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Abstract: Histopathology is the investigation of tissues to identify the symp-
tom of abnormality. The histopathological procedure comprises gathering
samples of cells/tissues, setting them on the microscopic slides, and staining
them. The investigation of the histopathological image is a problematic
and laborious process that necessitates the expert’s knowledge. At the same
time, deep learning (DL) techniques are able to derive features, extract data,
and learn advanced abstract data representation. With this view, this paper
presents an ensemble of handcrafted with deep learning enabled histopatho-
logical image classification (EHCDL-HIC) model. The proposed EHCDL-
HIC technique initially performs Weiner filtering based noise removal
technique. Once the images get smoothened, an ensemble of deep features
and local binary pattern (LBP) features are extracted. For the classification
process, the bidirectional gated recurrent unit (BGRU) model can be
employed. At the final stage, the bacterial foraging optimization (BFO)
algorithm is utilized for optimal hyperparameter tuning process which leads
to improved classification performance, shows the novelty of the work. For
validating the enhanced execution of the proposed EHCDL-HIC method, a
set of simulations is performed. The experimentation outcomes highlighted
the betterment of the EHCDL-HIC approach over the existing techniques
with maximum accuracy of 94.78%. Therefore, the EHCDL-HIC model can
be applied as an effective approach for histopathological image classification.
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1 Introduction

Cancers have turned out to be one of the leading public health problems. Histopathological images
(HI) of cancer tissue samples are regularly checked by pathologists for cancer type prognosis and
identification [1]. Haematoxylin-Eosin (H&E) stained slides were utilized by pathologists for over a
century [2]. With the emergence of digital pathology, HIs is exists for automatic analysis at scale. Hence,
the interpretation of the HIs is time taking and hard which demands the professional’s knowledge
[3]. In addition to this, the results of interpretation could be influenced by the level of experience of
the pathologists engaged. Thus, computer-aided interpretation of HIs acts an important role in the
detection of breast cancer (BC) and its prognosis [4].

But the process which involves advancing tools for executing this analysis is hindered by subse-
quent challenges. Firstly, HIs of BC are fine-grained, high-resolution images that show complicated
textures and rich geometric architecture. The differences observed within a class and the constancy
amongst classes could make classification highly complex, particularly while addressing various
classes [5]. Secondly, the problem is the restriction of feature abstraction techniques for HIs of BC.
Conventional feature abstraction techniques, namely Gray-level co-occurrence matrix (GLCM) and
scale-invariant feature transform (SIFT) all depend on supervised information. Moreover, previous
knowledge regarding data requires for selecting helpful features that make, the computational load
very heavy and feature extraction proficiency extremely low. Finally, the final abstracted features are
only unrepresentative and few lower-level features of HIs. Subsequently, this may result in final model
generating inferior classification outcomes [6].

Deep learning (DL) methods are capable of extracting features automatically, learning advanced
abstract representations of data, and restoring information from data automatically [7]. It can easily
solve the issues of conventional feature extraction and it was implied in biomedical science, computer
vision, and many other domains in a successful manner. The latest years bring specifically intense
advancements of DL related methods for image classification. Specifically, Convolutional Neural
Networks (CNNs) have acted as a backbone for various breakthroughs in computer vision wholly
[8], particularly in image classification. In general, medical imaging, and especially HI classification
(HIC), considers the significant applications of such approaches. Various machine learning (ML)
methodologies exceed the performances of whole-slide segmentation and tissue type classification,
validating there exists a lot of information regarding the patients encoded in HIs than instantly visible
by eye [9,10].

Hameed et al. [1 1] proposed an ensemble DL method for the certain categorization of carcinoma
and non-carcinoma BC histopathology images using gathered information. Then, trained four distinct
methods depends on pre-trained visual geometry group (VGG)-16 and VGG19 structures. At first,
we developed fivefold cross validation processes on every single method, such as fine-tuned VGGI16,
fully trained VGG16, fine-tuned VGG19, and fully trained VGG19 architectures. Next, developed an
ensemble model by taking the average of predicting possibility of the carcinoma class. Kumar et al. [12]
presented an architecture based VGGNet-16 and assessed the efficiency of the fused architecture along
with distinct classifications on the human BC data set (BreakHis) and CMT data set (CMTHis).

