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Abstract: Independent human living systems require smart, intelligent, and
sustainable online monitoring so that an individual can be assisted timely.
Apart from ambient assisted living, the task of monitoring human activities
plays an important role in different fields including virtual reality, surveillance
security, and human interaction with robots. Such systems have been devel-
oped in the past with the use of various wearable inertial sensors and depth
cameras to capture the human actions. In this paper, we propose multiple
methods such as random occupancy pattern, spatio temporal cloud, way-
point trajectory, Hilbert transform, Walsh Hadamard transform and bone
pair descriptors to extract optimal features corresponding to different human
actions. These features sets are then normalized using min-max normaliza-
tion and optimized using the Fuzzy optimization method. Finally, the Masi
entropy classifier is applied for action recognition and classification. Exper-
iments have been performed on three challenging datasets, namely, UTD-
MHAD, 50 Salad, and CMU-MMAC. During experimental evaluation, the
proposed novel approach of recognizing human actions has achieved an
accuracy rate of 90.1% with UTD-MHAD dataset, 90.6% with 50 Salad
dataset, and 89.5% with CMU-MMAC dataset. Hence experimental results
validated the proposed system.

Keywords: Classification algorithm; human action recognition; motion sen-
sors; machine learning; Masi entropy

1 Introduction

For secure surveillance and monitoring of an individual’s daily life, most researchers are working
with mixed-sensors techniques such as vision, markers, and wearable sensors [1] that have led to a
revolution in the field of human action recognition (HAR). HAR systems have provided quality living
timely assistance to residents in their own homes through the use of vision and wearable sensors-based
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systems [2]. HAR involves tracking human body through wearable inertial sensors [3] and recognizing
the actions through computer vision. The proposed system is a reliable and a novel HAR system based
on a set of unique features. Moreover, it is robust against variations in human body [4] motion.

Wearable sensors have a wide range of real-world applications in HAR including healthcare
monitoring [5], surveillance systems [6] and security systems that make require object detection,
spatial-temporal movement recognition, pedestrian localization, human face and age detection [7],
face expression recognition, gait event recognition [8] etc. In security systems, HAR models can be
used to monitor and detect uncertain and strange events. In healthcare, they can be used to monitor a
patient’s health [9], their Sfitness activities, and their medicine routines. In HAR field problems include
lighting variations, complex human movements, cluttered backgrounds, wired and wearable devices,
and scale variations. Hence, the proposed system is designed in a way that it is not only robust against
these challenges and but also powerful enough to collect and analyze large volume of healthcare
data. To overcome the aforementioned issues, wearable sensors and vision cameras [10] have been
used. The advances in technology have resulted in a wide range of wearable sensors but gyroscopes,
accelerometers, and magnetometers are more commonly used to acquire the input in HAR systems.
In vision systems, Kinect cameras [11] are employed more often to eliminate the background objects.
These cameras are cost effective too.

In this research, we contribute a novel approach that enjoys the fusion of both wearable and
depth camera sensors for obtaining information regarding patients. Initially, inertial (accelerometer)
data is filtered to extract the wavelet transform and statistical features (mean, variance, etc.). While,
from depth sensors, spatio-temporal cuboid, random occupancy pattern, and depth motion maps are
considered. The feature extraction methods used for skeleton joints-based features include way-point
trajectory, bone pair descriptors and displacement. In all these feature extraction techniques, high
dimensions increase the computational complexity. Hence, a fuzzy optimization algorithm has been
used to reduce the complexity of the features. In the final step, Masi entropy classifier has been used
to measure the human activities and obtain high accuracy. The proposed method is evaluated using
three datasets: University of Texas at Dallas Multimodal Human Action Dataset (UTD_MHAD),
Carnegie Mellon University Multimodal Activity (CMU-MMAC), and 50 salad.

The remaining sections of the paper are organised in this way. Section 2 of this paper includes
related work. Section 3 provides detailed information about the proposed methodology. Section 4
briefly explains the experimental setup with the results. In Section 5, conclusion and future directions
are discussed.

