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Abstract: With the rapid progress of deep convolutional neural networks,
several applications of crowd counting have been proposed and explored
in the literature. In congested scene monitoring, a variety of crowd density
estimating approaches has been developed. The understanding of highly
congested scenes for crowd counting during Muslim gatherings of Hajj and
Umrah is a challenging task, as a large number of individuals stand nearby
and, it is hard for detection techniques to recognize them, as the crowd can
vary from low density to high density. To deal with such highly congested
scenes, we have proposed the Congested Scene Crowd Counting Network
(CSCC-Net) using VGG-16 as a core network with its first ten layers due to its
strong and robust transfer learning rate. A hole dilated convolutional neural
network is used at the back end to widen the relevant field to extract a large
range of information from the image without losing its original resolution.
The dilated convolution neural network is mainly chosen to expand the kernel
size without changing other parameters. Moreover, several loss functions have
been applied to strengthen the evaluation accuracy of the model. Finally, the
entire experiments have been evaluated using prominent data sets namely,
ShanghaiTech parts A, B, UCF_CC_50, and UCF_QNRF. Our model has
achieved remarkable results i.e., 68.0 and 9.0 MAE on ShanghaiTech parts
A, B, 199.1 MAE on UCF_CC_50, and 99.8 on UCF_QNRF data sets
respectively.
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1 Introduction

Owing to its various applications, crowd analysis in general and counting in the congested scene in
particular, has emerged as an effective research area in computer vision. Counting the exact number
of people and their density maps estimation in highly congested scenes is a daunting task. Mostly,
crowded scenes occur due to panic situations, hazards, and lack of management and control as shown
in Fig. 2. It is necessary to understand the risk analysis and safety aspects of crowd dynamics at various
important occasions related to sports, cultural and religious activities (specifically Hajj and Umrah) to
avoid or minimize the impact of any mishaps. The complexity of monitoring, tracking, and counting
increases with the size of the crowd. Usage of drones for crowd detection and counting has achieved
popularity due to their ability to travel freely as compared to fixed cameras. In most cases, one drone
is enough to provide a fair idea of crowd density and is also effective in capturing and monitoring
highly congested scenes with multiple people standing close to each other causing occlusion [1]. Many
networks have been proposed to deliver a solution for crowd monitoring during a highly congested
scene like assembly controlling, Hajj and umrah, and other such gatherings [2–5]. In recent years,
interest in the visual analysis of crowd scenes has grown due to the widespread deployment of security
cameras for crowd surveillance, traffic, and planning management, and even counting cells [6]. The
current methodologies for analyzing extremely crowded scenes range from basic crowd counts to
density map estimates [7]. Crowd disasters are highly likely to occur in highly congested scenes like
religious gatherings (Hajj and Umrah) and rallies which make it important to analyze crowd strength
[8]. Deep Neural Network (DNN-based) and Convolutional Neural Network (CNN) approaches
have recently been used in congested scene analysis because of the classification, regression, and high
accuracy these schemes achieved in semantic segmentation [9–11]. Three approaches of scene analysis
were proposed by the researchers: namely detection-based counting, regression-based counting, and
density map-based counting [12]. The first approach specifies the entire body to locate individuals in
the scene which results in occlusions of the body or a small number of pixels per person. This approach
is not effective for the highly congested scene. The second approach is to generate the density maps of
the heads present in the image and further counting is performed on these features [1,8]. The majority
of earlier crowded scene analysis research used multi-scale structures and generated excellent results.
However, there are many significant flaws in the design they used: a) the appearance of small objects
in images, b) the scene has a lot of clutter and occlusion, so much of the human body is hidden, c)
non-uniform crowd distribution and scale variation (appearance of heads), d) as the network grows
deeper and deeper, it may take a long time to train, and the branch structure may become ineffective
[4,13–18].

1.1 Motivation

Recently, most researchers are focusing on crowd counting and localization, benefited from crowd
monitoring (counting) there are some models which are based on crowd head and face detection. The
counting and detection of small heads and occluded faces in crowded images is a challenging task, and
the traditional model can not perform well in this scenario. To solve the scale variation and occlusion
in the congested scene it is important to design and explore a scientific model which can count the
crowd in the congested scene.

1.2 Contributions

In our paper, we have designed a Congested Scene Crowd Counting Network having the ability to
count in highly congested scenes and to produce a high-quality density map. The main contribution
of this work include:
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• Generation of high-quality density maps and employment of VGG-16 as a front-end with its
10 layers due to its strong transfer learning rate

• Adaption of Dilated Convolution Neural Network (DCNN) as the back end to get a large range
of information from its respective fields

• Application of different loss functions to minimize the error between predicted and real values

The rest of the paper is divided into sections. Section 2 represents the previous works, Section
3 shows CNN and DCNN frameworks for congested scenes, Section 4 elaborates limitations, while
Section 5 explains the architecture of Congested Scene Crowd Counting, Sections 6 and 7 describe the
training methods, discussions, and conclusion respectively.