Vang et al. [13] developed a DL architecture for multiple class BC image categorization. After
which the patch level prediction is passed by an ensemble fusion architecture including logistic
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regression (LR), majority voting, and gradient boosting machine (GBM) to attain the image level
prediction. Gour et al. [14] proposed an automatic technology for the diagnoses of tumors via HI.
In the developed model, we designed a residual learning-based 152-layered CNN called as ResHist
for breast tumor HIC. ResHist architecture learns discriminative and rich features from the HIC into
malignant and benign.

Peng et al. [15] designed a multi-task DL architecture for histopathology image retrieval and
classification simultaneously, which leverages the classical approach of K-nearest neighbor (KNN)
to enhance model interpretability. For testing image, we retrieved a similar image from the training
database. The retrieved nearest neighbour method is utilized for classifying the testing image with
a confidence score and presents a human interpretable description of the categorization. In [16], a
DL and transfer learning (TL)-based technique is presented for classifying HI for BC diagnoses. In
our work, we have adapted patch selection method for classifying breast HI on smaller amounts of
training images by TL method without losing the performance. Also, feature extracted from Efficient-
Net model is utilized for training and support vector machine (SVM) classification.

This paper presents an ensemble of handcrafted with deep learning enabled histopathological
image classification (EHCDL-HIC) model. The proposed EHCDL-HIC technique initially performs
Weiner filtering (WF) based noise removal technique. Once the images get smoothened, an ensemble of
deep features and LBP features are extracted. For classification process, bidirectional gated recurrent
unit (BGRU) model can be employed. At the final stage, bacterial foraging optimization (BFO)
algorithm is utilized for optimal hyperparameter tuning process which leads to improved classification
execution. For validating the enhanced performance of the proposed EHCDL-HIC technique, a set
of simulations is performed.

2 The Proposed Model

In this work, a new EHCDL-HIC method was developed for effective classification of HIs. The
proposed EHCDL-HIC method initially performs WF based noise removal technique. Once the
images get smoothened, an ensemble of deep features and SURF features are extracted. Then, the
BGRU model can be employed for the identification and classification of HIs. Finally, the BFO
algorithm has been utilized for optimal hyperparameter tuning process which results in improved
classification performance. Fig. | depicts the block diagram of EHCDL-HIC technique.

2.1 Ensemble of Feature Extraction

At this stage, an ensemble of handcrafted and deep features is extracted to accomplish effective
classification purposes. Initially, the LBP model is employed to generate features. A new kind of
feature depiction is shading-based LBP operator that abuses texture and shading discriminative
characteristics. This feature comprises of binary pattern that depicts the surrounding pixel in the
region. The obtained feature from the locations is interconnected with a solitary feature histogram
that frames an image representation. By evaluating the similarities among the pixel and the histogram
of images, value differs bit by bit alongside this line and a bigger window estimation is well trained for
making the architecture productive.

p—1
LBP(p.p.) = Z2ng(Np — N(@Papo)) (1)

p=0
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Figure 1: Block diagram of EHCDL-HIC technique

Now, LBP(p.p.,) represent the focus pixel estimation of the image and p denotes the list of
neighbor pixel esteem. The LBP esteem can be processed by using scalar increase among binary and
weight networks.

Then, the CapsNet architecture is employed for producing a set of features existing in it [17].
The architecture of CapsNet contains capsule neuron structure, dynamic routing algorithm, and fully
connected layer (FC). Initially, FC layer is utilized for extracting features of the input factor. Later,
dynamic routing algorithm is utilized among the digitCaps layer and the primary capsule layer for
iteratively updating the weight, and it also allows the digitCaps layer for extracting entity features
from lower-level capsules and capturing geometric relationships.