2 Related Work

In this section, some of the recently developed state-of-the-art systems have been discussed. The
related work is further divided into two subsections as some of these HAR systems require input
acquisition through video sensors while others have employed inertial sensors.

2.1 Action Recognition via Video Sensor

In the past few years, researchers have examined human actions by extracting skeleton infor-
mation through video sensors. In [12], the input frame sequences were used for the extraction of
temporal displacement skeleton poses and k-means clustering was applied to generate key poses.
Further, SVM classifier was used to classify each action pose. In [13], the authors proposed spatial
and temporal features of skeleton joints extracted through vector of locally aggregated descriptors
(VLAD) algorithm and combined via margin nearest neighbour (LMNN) algorithm. In order to
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detect and recognize human actions, k-nearest neighbour (KNN) classifier was implemented. In
[14], the researchers proposed dictionary learning and sparse technique to automatically learn the
configuration of body joints and classify video sequences.

Similarly, the latest developments in depth devices are also contributing to HAR. In [15], the
proposed system used depth maps to extract features. Then, the convolutional neural networks
(ConvNets) and Polynormal fisher vector was used for classification. Another system [16] denoised
depth images through Bilateral Filter (BLF) and segmented image clusters using Simple Linear
Iterative Clustering (SLIC) algorithm. The actions were then classified using K-ary Tree Hashing
(KTH).

2.2 Action Recognition via Inertial Sensor

On the other side, human actions can be recognized through wearable inertial sensors that are
attached with different human body parts as shown in Tab. 1. Nava and Meléndez [17] proposed a novel
system based on wearable inertial sensors to extract feature set of limb motion. For the classification of
actions, both KNN and SVM classifiers are implemented. In [18], the authors described various sets of
statistical, wavelet, and binary features for multifused modal data. Then, adaptive moment estimation
and maximum entropy Markov model were used for pattern recognition. In [19], the authors developed
a novel system that considered both statistical and non-statistical features of data acquired via inertial
sensors. Then, further evaluation of these feature sets was performed via genetic algorithm to recognize
human actions.

Table 1: Comparative table highlighting the commonalities and the differences of our system with
other methods

Methodology Description

[20] The authors developed error-free
identification of the system to track human
actions. Four types of features were extracted to
identify the sustainable human movements more
accurately and experiments were performed on
three challenging datasets.

In the proposed method, only RGB and
Depth data is used for experimentation.
Our feature set and optimization
technique are different. Moreover, Neuro
fuzzy classifier was used in this paper
while we used Masi Entropy classifier.

[21] In this system, three body-worn inertial
sensors were attached to different body parts and
hieratical features were extracted. Experiments
were performed on three benchmark datasets.

In this system, statistical and
time-frequency features were extracted
that differentiate from our model.
Commonalities are that these datasets
used accelerometer data and a similar
de-noising technique.

[22] This system processes real-time important
information acquired through wearable devices
from home environments to develop assistive
systems. Evaluation was performed through
leave-one-out cross validation technique using
three datasets.

Commonalities are the use of
accelerometer for activity detection and
CMU-MMAC dataset. The feature set,
optimization, and classification methods
are different than those used in our
system.
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All above mentioned methodologies of different systems in related work are tested over depth,
skeleton and inertial sensors for analyzing complex feature sets. However, in this paper, we proposed
a novel methodology that uses fusion of various sensors to understand humans’ actions for providing
ambient assisted living.

3 Material and Methods

In this section, we discuss the main steps of the proposed HAR model followed by a detailed
description of each phase. Fig. 1 shows the flow chart of the proposed system.