2 Related Works and Understanding the Different Computer Vision Techniques for Crowd Counting

The researchers in the field of crowd monitoring and counting aim to understand the domain and
apply various machine learning techniques and methodologies to count the number of individuals
in a congested environment. Some of the related works presented here are: Inspired by the idea
proposed in [19] for crowd counting, there are three most often used approaches in computer vision
namely detection-based method, regression-based method, and density-based estimation method. The
taxonomy levels of the computer vision techniques are shown in Fig. 1:

Figure 1: Computer vision techniques

2.1 Detection Based Methods

Most preliminary investigations have focused on the detection framework, in which a sliding
window is used as a detector to detect [20] and to count the number of people in the scene [21].
Object detectors have been trained to determine the position of each person in a crowd to count
them in detection-based approaches. In both monolithic and parts-based detection, detection-based
methods are frequently used. Monolithic detection approaches such as [22–25] are often conventional
people detection methods that use features (such as Haar wavelets [26], Histogram Oriented Gradients
(HOG) [22], edgelet [27], and shapelet [28]) extracted from an entire body of the object to train the
classifier. To get low-level information from the entire human body, these methods require well-trained
classifiers. The Support Vector Machines (SVM), boosting [29], and random forest [30] are among the
different successful learning classifiers used. However, such classifiers are negatively affected by high
congested scenes. They have failed to identify the objects in highly congested scenes as the objects are
very close to each other and cannot be detected through a moving window. They are also incapable
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of detecting and counting the number of people [31]. To deal with this challenge, researchers have
recommended detecting a specific point in the object rather than the whole object to carry out crowd
scene analysis [32]. Correspondingly, a part-based detection approach [33–35] has been endorsed. In
part-based detection approaches, a specific part of the object (such as the head) is detected for people
counting in a specific window [21].

Figure 2: Crowd incidents

2.2 Regression-based Methods

While parts-based algorithms are used to lessen the difficulty of detecting objects in high-
density crowd situations, they are less effective in the face of very high-density crowds or noisy
background images. To deal with this challenge, researchers have proposed counting objects by
performing regression-based methods [36–38]. The regression-based method estimates the number of
features after performing regression between image features and crowd size. Low-level information
has been generated using additional elements such as foreground and texture [39]. Because they
acquire generalized density information from crowd images, regression-based methods perform well
in the high-density situation. On the other hand, the method has two significant drawbacks: poor
performance owing to overestimation and crowd misdistribution [40].

2.3 Density Estimation-based Methods

Both of the preceding techniques were successful in addressing occlusion and clutter concerns.
Because they were regressing on a global count, they frequently failed to cope with critical spatial
information [41]. The authors of [42] sought to find a linear mapping between local patch features and
corresponding object density maps. By that means they incorporate spatial information in the learning
process. The tough process of identifying and localizing objects has been avoided as a consequence of
adopting this technique of image density estimation that is integral over any region in the density
map and offers the count of objects inside that region. The density estimation-based method uses a
density map for crowd counting. It initially generates a density map for the objects. Following that, the
algorithm learns a linear mapping between the extracted features and their objects’ density maps. When
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adopting the regression-based method, one key component known as saliency is ignored, resulting in
incorrect endings in the local region. This problem was handled in [42] by utilizing linear mapping
between local area features and density maps. It adds saliency information throughout the learning
phase, since achieving an optimum linear mapping is quite a challenging task. To learn a nonlinear
mapping, the author of [43] used random forest regression rather than linear regression.

3 CNN and Deep CNN Frameworks for Highly Congested Scene

Deep Convolutional Neural Networks (DCNN) is an Artificial Neural Network (ANN) that
generates hierarchical representations from spatial data in digital images. It was designed to operate
with multidimensional (2D and 3D) arrays of high-resolution input data sets such as images and
videos [11,44]. Alex Net [11], with seven hidden layers and millions of parameters, was the first
DCNN architecture. Image classification [44], crowd counting in congested scenes [45], region-based
crowd counting [46], crowd counting [47], and people localization [48] have all demonstrated incredible
performance using DCNN. Because of the popularity of CNN and DCNN in a variety of computer
vision applications, researchers are being urged to apply their skills to turn crowd images into density
maps by learning nonlinear functions [49,50].