2.2 Image Classification

In this study, the BGRU method can be employed for the identification and classification of HIs
[18]. Long short term memory (LSTM) is a better version based on recurrent neural network (RNN)
that could resolve the gradient explosion and vanishing problems. Simultaneously, it is utilized in
every kind of problem with time series features. GRU is a variant of LSTM system that is simpler
when compared to LSTM. Different from LSTM that three gates (forgetting, output, and input
gates), GRU has two gates (reset and update gates). The function of update gate is same as input
and forgetting gates in LSTM. It defines the information to forget and new data to update and add.
Since the number of gating of GRU is lesser in comparison with LSTM, GRU is fast in comparison
with LSTM in calculation. Fig. 2 demonstrates the framework of GRU method. The architecture of
GRU is calculated by the following equations:

Z, =0 (WZ . [ht—la xt]) ) (2)
”zZU(VVr'[hH,Xz])a (3)
ht = (1 - Zz)*hr—l +z, % il,, (4)

h, = tanh (W [rh.1,x]). Q)
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1
S() = 7o (©)
1"’ — e_x J— —
S = Gy = SO = S0, (7)

In the equation, o indicates the sigmoid activation function that is utilized for compressing all
the output datasets among 0 and 1. W, and W. indicates the weight of reset gate r, and update gate
z, correspondingly. The sigmoid function and derivation equation are given in Eqgs. (6) and (7). A,_,
indicates the historical data, 4, has the historical data /,_, and the existing data h,. The existing data
can be defined by the historical data /4,_; and the existing input. The result corresponds to the final
state of the reverse and the positive time series are integrated as the last output result. At the same
time, the method could utilize the previous and upcoming datasets.

hy
ha [ A

A 4

e >
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Figure 2: Structure of GRU

2.3 Hyperparameter Optimization

At the last stage, the BFO algorithm has been utilized for optimal hyperparameter tuning process
which results in improved classification performance [19]. The E.coli foraging method is inspired by
BFO approach that comprises swarming, chemotaxis, elimination-dispersal step, and reproduction
operations. The bacterial foraging approach is inspired by this stage. Initially, change in the direction of
bacteria for a certain time depends on tumbling. Then, a short distance is changed by bacteria. Assume
that 0 represents the location of bacterium and 6°(j, k, ) implies the i-th bacterium in j-th chemotaxis,
kth reproduction, /th elimination-dispersal process. It can be shown in the following equation:

b () = —0 ®)
= ———
VADT A ()
Now A(i),i = 1,2,...,S denotes an arbitrary parameter. The A, (1)), m = 1,2,...,p in A(i)

ranges from [—1, 1]. The variable S denotes the amount of bacteria. This can be formulated in the
below equation:

G+ Lk, D=6 (@kD+C@e () 9)
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In which C(), i = 1,2,...,S indicates a distance for moving at the swimming stage. The
transmission among bacteria is inspired by the swarming method. The bacteria repels one another
once they are at risk. The swarming behavior can be shown in the following:

s P
JCC (9, 9[ (i; k) Z)) = Z [_dmtract exp (_Wattmct Z(Q/ - 6/1)2)}
/=1

i=1

s P
+ Z [hrepe//um eXp (_Wrepellam z(ef - 9[’)2)} (10)
i=1 =1

whereas 0 = [0,,...,6,]" indicates a bacterium in the swarming phase. The parameter 6; is the / th
element of the ith bacterium location 6'. The transmission value Jec(0, 6'(i, k,[)) among bacteria is
added to the fitness function resulting in the chemotaxis stage j; Parameter p indicates the amount

of problem dimension; Variable S denotes the amount of bacteria; Factors d.u> Waracts Prepeianss a1
Wepena TEPTEsent the repulsion or attraction force. The fitness results for izb bacterium are given below:
J(ij kD) =J (Q,), k1) + Jee (0,6 (i, k, 1)) (11)

The reproduction procedure can be performed after N, chemotactic operation. The parameter S
is considering a positive even integer. The amount of bacteria population with adequate nutrients is
S.. These bacteria are reproduced without mutation.

S
S, == 12
- (12)
The accumulated cost can be defined by the health of bacterium. When the nutrient of a bacterium
is minimized, the value of accumulated cost is maximized. The bacteria are arranged in descending
order corresponding to their health. The S, minimum healthy bacteria are removed. Furthermore, the

other S, healthier bacteria are reproduced.

3 Performance Validation

In this study, the experimental validation of the EHCDL-HIC model is tested using a HI
classification dataset for BC [20]. The dataset includes 588 samples into benign class and 1232 images
in malignant class. A few sample images are depicted in Fig. 3.