Figure 1: System architecture of the proposed system

3.1 Data Acquisition and Pre-Processing

In IMU [23] sensors, noise data affects the signal sensitivity which causes variance in feature sets,
alternation in the signal shape, and creates a visible difference in the signal values. Therefore, two
filtering methods have been used for the purpose of noise reduction that include median and average
smooth filters. A median filter is a nonlinear method that extracts the signal noise and smoothens the
signal into normal motion. An average smooth filter is used to smoothen the peak values in a signal.
Median filter is represented by Eq. (1) as shown:

y [i, j] = med{x [m, n] , (m, n) ∈ w} (1)

where m and n are the element of window w having specified neighborhoods centered around pixels
[i,j] in an image. x [m, n] is the input noisy signal and y [i, j] is the smooth output.

While, in joints construction, noise contributes to the incorrect detection of positions of joint
points. In some conditions, noise is produced due to room light effects or overlapping of two or more
joints. During pre-processing, noise is removed and skeleton joint trajectories are projected on x, y
and z planes accurately and efficiently, improving the overall action recognition process as shown in
Fig. 2.
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Figure 2: Triaxial accelerometer sensor representation (a) Unfiltered and filtered data with average
smooth filter (b) Median filter data with unfiltered signals

3.2 Windowing Selection

During windowing selection, we observed the partitioned signals in different ways. Different
techniques have been applied by researchers for window selection including activity defined, event
defined, and sliding window. After preprocessing, the next step is to select the signal for 4–5 s
duration of window. Fixed-sized windowing approaches may be overlapping and non-overlapping.
Non-overlapping window approaches have shown better performance.

3.3 Features Extraction Methods over Multiple Sensors

In this section, we analyzed feature extracted from inertial, skeleton, and depth data which are
then used for further processing. The process of feature extraction is discussed in detail below:

3.3.1 Inertial Sensor: Magnitude

For feature sets extraction, we retrieved inertial signals in the form of magnitude. Magnitude is the
sum of three-dimensional x, y and z values that are calculated for all the signal values and is represented
by Eq. (2):

Ms = √
x2

s + y2
s + z2

s (2)
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where Ms represents the magnitude of the signal and (xs , ys, zx ) represents the three-axes. Next, time
domain features (mean and absolute mean) are extracted to examine each action of humans using
Eqs. (3) and (4):

n = 1
N

∑
|xm| (3)

nΔ = 1
N

N∑
i=1

|xm| (4)

where n is the mean of the signal |xm| and nΔ is the mean signal of absolute value of the signal, N
represents the total sample count in the signal with the sampling rate of 50 Hz (See Fig. 3).

Figure 3: Sensor triaxial acceleration plot of magnitude with filtered and unfiltered signal

3.3.2 Inertial Sensor: Hilbert Transform

To get the Hilbert transform, we calculated the gain of minimum level frequency values of the
signal angle that is altered from Fourier transform of the signal u(t). Hilbert transform computes the
real values of the signal and outputs the complex result in the form of real and imaginary values of
Hilbert transform pair. Fig. 4 shows the Hilbert output in the form of values of the real eigenstate.

H (t) = 1
π

∫ ∞

−∞

x(s)
t − s

ds (5)

where x(s) is the signal which has the same amplitude spectrum and autocorrelation function. Here
x(s) is the real value of the signal data with zero padding.

3.3.3 Inertial Sensor: Walsh Hadamard Transform

Walsh Hadamard Transform (WHT) is used to split a signal into a set of signals on the basis of
orthogonal transformation. The input signal is transformed into rectangular and square waves with +1
and –1 values and returns a sequence of values to reduce the computational costs. The WHT discrete
values of a vector is calculated by Eq. (6).