4 Limitations of State-of-the-Art Methods

The authors recently presented the Supervised Spatial Divide-and-Conquer Network (SS-DCNet)
and the Spatial Divide-and-Conquer Network (S-DCNet), both of which employ spatial divide
and conquer networks to count crowds [51,52]. Similarly, in [4] switched CNN is developed, which
selects various regressors for input patches using a density level classifier. A contextual pyramid
CNN was presented in [13], which employs CNN networks to predict context at multiple levels to
get a lower-level error and high-quality density maps. Both techniques employed a Multi-Column
Convolutional Neural Network (MCNN)-based architecture and produced good results. However,
the main drawbacks of these architectures are taking a large amount of training time, compulsion to
use density level classifier rather than of sending images in the MCNN, and implementation of more
columns which makes the model more complicated, and it is hard to train properly as described in [15].
Considering all these drawbacks, we propose a unique method of focusing on the deeper features of a
crowded scene and producing high-quality density maps. We will focus on crowd counts in congested
areas. This model aims to design a deeper convolutional neural network using VGG-16 with its first
ten layers as a front end. Further, we increased the dilation rates of the hole convolutional network
to get a large level of information from the images which can capture the high-level feature i.e., heads
with larger respective fields, as well as the generation of high-quality density maps. Finally, counting
the number of individuals in highly congested scenes is done.

5 Understanding the Architecture of Congested Scene Crowd Counting Network (CSCC-NET)

In this model, we first used VGG-16 with its first 10 layers as a front-end with different dilation
rates as shown in Fig. 3. VGG-16 has been used in this model because of its robust transfer learning and
adaptable architecture. The main idea of dilated convolution is to extend the kernel without increasing
the parameters. So, if the dilation rate is “3”, we take the kernel and convolve it on the entire image.
Similarly, if we further increase the dilation rate to “4”, once again we can convolve the kernel on the
entire image. VGG-16 has been used in different models like in [16] they shaped the first 13-layers
of VGG-16 directly and added a 1 × 1 convolutional layer. But the performance was not quite good.
Similarly, before sending input images to MCNN, VGG-16 was used as a density level classifier in [4].
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CP-CNN has combined the classification results with density map-generating features in [13]. In such
cases, VGG-16 works as a supplement to the final accuracy rather than enhancing it. We eliminated
the classification component of VGG-16, i.e., fully connected layers, from the model and developed
the intended CSCC-Net with the first 10 layers of VGG-16 as a front-end network. Inspired by [53–
55], a dilated convolutional neural network with different dilation rates has been used as a back end
for the extraction of deeper features. If we keep stacking more convolutional and pooling layers (basic
components in VGG-16), the output size will shrink even further, making it difficult to create high-
quality density maps. It’s a good substitute for a pooling layer. Although pooling layers (e.g., max and
average pooling) are often used to maintain invariance and minimize overfitting, they substantially
reduce spatial resolution, meaning that spatial information from feature maps is lost. As seen in Fig. 3,
dilated convolution with sparse kernels is a better choice for now. The sparse kernel is used to increase
the size of the corresponding fields while keeping the parameters and computation time the same. The
output picture of the front-end network is one-ninth the size of the input image. Because the output
result should match the input image, the width and height are reduced by one-ninth. The inter cubic
transformation method is applied, and the result is multiplied by “81” to keep the total number of
image pixels the same.

Figure 3: The architecture of CSCC-net

5.1 Dilated Convolution

The convolution kernel is a small matrix that is used in the convolution process. The pixel matrix
of each layer is continuously tested in steps. The number of tests is multiplied by the number of
convolution kernel’s corresponding location, and then the sum is calculated. Each test gets a value
and generates a new matrix after testing all pixels. The main idea of dilated convolution is to enlarge
the kernel while keeping the parameters the same. So, if the dilation rate is 1, we convolve the kernel
over the entire image. When the dilation rate is increased to 2, the kernel expands. It is an alternative
to pooling layers. Dilated convolution offers the benefit of extending the corresponding field while
keeping the parameters and computation time the same. It also maintains the resolution of the feature
map more accurately and effectively than other networks.
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5.2 Ground Truth Generation

The Gaussian convolution is used to produce the GT map. For each target point x, the nearest k
neighbors are found. The average distance is obtained by the correlation calculation di, then a density
map through Gaussian convolution is generated. The Gaussian kernel function is normally distributed
by a bell-shaped curve. The closer the coordinate is to the center point, the higher the value. The higher
the weight, the closer it is to the center point, the farther away from the center, the smaller the weight.
Here is the formula:

H〈x〉 =
N∑

i=1

δ〈x − xi〉 (1)

where xi represents each head marking point, and label with N heads can be expressed as H(x). Here
x represents a two-dimensional coordinate, so H (x) is the matrix with only 0 and 1.