Fig. 4 portrays a collection of confusion matrices generated by the EHCDL-HIC model on 5 test
runs. The figure indicated that the EHCDL-HIC model has obtained maximal performance under
each run. For instance, with run 1, the EHCDL-HIC model has recognized 536 samples under benign
class and 1180 samples under malignant class. Moreover, with run 3, the EHCDL-HIC technique has
identified 540 samples under benign class and 1179 samples under malignant class. Furthermore, with
run 5, the EHCDL-HIC system has identified 542 samples under benign class and 1183 samples under
malignant class.

Tab. 1 provides a detailed classification result interpretation of the EHCDL-HIC model under
distinct test runs. The experimental table values pointed out that the EHCDL-HIC method has
accomplished effectual outcomes under every run.

Fig. 5 offers a brief classifier result of the EHCDL-HIC model under distinct runs. The outcomes
implied that the EHCDL-HIC model has gained maximal results over the other models. For instance,
with run-1, the EHCDL-HIC model has offered average prec,, reca,, and F,.,. of 93.47%, 93.47%, and
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94.29% respectively. In addition, with run-3, the EHCDL-HIC algorithm has accessible average prec,,
reca;, and F,,,, of 93.58%, 93.77%, and 93.67% correspondingly. Also, with run-5, the EHCDL-HIC
technique has offered average prec,, reca;, and F,,,. of 93.98%, 94.10%, and 94.04% correspondingly.

Figure 3: Sample Images (Benign and Malignant)
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Figure 4: Confusion matrix of EHCDL-HIC technique under different 5 runs
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Table 1: Result analysis of EHCDL-HIC technique with different measures and runs

Class label Accuracy Precision Recall  F-score Geometric mean
Run-1

Benign 94.29 91.16 91.16 91.16 93.44
Malignant 94.29 95.78 95.78 95.78 93.44
Average 94.29 93.47 93.47 93.47 93.44
Run-2

Benign 94.34 91.31 91.16 91.23 93.48
Malignant 94.34 95.78 95.86 95.82 93.48
Average 94.34 93.55 93.51 93.53 93.48
Run-3

Benign 94.45 91.06 91.84 91.45 93.75
Malignant 94.45 96.09 95.70 95.89 93.75
Average 94.45 93.58 93.77 93.67 93.75
Run-4

Benign 94.67 91.68 91.84 91.76 93.91
Malignant 94.67 96.10 96.02 96.06 93.91
Average 94.67 93.89 93.93 93.91 93.91
Run-5

Benign 94.78 91.71 92.18 91.94 94.08
Malignant 94.78 96.26 96.02 96.14 94.08
Average 94.78 93.98 94.10 94.04 94.08

Fig. 6 provides a detailed classifier result of the EHCDL-HIC technique under distinct runs.

The outcomes demonstrated that the EHCDL-HIC approach has reached maximal results over the
other approaches. For instance, with run-1, the EHCDL-HIC approach has obtainable average acc,
and G-measure (GM) of 94.29% and 93.44% respectively. Moreover, with run-3, the EHCDL-HIC
algorithm has offered average acc, and GM of 94.45% and 93.75% correspondingly. Eventually, with
run-5, the EHCDL-HIC methodology has obtainable average acc, and GM of 94.78% and 94.08%
correspondingly.



CMC, 2022, vol.73, no.2 4401

= Run-1 [8 Run-3 [ Run-5
94.2 A 1 Bl Run-2 3 Run-4

Values (%)

93.6

Precision

Figure 5: Prec,, reca;, and F,,, analysis of EHCDL-HIC technique with five runs

95.00 [ Run-1 = Run-3 S Run-5 -
BN Run-2 Run-4

94.75

94.50 - — i

94.25 -

Values (%)

93.75 A

93.50

Accuracy Geometric Mean

Figure 6: Acc, and GM analysis of EHCDL-HIC technique with five runs

The training accuracy (TA) and validation accuracy (VA) attained by the EHCDL-HIC model
on test datasets is demonstrated in Fig. 7. The experimental outcomes implied that the EHCDL-HIC
model has gained maximum values of TA and VA. In specific, the VA is seemed to be high than TA.