Hw (n) =
N−1∑
k=0

x (k)

M−1∏
j=0

(−1)kjAM−1−j , n = 0, 1, . . . ., N − 1 (6)

where N is the sample number to calculate the vector set and T = log2 N. Algorithm 1 explains the
process of feature extraction from inertial signals.
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Figure 4: Signal hilbert transform feature along x, y and z-axis (a) x signal (b) y signal (c) z signal

Algorithm 1: Pseudo code for IMU signal feature computation
Input: Accelerometer (a, b, c)
Output: Multi-fused feature vector (n1, n2, . . . . , nm)
1 samplesignals � GetSampleSignal()
3 // IMU signal feature computation //
4 HAR(Accel)
5 ConcatenateFeatureVector � []
6 Denoisedata � MedianFilter(Accel)
7 SampledData � samplesignals(Denoisedata)
8 // while exit condition not satisfied do
9 [mean, magnitude] � ExtractStatisticalFeatures(SampleData)
10 [WHT,HT] � ExtractWaveletFeatures(SampleData)
11 ConcatenateFeatureVector � [mean, magnitude, WHT, HT]
return: Multi-fused feature vector

3.3.4 Skeleton Joint: Displacement

Several well-known algorithms of spatial and temporal space (orientation and location of joints)
for skeleton features [24] have been proposed in the past. In this paper, the spatial features have been
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extracted by eliminating the distance between 20 different joints of the human skeleton. Consider a
skeleton consisting of R joints, torso joint coordinates (P0), neck joint coordinates (P2), and the nth
joint feature (Pn), the distance dn between P2 and P0 is calculated by Eq. (7) as and for each frame, a
feature vector is created as given in Eq. (8):

dn = Pn − P0

||P2 − P0|| (7)

n = 1, 2, 3, . . . , R − 1.

s = [d1,d2,d3,d4, . . . , dr−1] (8)

where d is the distance from a fixed point and s is the vector has all the distance points.

3.3.5 Skeleton Joint: Bone Pair Descriptor

The angular relation between bones can be detected by Bone Pair Descriptor (BPD) and Point
Pair Descriptor (PPD) that uses 3D coordinate systems. In addition, BPD uses the skeleton data in
which bones allow vectors to recognize different actions of humans instead of normal surface. The
calculation of BPD [25] in which Cp is the point of center, V c is the vector that relates with the center
point Cp, Ci is the point that is not the center joint, and V i is the vector that relates to non-center
joints. V c and V i are vectors that correspond with the joint bone or spine (See Fig. 5). The relative
calculation of the vector V c and V i are described by the gain values of β, ϕ and Φ which are calculated
by Eqs. (9)–(11).

Figure 5: Bone pair descriptor calculation from center point joint

β = acos(si.vi) (9)

ϕ = acos
(

u.
ri

|ri|
)

(10)

� = atan
(

ti.vi

u.vi

)
(11)

u = vc (12)

si = ri

|ri| × u (13)

ti = u × vi (14)
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where vectors u, si, and ti define the Darboux frame. Here . and × represent scaler and vector product,
respectively. The BPT calculates the features of joints that are far away from the center by using the
formulae in Eq. (15) that is described as follows:

S = [β1, ϕ1, �1, β2, ϕ2, �2, . . . ., βN, ϕN, �N] (15)

3.3.6 Skeleton Joint: Way Point Trajectory

Most of the research work performed by trajectory includes dense and local trajectory. In way
point trajectory, the inter-silhouette trajectory uses a subset B which is generated from joint set J = {
j1, j2, . . . ., jn} that is constructed from n number of joints i.e., (head, shoulder_center, spine, hip_center,
left_shoulder, left_elbow, left_wrist, left_hand, right_shoulder, right_hip, right_knee, right_ankle,
right_foot etc.) as shown in Fig. 6. From the trajectory, two types of features are extracted. Shape
features are extracted from the displacement change with respect to length L over time t and changes
are measured by calculating the coordinate positions of joints x and y with respect to change occurring
in each frame such as Δmt = (xt+1 – xt, yt+1 – yt). The displacement vector is as follows:

dx,y = (Δm1, Δm2, . . . ., ΔmL−1)∑L−1

i−1 ||Δmi||
(16)

Now, the change in the displacement position with respect to time is extracted for the velocity
measurement, in which first and second derivatives of the trajectory for the final curvature of the
coordinate x and y is calculated by Eq. (17). Algorithm 2 explains the pseudo code for the extraction
of inter silhouette way-point trajectory from the skeleton joints.