F〈x〉 = H〈x〉 ∗ Gσ 〈x〉 (2)

F (x) =
N∑

i=1

δ (x − xi) ∗ Gσi〈x〉, with σi = βdi (3)

It has been seen that the value of variance σ is geometrically adaptive. We utilized di to indicate the
average distance of k nearest neighbors for each of the targeted output “xi” in the ground truth δ. To
generate the density maps, we convolve δ (x − xi) with the use of a Gaussian kernel and a parameter σi

(standard deviation), where x represents the pixel position in the image. For the input with the sparse
crowd, we use the configuration of [15] where β = 0.3, k = 3. Further, we applied Gaussian Kernel to
blur all head annotations. All the images are cropped into nine patches as indicated by CSRNet, with
each patch measuring 1/4 of the original image size. The first four patches are divided into quarters,
the remaining five patches are cropped at random, and the training set is eventually doubled [2].

5.3 Generation of Density Maps

In crowd analysis, counting occlusion is the main challenge among crowds. To deal with this issue
density maps were proposed in [56]. Density maps are regressing targets per pixel. To regress the density
maps is the prediction of dense crowds [9,57,58]. The annotations are most likely provided as the
coordinates of human heads in the image in all data sets. These coordinates can then be used to generate
a density function [59]. The technique of producing density maps from an annotated file is briefly
described here. Create a matrix the same size as the original image and set it to zero, then modify each
marked head’s position to one. As a result, one may obtain a matrix of 0 and 1, which is then convolved
by the Gaussian kernel function to provide a continuous density map. To summarize, the density map
is generated via Gaussian convolution on a matrix with only 0 and 1 values [15]. The density map
generation can be formulated as:

Pgt
i = {P1, P2, . . . Pn} (4)

where Pgt
i is the image’s ground truth head position I . The ground truth density map Dgt of Pgt

i is
obtained by using a Gaussian kernel to convolve annotated points N

(
p, μ, σ 2

)
. Thus, considering the

impacts of the Gaussian functions centered at all annotation points, it is possible to compute the
density at a certain pixel p of I .

∀p ∈ I , Dgt (p | I) =
n∑

j=1

N
(
p, μ = Pj , σ 2

j

)
(5)



5832 CMC, 2022, vol.73, no.3

To further assess the quality of density maps, we use the Peak Signal to Noise Ratio (PSNR) and
the Structural Similarity Index (SSIM) [60] the results are shown in Tab. 3.

PSNR = 10log10

(
MAX 2

i

MSE

)
(6)

SSIM (x, y) =
(
2μx μy + c1

) (
2σxy + c2

)
(
μ2

x + μ2
y + c1

) (
σ 2

x + σ 2
y + c2

) (7)

where MAXi signifies the density map’s maximum value μx, μy, σx and σy represent the Mean, variance,
and covariance of x, y, and c1, c2 are constant values to prevent the division of zeros.

6 Training Methods and its Detail

In the training phase, we use VGG-16 [44] with its first 10 layers for 2D feature extraction as a
front-end and hole dilated convolutional neural network has been employed as a back end to switch
the pooling layers in the CSCC-Net model. The dilated kernels are used to deliver a large reception
field. A well-trained VGG-16 is used to fine-tune the first 10 layers [44]. In the first ten layers of VGG-
16, the ReLU has been employed as an activation function. The last three layers in VGG-16 have been
removed due to the absence of features they possess. A unified convolutional kernel, size 3 × 3, in each
layer is used to reduce the complication of the network. Only three of the five maximum pooling layers
of VGG-16 have been used. The basic role of these pooling layers is to suppress the over-fitting. If we
use all the five max-pooling layers, then it would affect the output accuracy of the entire model and the
image resolution as well, therefore we have minimized the number of max-pooling layers. To maintain
the resolution of the image, the hole dilated convolution has been more effective than other networks.
The first convolutional layer, such as conv3-64-1, means the size of the convolution kernel is 3 × 3, the
number of filters 64 and the dilation rate is 1 as shown in Tab. 1. To quantify the distance between the
generated density map and the ground truth map, a fixed learning rate, such as le-7, and Euclidean
distance are employed. We have used different loss functions as shown in Tab. 2 during the training
phase and found the L1 Loss function quite good as compared to other loss functions. To reduce the
possibility of an error, the L1 Loss function is used.

Table 1: Configuration of CSCC-Net

Configuration of CSCC-net
Input image

VGG-16 front-end network
Conv3-64-1
Conv3-64-1

Max-pooling
Conv3-128-1
Conv3-128-1
Max-pooling
Conv3-256-1
Conv3-256-1
Conv3-256-1

(Continued)
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Table 1: Continued
Configuration of CSCC-net

Input image

Max-pooling
Conv3-512-1
Conv3-512-1
Conv3-512-1

Back-end
Conv3-512-1
Conv3-512-1
Conv3-512-1
Conv3-256-1
Conv3-128-1
Conv3-64-1

6.1 Loss Functions

The loss function is one of the most significant research topics in machine learning since it is used
to build machine learning algorithms and enhance their performance. The loss functions have been
concerned and explored by different researchers and it has still a big gap to summarize, analyze, and
compare the classical regression loss functions [61]. Some classical loss functions are widely used for
regression problems.

