960 rounds respectively.
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Table 2: NLT analysis results of ESMO-EACS and other recent models

Network lifetime (Rounds)

No. of nodes LEACH GA BFSA BFSA-TF ESMO-EACS

250 742 813 830 865 895
500 851 870 883 899 953
750 870 894 902 948 985
1000 892 913 956 960 982

Figure 4: Comparative NLT analysis results of ESMO-EACS and recent models

Average Energy Consumption (AEC) analysis was conducted between ESMO-EACS model and
other recent models and the results are shown in brief in Tab. 3 and Fig. 5. The experimental outcomes
infer the enhanced performance of ESMO-EACS model under distinct count of nodes. For instance,
with 250 nodes, the proposed ESMO-EACS model demanded the least AEC of 0.022 J, whereas
LEACH, GA, BFSA, and BFSA-TF models achieved high AEC values such as 0.130, 0.119, 0.078,
and 0.028 J respectively. Furthermore, with 1000 nodes, ESMO-EACS model provided the least AEC
of 0.009 J, whereas LEACH, GA, BFSA, and BFSA-TF models demanded high AEC values such as
0.157, 0.103, 0.067, and 0.060 J respectively.
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Table 3: AEC analysis results of ESMO-EACS and recent models

Average energy consumed (J)

No. of nodes LEACH GA BFSA BFSA-TF ESMO-EACS

250 0.130 0.119 0.078 0.028 0.022
500 0.118 0.105 0.065 0.049 0.017
750 0.125 0.098 0.079 0.029 0.013
1000 0.157 0.103 0.067 0.060 0.009

Figure 5: Comparative AEC analysis results of ESMO-EACS and other recent models

Tab. 4 and Fig. 6 display the comparative analysis results between the proposed ESMO-EACS
model and other models under different number of nodes in terms of throughput (THRP). The results
showcase that the proposed ESMO-EACS model achieved the maximum performance with improved
THRP over other methods. For instance, on 250 nodes, ESMO-EACS model offered a high THRP
of 27563 Kbps, whereas LEACH, GA, BFSA, and BSFA-TF models achieved lesser THRP values
namely, 12487, 15876, 21658, and 23856 Kbps. Furthermore, on 1000 nodes, the proposed ESMO-
EACS model delivered a better THRP of 54716 Kbps, whereas LEACH, GA, BFSA, and BSFA-TF
models achieved less THRP values such as 35170, 48310, 50652, and 52990 Kbps respectively.
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Table 4: THRP analysis results of ESMO-EACS and other recent models

Throughput (Kbps)

No. of nodes LEACH GA BFSA BFSA-TF ESMO-EACS

250 12487 15876 21658 23856 27563
500 18890 20540 23950 26900 38850
750 25743 32650 38500 40890 45950
1000 35170 48310 50652 52990 54716

Figure 6: Comparative THRP analysis results of ESMO-EACS and other recent models

Tab. 5 and Fig. 7 illustrate the comparative Packet Delivery Ratio (PDR) analysis results accom-
plished by ESMO-EACS and other models under several nodes. The results convey that the proposed
ESMO-EACS model attained the maximum performance with improved PDR than other approaches.
For sample, on 250 nodes, ESMO-EACS model obtained a superior PDR of 0.96 rounds, while
LEACH, GA, BFSA, and BSFA-TF models obtained the least PDR values such as 0.90, 0.91, 0.92,
and 0.94 correspondingly. Moreover, on 1000 nodes, the proposed ESMO-EACS model accomplished
an increased PDR of 0.94 rounds, whereas LEACH, GA, BFSA, and BSFA-TF techniques achieved
the least PDR values such as 0.87, 0.89, 0.90, and 0.91 rounds respectively.
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Table 5: PDR examination results of ESMO-EACS and other recent models

Packet delivery ratio

No. of nodes LEACH GA BFSA BFSA-TF ESMO-EACS

250 0.90 0.91 0.92 0.94 0.96
500 0.89 0.90 0.92 0.93 0.95
750 0.88 0.89 0.91 0.91 0.95
1000 0.87 0.89 0.90 0.91 0.94

Figure 7: Comparative PDR analysis results of ESMO-EACS and other recent models

A detailed Packet Loss Rate (PLR) analysis was conducted between ESMO-EACS model and
other recent models under distinct nodes and the results are shown in Tab. 6 and Fig. 8. The obtained
values infer the improved performance of ESMO-EACS model under distinct count of nodes. For
sample, with 250 nodes, the proposed ESMO-EACS model achieved a low PLR of 0.04, whereas
LEACH, GA, BFSA, and BFSA-TF models obtained improved PLR values such as 0.10, 0.09, 0.08,
and 0.06 respectively. Furthermore, with 1000 nodes, the proposed ESMO-EACS model yielded the
least PLR of 0.06, whereas LEACH, GA, BFSA, and BFSA-TF models achieved high PLR values
such as 0.13, 0.11, 0.10, and 0.09 respectively.

Based on the results achieved from comprehensive comparative analyses, it is evident that the
proposed ESMO-EACS model gained effectual outcomes over other methods.
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Table 6: PLR analysis results of ESMO-EACS and other recent models

Packet loss rate

No. of nodes LEACH GA BFSA BFSA-TF ESMO-EACS

250 0.10 0.09 0.08 0.06 0.04
500 0.11 0.10 0.08 0.07 0.05
750 0.12 0.11 0.09 0.09 0.05
1000 0.13 0.11 0.10 0.09 0.06

Figure 8: Comparative PLR examination results of ESMO-EACS and other recent models

4 Conclusion

The current study has developed an effectual ESMO-EACS technique for WMSN. The proposed
ESMO-EACS model derives ESMO algorithm by incorporating the concepts of SMO algorithm and
quantum computing. The proposed ESMO-EACS model involves the design of fitness function using
distinct input parameters for effective construction of clusters. A comprehensive experimental analysis
was conducted to validate the effectiveness of the presented ESMO-EACS technique in terms of
performance under distinct measures. The simulation outcome infer that ESMO-EACS technique
attained the maximum results under different measures compared to other methods. Thus, ESMO-
EACS technique can be utilized to accomplish energy efficiency in WMSN. In future, multihop route
selection approaches can be designed to further improve the lifetime of network.
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