Vd = x′dy′′d − y′dx′′d

(x′2
d + y′2

d + 1)3/2
(17)

Algorithm 2: Pseudo code for feature description of skeleton
Input: 3D skeleton
Output: way-point trajectory feature description
//way-point trajectory feature description//
for n = 1: m
1 Subsets computation: sub1, sub2, sub3 consist of three, four and five number of joint sets,

respectively
2 Trajectory generation as three-way TR1 from sub1, four-way TR2 from sub2 and five-way TR3 from

sub3

3 With time t compute displacement di,j and motion Mt vector using trajectories TR1, TR2 and TR3

4 Generate way-point trajectory feature description T � concatenate (di,j , Mt )
end
return: skeleton joint features descriptor
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Figure 6: Way-Point Trajectory of skeleton joints (a) Inter silhouette trajectory when swipe hand left
position (b) Inter silhouette trajectory position when catch position (c) Inter silhouette trajectory when
arm cross position

3.3.7 Depth Sensor: Depth Motion Map

The second feature set that has been extracted from video frames is Depth Motion Map (DMM).
DMM extracts the 3D information of the depth images in a proper sequence for action recognition.
In the proposed method, N frames are extracted from the depth sequence by DMM [26], represented
as follows:

DMM{f } =
N∑

j=2

|mj
{f } − mi−1

{f } | (18)

DMM{s} =
N∑

j=2

∣∣mj
{s} − mi−1

{s}
∣∣ (19)

DMM{t} =
N∑

j=2

|mj
{t} − mi−1

{t} | (20)

here mj
{f }, mj

{s} and mj
{t} represent the projected map from front view, side view, and top view in orthogonal

cartesian plane of the jth frame.

3.3.8 Depth Sensor: Spatial Temporal Cuboid

In images, interest points are used to detect and recognize different human actions and then 2D
data is transformed into 3D by considering Space-Time Interest Point (STIP). In depth images, a
filtering technique extracting STIPs [27] from depth video called DSTIP is used to suppress the noise.
The 3D cuboid is extracted and the size of the cuboid is designed to be adaptable for the depth that
contains spatio-temporal pixel values. We divide the cuboid according to block of each voxel of size
nxy × nxy × nt and the block size is 1 × 1 × 1. The histogram is computed for depth pixels of each block
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and then it is normalized so the total value is 1 for every histogram. We use Bhattacharyya distance
technique to calculate the histogram of block a and b be ha and hb defined by Eq. (21) as shown below:

D(a, b) =
N∑

i=0

√
h(i)

a h(i)
b (21)

where N represents the number of bins in histogram. Fig. 7 shows spatial temporal cuboid features set
result.

Figure 7: Extracting spatial temporal cuboid from depth video

3.3.9 Depth Sensor: Random Occupancy Pattern

Sample 4D sub-volume features that are extracted from Random Occupancy Pattern (ROP) with
various sizes along with various locations are shown in Fig. 8. To handle the issues of noise and
occlusion, depth-maps are represented as 4D substitutes of three-dimensional movement successions.
The ROP features are robust to noise when they are extracted at a bigger scale.

Figure 8: Extracting random occupancy pattern from depth video

Since majority of the encoded data is stated with regions that are most discriminative for an action
and less conscious to occlusion, sparse coding is applied further to enhance the proposed technique.
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3.4 Cues Fusion via Min Max Normalization

The extracted features from different sensors (i.e., inertial and depth sensors) are fused by applying
feature fusion [28]. The resultant vector is a high dimensional vector which extracts the feature
information in a better way as compared to a single sensor feature vector. To scale the values of
different sensors (depth and inertial sensors) min max normalization technique is applied on the
feature vector that converts the minimum and maximum values to 0 and 1 respectively as it scales
all the values between an interval of (0 – 1). Min max normalization transforms the original feature
vector by utilizing the normalization formula defined by Eq. (22).