Table 2: Results of different loss functions

Data sets L1 loss function L2 loss function Smooth loss
function

MAE MSE MAE MSE MAE MSE

ShanghaiTech part A [15] 68.0 111.1 72.3 126.4 72.3 115.7
ShanghaiTech part B [15] 9.0 14.2 9.5 14.4 9.2 14.4
UCF_CC_50 [62] 199.1 243.2 219.3 284.6 215.1 283.7
UCF_QNRF [63] 99.8 121.3 119.5 154.5 113.5 150.5

Table 3: Comparison with existing models on PSNR and SSIM

Models Backbone
network

Data annotation ShanghaiTech part
A

ShanghaiTech part
B

UCF_QNRF

PSNR SSIM PSNR SSIM PSNR SSIM

SE Cycle
GAN [64]

VGG-16 � 18.61 0.407 24.78 0.765 21.03 0.66

FSC [65] VGG-16 � 21.58 0.513 26.2 0.818 23.1 0.708
IFS [66] VGG-16 � 21.94 0.502 28.03 0.888 21.94 0.687
NLT [67] VGG-16 � 21.89 0.729 27.58 0.937 22.8 0.729

(Continued)
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Table 3: Continued
Models Backbone

network
Data annotation ShanghaiTech part

A
ShanghaiTech part
B

UCF_QNRF

PSNR SSIM PSNR SSIM PSNR SSIM

MFEN [68] VGG-16 � 22.37 0.76 28.05 0.94 27.05 0.87
CSRNet [2] VGG-16 � 23.79 0.76 27.02 0.89 - -
ADCrowd
Net [14]

VGG-16 � 24.48 0.88 29.35 0.97 - -

CSCC-Net
(Ours)

VGG-16 � 27.67 0.999 29.35 0.997 27.29 0.998

6.1.1 L1 Loss Function

The L1 Loss Function is defined as the sum of all absolute differences between the true and
predicted values. It is mathematically defined as:

Loss (x, y) = |x − y| (8)

where x, y represent actual and predicted values respectively.

6.1.2 L2 Loss Function

The L2 Loss function is used to measure the mean squared error between actual and predicted
values respectively. It is also called mean squared error which can be mathematically represented as:

Loss (x, y) = |x − y|2 (9)

where x shows the actual value and y predicted value.

6.1.3 Smooth Loss Function

The Smooth L1 Loss function is used in the regression problems when the features have high
values. It is also called Huber loss and mathematically expressed as:

Loss (x, y) =
{

0.5(x − y)
2, if |x − y| < 0

|x − y| − 0.5 , otherwise
(10)

6.2 Description of Data Sets

Several publicly accessible crowd data sets are used to validate the experimental outcomes. Tab. 4
lists some of the publicly accessible data sets as well as their description.

Table 4: Description of data sets

Data sets Number Max Min Average Total Resolution

ShanghaiTech
part A [15]

482 3139 33 501 241677 Different

(Continued)
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Table 4: Continued
Data sets Number Max Min Average Total Resolution

ShanghaiTech
part B [15]

716 578 09 123 88488 Same

UCF_CC_50 [62] 50 4543 94 1297 63974 Different
UCF_QNRF [63] 1535 12865 49 815 1251642 Different

6.3 Experimental Results and Discussion

The proposed model was tested on three of the most popular highly congested scene data sets
i.e., ShanghaiTech Part A, B [15], UCF_CC_50 [62], and UCF_QNRF [63]. We used these data sets
to train the model in phases, the training and validation errors are shown in Fig. 5, Fig. 6, Fig. 7,
and Fig. 8 then compared the results to previous state-of-the-art models. Our model has improved
in the competition because of its reduced Mean Absolute Error (MAE) and Mean Squared Error
(MSE) rates and the counting results are shown in Fig. 4. The learning rate for the entire model has
been adjusted at le7 with the inclusion of batch sizes 1 and 2, respectively. The L1 Loss function with
Stochastic Gradient Descent (SGD) was utilized as a loss function and an optimizer, respectively. The
parameter of the gaussian kernel function varies depending on the data set. For ShanghaiTech part A,
UCF_QNRF, and UCF_CC_50, we utilized a geometry adaptive kernel, but for ShanghaiTech part
B, we used a fixed kernel size σ = 11. The parameters needed to produce the density map are k, which
is the average distance between k adjacent heads, and β, which is a coefficient. When doing congested
crowd counting, the kernel can be modified based on the data set. To calculate the errors between
estimated values and predicted values we adhere to the existing works [41,56] to employ the MAE and
MSE as evaluation metrics. The MAE metric reflects the accuracy of crowd estimation algorithms,
whereas the MSE metric reflects the robustness of estimation. They are mathematically defined as:

Figure 4: (Continued)
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Figure 4: Counting results

Figure 5: Training and validation losses of part A
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Figure 6: Training and validation losses of part B

Figure 7: Training and validation losses of UCF_CC_50

MAE = 1
N

N∑
i=1

∣∣Ci − CGT
i

∣∣ (11)

MSE =
√√√√ 1

N

N∑
i=1

∣∣Ci − CGT
i

∣∣2
(12)

where N represents the number of images and Ci, CGT
i are the estimated and ground truth values

respectively. Estimated count can be mathematically represented as:

Ci =
L∑

l=1

W∑
w=1

Zl,w (13)

where L and W denote the length and width of the density map, respectively. While Zl,w shows the pixel
at the length and width of the density map.
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Figure 8: Training and validation losses of UCF_QNRF

6.4 ShanghaiTech Part A, B Data Sets

The ShanghaiTech data set, a typical big data set, contains the most labeled population and is
divided into two sections, A and B. In [15] the ShanghaiTech data set for large-scale crowd counting
was published. Comprising 1198 images with a total number of 330,165 annotated heads. In terms
of head annotation, it is the largest data set. In part A, Images are chosen from the Internet, with a
total of 482 annotated images of various resolutions. Each image has a total of 501 people, with 33
being the minimum and 3139 the maximum number of persons. The population density is very high
and congested with a total number of people equaling 241,677. This data set has been further split
up into two parts i.e., test data and train data. The train data set includes 300 images whereas test
data includes 182 images in total. Part A images are highly congested scenes data set in which a lot
number of people are standing very close to each other. Part B, on the other hand, has 716 images
taken from Shanghai metropolitan street. Part B has relatively sparse images as compared to part A.
The resolution of each image is 768 × 1024. Each image has an average of 123 people, with 9 being
the minimum and 578 being the maximum. The overall number of people in part B is 88,488 having
a low crowd density. It is also split into training and testing, whereas in training the total number
of images is 400 while in testing it has 316 images. We compared the model’s performance to that of
other models. In [5] the authors have designed a single-column structure that can count and generate
density maps simultaneously from an image. In [45], a single-column CNN architecture was presented
for scaling the image and determining the total number of individuals and then changing the image
into different proportions. MCNN, a three-column CNN structure approach, figured out the mapping
relationship between image and density maps [15]. Similarly, in [69] a novel CNN end-to-end cascaded
network was used to simultaneously learn crowd count classification and density map estimation. The
switching convolutional network has been suggested in [4] that influences variation of crowd density
within an image enhances the accuracy. These models have used ShanghaiTech part A and part B data
set for their experimental evaluation. The Tab. 5 shows the mathematical evaluation of Shanghai Tech
part A, B.
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Table 5: Estimation errors on ShanghaiTech part A, B

Models/frameworks ShanghaiTech part A ShanghaiTech part B

MAE MSE MAE MSE

DCNN [5] 181.8 277.7 32.0 48.9
Fully convolutional [45] 126.5 173.5 23.8 33.1
MCNN [15] 110.2 173.2 26.4 41.3
Cascaded-MTL [69] 101.3 152.4 20.0 31.1
Switching-CNN [4] 90.4 135.0 21.6 33.4
CP-CNN [13] 73.6 106.4 20.1 30.1
DFN [70] 77.5 129.7 14.1 21.1
CSRNet [2] 68.2 115.0 10.6 16.0
CSCC-Net (ours) 68.0 111.1 9.0 14.2

6.5 UCF_CC_50 Data Set

The UCF_CC_50 data set [62] is quite challenging to work with since it has a broad range of
densities as well as a variety of scenarios. This data was gathered in a variety of places, including
concerts, political rallies, stadiums, and the hajj and umrah. There are a total of 50 annotated pictures,
with 1279 people per image. This data set’s resolution fluctuates, and the number of people ranges
from 94 to 4543, suggesting a considerable variation in the image. 5-fold cross-validation was carried
out, with the normal setting of [62]. Tab. 6 compares the results of MAE with MSE.

Table 6: Estimation errors on UCF_CC_50

Models/frameworks UCF_CC_50

MAE MSE

Multi-source and multi-scale [62] 419.5 541.6
DCNN [5] 467.0 498.5
MCNN [15] 377.6 509.1
Hydra 2’s [17] 333.7 425.2
Hydra 3’s [17] 465.7 371.8
Learning to count [71] 364.4 341.4
Fully convolutional [45] 338.6 424.5
Cascaded-MTL [69] 322.8 397.9
Switching-CNN [4] 318.1 439.2
CP-CNN [13] 295.8 320.9
CSRNet [2] 266.1 397.5
Transform dilated [72] 250.1 342.1
U-ASD Net [73] 232.3 217.8
S-DCNet [51] 204.2 301.3
CSCC-Net (Ours) 199.1 243.2