The training loss (TL) and validation loss (VL) achieved by the EHCDL-HIC model on test
datasets are established in Fig. 8. The experimental outcomes inferred that the EHCDL-HIC model
has accomplished least values of TL and VL. In specific, the VL is seemed to be lower than TL.
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Figure 8: TL and VL graph analysis of EHCDL-HIC technique

A brief precision-recall examination of the EHCDL-HIC model on test dataset is portrayed in
Fig. 9. By observing the figure, it has been noticed that the EHCDL-HIC method has established
maximum precision-recall performance under all classes.

Fig. 10 portrays a clear receiver operating characteristic (ROC) investigation of the EHCDL-HIC
model on test dataset. The figure portrayed that the EHCDL-HIC model has resulted in proficient
results with maximum ROC values under distinct class labels.

With a view to highlighting the enhanced outcomes of the EHCDL-HIC method, a wide range of
simulations are carried out in Tab. 2 [21].
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Figure 10: ROC curve analysis of EHCDL-HIC technique

Table 2: Comparative analysis of EHCDL-HIC technique with existing algorithms

Methods Accuracy Precision Recall F-measure  Geometric mean
KNN model 65.77 63.48 71.98  63.37 62.36

NB model 78.39 73.69 72.41 73.35 76.04

Discrete 82.69 82.74 80.8  82.33 82.10
transformation

SVM model 85.54 85.24 87.14 81.42 82.76

(Continued)
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Table 2: Continued

Methods Accuracy Precision Recall F-measure  Geometric mean
SURF-DL model 89.41 85.91 80.73 85.75 85.29
EHCDL-HIC 94.78 93.98 94.10 94.04 94.08

Fig. 11 illustrates accu, and GM inspection of the EHCDL-HIC model with available models. The
figure stated that the KNN and Naive bayes (NB) methods have showcased bad performance with
minimal values of accu, and GM. Meanwhile, the discrete transformation (DT), SVM, and speeded
up robust features (SURF)-DL models have gained moderately improved values of accu, and GM.
However, the EHCDL-HIC model has gained maximal performance than the other methods with
increased accu, and GM of 94.78% and 94.08% respectively.

3 KNN Model 3 SVM Model
100 - EEm NB Model EEm SURF-DL Model
= Discrete transformation @@ EHCDL-HIC
m -
g
wn
£ %
g
70 4
w -

Precision Recall F-Measure

Figure 11: Comparative analysis of EHCDL-HIC system with existing algorithms

Fig. 12 showcases prec,, reca;, and F,,,.. analysis of the EHCDL-HIC method with existing
methods. The figure reported that the KNN and NB techniques have showcased poor performance
with minimal values of prec,, reca,, and F,,,,,.. Simultaneously, the DT, SVM, and SURF-DL models
have obtained moderately improved values of prec,, reca,, and F,,.... At last, the EHCDL-HIC model
has gained maximal performance over the other methods with increased prec,, reca;, and F,,... of
93.98%, 94.10%, and 94.04% correspondingly. After observing the above-mentioned figures and tables,
it is apparent that the EHCDL-HIC model has surpassed the existing techniques.



CMC, 2022, vol.73, no.2 4405

3 KNN Model 3 SVM Model
I NB Model I SURF-DL Model

100 7 == Discrete transformation E=@ EHCDL-HIC

Values (%)

Accuracy Geometric mean

Figure 12: Acc, and GM analysis of EHCDL-HIC system with existing algorithms

4 Conclusion

In this study, a new EHCDL-HIC model was advanced for effective classification of HIs. The
proposed EHCDL-HIC technique initially performs WF based noise removal technique. Once the
images get smoothened, an ensemble of deep features and SURF features are extracted. Then, the
BGRU model can be employed for the identification and classification of HIs. Finally, the BFO
algorithm has been utilized for optimal hyperparameter tuning process which leads to improved
classification performance. With a view to authenticating the enhanced execution of the proposed
EHCDL-HIC technique, a set of simulations is performed. The experimentation outcomes highlighted
the betterment of the EHCDL-HIC approach over the existing techniques. Therefore, the EHCDL-
HIC model can be applied as an effective approach for histopathological image classification. In future,
the classification execution is improvised by the use of feature selection approaches.
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