M ′ = M − min(FM)

max(FM) − min(FM)
(22)

where M’ is the normalized value, M is the original value, FM is the function, max (FM) and min(FM)

are the maximum and minimum possible values of the function respectively. In this way, the feature
vector has been normalized and then concatenated for the feature fusion, so that final feature vector
set can be obtained.

3.5 Cues Optimization via Fuzzy Optimization

After feature fusion, the next step is the optimization in which selection of the features and reduc-
tion techniques are considered. Fuzzy Optimization (FO) is used to solve the problem of uncertainty on
some constrains, so the objective function is used with some uncertainty condition to solve this fuzzy
uncertainty problem. Fuzzy optimization [29] technique is beneficial and important both in theoretical
practical form and it is a well-known technique in artificial intelligence. Defuzzification method used
to acquire nonfuzzy values for output. The formula for defuzzification is given by Eq. (23).

ΔF =
∑n

i=1 c (i) ∗ Wi∑m

i=1 Wk

(23)

where ΔF = output control change, ci = each output peak value and W i = height rule. The relation
between fuzzy inputs and outputs can be expressed by the surface function.

3.6 Classification via Masi Entropy Classifier

The new generalized entropy technique is Masi Entropy (ME) [30] that works similar to bi-
level and multilevel thresholding. In this classifier, the histogram distribution is considered to be a
probabilistic distribution, in which the algorithm initializes the position of random particles in the
search space domain.

ME = round(rand (Pn, nos) .∗ (ub − lb) + lb) (24)

where ub, lb, nos and Pn are the upper bound, lower bound, number of thresholds and number of
particles of the thresholds, respectively. The fitness of each particle is calculated using the Masi entropy
function. Each particle remembers the personal best solution it has found so far, called pbest and the
swarm also keeps track of the global best solution it has found so far, called gbest. Finally, the program
terminates, and the position of the global best particle gives the desired set of optimum thresholds.

4 Performance Evaluation

This section gives a brief description of the three datasets used for UTD-MHAD, CMU-MMAC,
and 50 Salad. A series of experiments evaluates the proposed system and compares its results with
other state-of-the-art systems.
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4.1 Datasets Description

The proposed model’s efficiency is evaluated on different datasets. Three benchmark datasets have
been used, namely, UTD-MHAD, CMU-MMAC, and 50 Salad as shown in Tab. 2.

Table 2: Description of the datasets that have been used in experimentation

Datasets name Datasets input Description

UTD-MHAD Inertial, depth sensors, and
skeleton joints

This dataset contains 27 action classes and every
action has 4 trails. The actions include swipe left,
swipe right, wave, clap, throw, arm cross,
basketball shoot, draw X, draw triangle,
bowling, baseball swing, tennis swing, arm curl,
and tennis serve. Each action class is performed
by 8 subjects. Details of this dataset is described
in [31].

CMU-MMAC IMU sensors, video camera,
eWatch, microphone

This dataset [32] is prepared using multiple
sensors with video camera to capture the
preparation of 5 foods (i.e., brownie, sandwich,
eggs, salad, and pizza). The actions are
performed by 55 subjects and each food
preparation is recorded by multiple sensors
including video cameras, internal measurement
units (IMUs), wearable sensors, etc.

50 Salad RGB videos, depth maps, and
accelerometer

This dataset captures 25 people who prepare 2
mix salads to recognize the different human
actions. Sensors were attached with the devices
such as knife, spoon, peeler, glass, oil bottle, and
pepper dispenser [33].

4.2 Experimental Settings and Results

All the processing and experimentation have been performed on MATLAB (R2017a). The
hardware system used is Intel Core i5 with 64-bit Windows-10. The system has an 8 GB ram and
5 GHz CPU. To evaluate the performance of the proposed system, multiple experiments have been
conducted on UTD-MHAD, CMU-MMAC, and 50 Salad datasets.