5840 CMC, 2022, vol.73, no.3

6.6 UCF_QNRF Data Set

The UCF_QNRF data set includes 1,535 high-resolution crowded images obtained from the
internet with counts ranging from 49 to 12865. Because this data set is extremely crowded, it is difficult
to deal with it. It has the greatest number of crowd images and annotations, as well as a broader range
of scenarios with the most diverse collection of perspectives, densities, and illumination changes. In
comparison to ShanghaiTech, the resolution is high. The average density, or the number of people
per pixel, is also the lowest among all images, suggesting high-quality large images. The existence of
background areas, which include both high-density and zero-density regions, leads to reduced per-
pixel density. Part A of the Shanghai collection also includes high-count crowd images, although these
are heavily cropped to include just crowds. In contrast, the UCF_QNRF data set includes buildings,
plants, roads, and the sky as they appear in actual situations. This increases the data set’s realism while
also making it more difficult [56,63]. The experimental results have been shown in Tab. 7.

Table 7: Estimation errors on UCF_QNRF

Models/frameworks UCF_QNRF

MAE MSE

DFN [70] 218 357.4
BL [74] 88.7 154.8
S-DCNet [51] 104.4 176.1
PaDNet [75] 96.5 170.2
ASNet [76] 91.6 159.7
ADSCNet [77] 71.3 132.5
LibraNet [78] 88.1 143.7
D2CNet [56] 81.7 137.9
CSCC-Net (Ours) 99.8 121.3

7 Conclusions

In this paper, a new framework has been presented, called the Congested Scene Crowd Counting
Network (CSCC-Net). This new framework is capable of not only counting the number of people in
a highly congested scene but can also generate high-quality density maps. Ground truth values were
first created in the context of CSCC-Net to build a high-quality density map for crowd counting in
congested scenes. We investigated the concept of congested scene recognition by including a robust
VGG-16 network with its first 10 layers as front-end and a hole dilated convolution neural network
as the back end. The main benefit of a hole dilated convolution neural network is that it expands the
respective fields without losing the resolution of images. We conducted comprehensive experiments on
four highly congested data sets to validate our model’s performance and value. When the proposed
framework’s findings were compared to state-of-the-art methodologies, the results of the proposed
framework were found to be superior. The CSCC-Net produced impressive results in terms of two
significant statistical measurements, namely MAE and MSE. In the future, we intend to explore and
modify the network and use it on other computer vision tasks such as crowd localization.

Acknowledgement: The authors are grateful to the Saudi Arabia Ministry of Education’s Deputyship
for Research and Innovation for financing this study under Project Number QURDO001. The title



CMC, 2022, vol.73, no.3 5841

of the project is Intelligent Real-Time Crowd Monitoring System Using Unmanned Aerial Vehicle
(UAV) Video and GPS Data.

Funding Statement: This research is supported by the Ministry of Education Saudi Arabia under
Project Number QURDO001.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Gonzalez-Trejo and D. Mercado-Ravell, “Dense crowds detection and surveillance with drones using

density maps,” in 2020 Int. Conf. on Unmanned Aircraft Systems (ICUAS), Athens, Greece, IEEE, pp.
1460–1467, 2020.

[2] Y. Li, X. Zhang and D. Chen, “Csrnet: Dilated convolutional neural networks for understanding the highly
congested scenes,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City
Utah, pp. 1091–1100, 2018.

[3] T. Li, H. Chang, M. Wang, B. Ni, R. Hong et al., “Crowded scene analysis: A survey,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 25, no. 3, pp. 367–386, 2014.

[4] D. Babu Sam, S. Surya and R. Venkatesh Babu, “Switching convolutional neural network for crowd
counting,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu Hawaii, pp.
5744–5752, 2017.

[5] C. Zhang, H. Li, X. Wang and X. Yang, “Cross-scene crowd counting via deep convolutional neural
networks,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston Massachusetts,
pp. 833–841, 2015.

[6] Y. Xue, Y. Li, S. Liu, X. Zhang and X. Qian, “Crowd scene analysis encounters high density and scale
variation,” IEEE Transactions on Image Processing, vol. 30, pp. 2745–2757, 2021.

[7] C. Zhang, K. Kang, H. Li, X. Wang, R. Xie et al., “Data-driven crowd understanding: A baseline for a
large-scale crowd dataset,” IEEE Transactions on Multimedia, vol. 18, no. 6, pp. 1048–1061, 2016.

[8] I. Bakour, H. N. Bouchali, S. Allali and H. Lacheheb, “Soft-csrnet: Real-time dilated convolutional
neural networks for crowd counting with drones,” in 2020 2nd Int. Workshop on Human-Centric Smart
Environments for Health and Well-Being (IHSH), Boumerdes, Algeria, IEEE, pp. 28–33, 2021.