4.2.1 Experimental Results on Datasets

Experiment I: Recognition Accuracies

For the evaluation of the proposed system, different action classes of the three datasets have been given
to the Masi Entropy (ME) classifier. It recognizes the actions and identifies the rate of recognition.
For this purpose, confusion matrices have been created that include individual class accuracies in the
form of percentages. The proposed method has shown good results on every dataset used in this paper.
Tab. 3 represents the confusion matrix of UTD-MHAD dataset. Tab. 4 represents the confusion matrix
of CMU-MMAC dataset. Tab. 5 represents the confusion matrix of 50 Salad dataset.
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Table 3: Confusion matrix showing recognition accuracies over classes of UTD-MHAD dataset

Action classes SL SR W C T AC BS DX

SL 0.90 0 0.01 0.02 0.03 0 0.04 0
SR 0.01 0.87 0 0.05 0 0.04 0 0.03
W 0 0.02 0.96 0 0.01 0 0 0.01
C 0.04 0 0 0.88 0.01 0.05 0.02 0
T 0.02 0 0 0.02 0.92 0.01 0 0.03
AC 0 0.01 0.01 0 0.02 0.90 0 0.06
BS 0.06 0 0 0.02 0 0.04 0.87 0.01
DX 0 0.04 0.01 0 0.03 0 0.02 0.91
Note: Mean Recognition Accuracy rate = 90.1%; SL = swipe left, SR = swipe right, W = wave, C = clap, T = throw, AC = arm cross, BS
= ba sketball shoot, DX = draw x.

Table 4: Confusion matrix showing recognition accuracies over classes of CMU-MMAC dataset

Action classes CF CE OF SBB TBB WC WF SO

CF 0.87 0 0.04 0.05 0 0.01 0.03 0
CE 0.02 0.90 0 0.03 0 0 0.01 0.04
OF 0.03 0 0.88 0 0.07 0.02 0 0
SBB 0 0.06 0.02 0.86 0.01 0.03 0 0.02
TBB 0 0 0.05 0 0.93 0 0.02 0
WC 0.02 0 0.03 0.04 0 0.91 0 0
WF 0 0.05 0.02 0 0.03 0.01 0.89 0
SO 0.03 0 0.02 0 0 0.04 0 0.92
Note: Mean Recognition Accuracy rate = 89.5%; CF = close fridge, CE = crack egg, OF = open fridge, SBB = stir big bowl, TBB = take
brown bowl, WC = walk to counter, WF = walk to fridge, SO = switch on.

Table 5: Confusion matrix showing recognition accuracies over classes of 50 Salad dataset

Action classes AO PC CC GP PB MD MI SS

AO 0.93 0 0.02 0.03 0 0 0.02 0
PC 0.05 0.89 0 0.02 0 0.03 0.01 0
CC 0 0.04 0.87 0 0.03 0 0.04 0.02
GP 0 0.02 0.03 0.89 0 0.02 0.04 0
PB 0.02 0.01 0 0 0.95 0 0 0.02
MD 0 0.02 0 0.03 0 0.93 0.02 0
MI 0 0.03 0 0.02 0.05 0 0.88 0.02
SS 0.03 0 0.01 0 0.04 0.01 0 0.91
Note: Mean Recognition Accuracy rate = 90.6%; AO = add oil, PC = peel cucumber, CC = cut cucumber, GP = give pepper, PB = put
into bowl, MD = mix dressing, MI = mix ingredients, SS = serve salad.
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Experiment II: Precision, Recall and F1 measure

In this experiment, precision, recall, and F1 measure are calculated for different action classes of each
dataset. The precision is the fraction of relevant true positive predictions from the total positives.
Recall is used to identify all true positives and it is the fraction between correct positives and total
positives predicted. The F1 measure combines precision and recall to evaluate the effectiveness of
both performance metrics. Tabs. 6–8 show precision, recall, and F1 measures of UTD-MHAD, CMU-
MMAC, and 50 Salad datasets. The mean precision, recall, and F1 measure of UTD-MHAD dataset
are 90.8%, 90.1%, and 90.7% respectively. While, the mean precision, recall, and F1 measure of CMU-
MMAC dataset are 89.7%, 89.5%, and 89.8% respectively. Finally, the mean precision, recall and F1
measure of 50 salad dataset are 90.7%, 90.6%, and 90.3% respectively.

Table 6: Precision, Recall and F1 measure over classes of UTD-MHAD dataset

Action classes Precision Recall F1 score Action classes Precision Recall F1 score

Swipe left 0.92 0.90 0.91 Throw 0.90 0.92 0.92
Swipe right 0.91 0.87 0.90 Arm cross 0.91 0.90 0.90
Wave 0.90 0.96 0.92 Basketball shoot 0.89 0.87 0.90
Clap 0.92 0.88 0.90 Draw X 0.92 0.91 0.91
Note: Mean Precision = 0.908, Mean Recall = 0.901, Mean F1 measure 0.907.

Table 7: Precision, Recall and F1 measure over classes of CMU-MMAC dataset

Action classes Precision Recall F1 score Action classes Precision Recall F1 score

Close fridge 0.91 0.87 0.90 Take brown bowl 0.91 0.93 0.90
Crack egg 0.90 0.90 0.91 Walk to counter 0.90 0.91 0.91
Open fridge 0.90 0.88 0.90 Walk to fridge 0.90 0.89 0.90
Stir big bowl 0.85 0.86 0.87 Switch on 0.91 0.92 0.90
Note: Mean Precision = 0.897, Mean Recall = 0.895, Mean F1 measure 0.898.

Table 8: Precision, Recall and F1 measure over classes of 50 salad dataset

Action classes Precision Recall F1 score Interaction
classes

Precision Recall F1 score

Add oil 0.89 0.93 0.91 Put into bowl 0.94 0.95 0.93
Peel cucumber 0.92 0.89 0.90 Mix dressing 0.92 0.93 0.91
Cut cucumber 0.91 0.87 0.88 Mix ingredients 0.92 0.88 0.90
Give pepper 0.86 0.89 0.90 Serve salad 0.90 0.91 0.90
Note: Mean Precision = 0.907, Mean Recall = 0.906, Mean F1 measure 0.903.

4.2.2 Comparison with Other Systems

In this experiment, the comparison of the proposed methodology with some methods developed
in the recent years is performed. The comparisons over the three datasets are shown in Tab. 9. It shows
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the results of CRC classifier [34], HOG and HOF [35], HMM-MIO [36], RecCapsNet & LSTM [37],
OU, AS and VS and OU, AS and VS (sum product and RF) [38].

Table 9: Comparison our proposed method with state-of-the-art methods on three datasets

Datasets Methods Recognition accuracy (%)

UTD-MHAD CRC classifier [34] 79.1
HOG + HOF [35] 70.3
Proposed Method 90.1

CMU-MMAC HMM-MIO [36] 38.4
RecCapsNet & LSTM [37] 84.40
Proposed Method 89.5

50 Salad OU + AS + VS 68
OU + AS + VS (sum product and RF) [38] 67
Proposed Method 90.6

5 Conclusion

In this paper, we proposed a robust system for HAR that records human actions through multiple
sensors and classifies them based on several novel features. The manipulation of hybrid features for
the classification of human actions and optimization via Fuzzy Optimization (FO) result in the high
accuracy of the system. Masi entropy classifier is used to achieve excellent recognition results. By
calculating the mean average rate of recognition for every action class, it is shown that the proposed
system shows better performance rates as compared to other state-of-the-art systems.

As future work, we aim to evaluate the proposed system on more challenging human action
recognition datasets. Moreover, we plan on enhancing the proposed approach through the use of
advanced deep learning models.
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