[9] J. Long, E. Shelhamer and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc.
of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston Massachusetts, pp. 3431–3440,
2015.

[10] F. Chollet, “Xception: Deep learning with depth wise separable convolutions,” in Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition, Hawaii Convention Center, USA, pp. 1251–1258, 2017.

[11] A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105, 2012.

[12] A. Khan, J. Ali Shah, K. Kadir, W. Albattah and F. Khan, “Crowd monitoring and localization using deep
convolutional neural network: A review,” Applied Sciences, vol. 10, no. 14, pp. 4781, 2020.

[13] V. A. Sindagi and V. M. Patel, “Generating high-quality crowd density maps using contextual pyramid
cnns,” in Proc. of the IEEE Int. Conf. on Computer Vision, Venice, Italy, pp. 1861–1870, 2017.

[14] N. Liu, Y. Long, C. Zou, Q. Niu, L. Pan et al., “Adcrowdnet: An attention-injective deformable convolu-
tional network for crowd understanding,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, Long Beach, California, pp. 3225–3234, 2019.

[15] Y. Zhang, D. Zhou, S. Chen, S. Gao and Y. Ma, “Single-image crowd counting via multi-column
convolutional neural network,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,
Las Vegas, Nevada, pp. 589–597, 2016.



5842 CMC, 2022, vol.73, no.3

[16] L. Boominathan, S. S. Kruthiventi and R. V. Babu, “Crowdnet: A deep convolutional network for dense
crowd counting,” in Proc. of the 24th ACM Int. Conf. on Multimedia, Amsterdam, Netherlands, pp. 640–
644, 2016.

[17] D. Onoro-Rubio and R. J. López-Sastre, “Towards perspective-free object counting with deep learning,” in
European Conf. on Computer Vision, Amsterdam, Netherlands, Springer, pp. 615–629, 2016.

[18] S. Basalamah, S. D. Khan and H. Ullah, “Scale driven convolutional neural network model for people
counting and localization in crowd scenes,” IEEE Access, vol. 7, pp. 71576–71584, 2019.

[19] C. C. Loy, K. Chen, S. Gong and T. Xiang, “Crowd counting and profiling: Methodology and evaluation,”
in Modeling, Simulation, and Visual Analysis of Crowds, Springer, New York, NY, USA, pp. 347–382, 2013.

[20] P. Dollar, C. Wojek, B. Schiele and P. Perona, “Pedestrian detection: An evaluation of the state of the art,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp. 743–761, 2011.

[21] M. Li, Z. Zhang, K. Huang and T. Tan, “Estimating the number of people in crowded scenes by mid based
foreground segmentation and head-shoulder detection,” in 2008 19th Int. Conf. on Pattern Recognition,
Tampa, Florida, IEEE, pp. 1–4, 2008.

[22] C. Tomasi, “Histograms of oriented gradients,” in Computer Vision Sampler, pp. 1–6, 2012.
[23] B. Leibe, E. Seemann and B. Schiele, “Pedestrian detection in crowded scenes,” in 2005 IEEE Computer

Society Conf. on Computer Vision and Pattern Recognition (CVPR’05), San Diego, California, IEEE, vol.
1, pp. 878–885, 2005.

[24] O. Tuzel, F. Porikli and P. Meer, “Pedestrian detection via classification on riemannian manifolds,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1713–1727, 2008.

[25] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey and experiments,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2179–2195, 2008.

[26] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol.
57, no. 2, pp. 137–154, 2004.

[27] B. Wu and R. Nevatia, “Detection of multiple, partially occluded humans in a single image by Bayesian
combination of edgelet part detectors,” in Tenth IEEE Int. Conf. on Computer Vision (ICCV’05), Beijing,
China, IEEE, vol. 1, pp. 90–97, 2005.

[28] P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning shapelet features,” in 2007 IEEE Conf. on
Computer Vision and Pattern Recognition, Minneapolis, MN, IEEE, pp. 1–8, 2007.

[29] P. Viola, M. J. Jones and D. Snow, “Detecting pedestrians using patterns of motion and appearance,”
International Journal of Computer Vision, vol. 63, no. 2, pp. 153–161, 2005.

[30] J. Gall, A. Yao, N. Razavi, L. Van Gool and V. Lempitsky, “Hough forests for object detection, tracking,
and action recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 11,
pp. 2188–2202, 2011.

[31] X. Wang, T. Xiao, Y. Jiang, S. Shao, J. Sun et al., “Repulsion loss: Detecting pedestrians in a crowd,” in
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, Utah, pp. 7774–7783,
2018.

[32] D. Forsyth, “Object detection with discriminatively trained part-based models,” Computer, vol. 47, no. 2,
pp. 6–7, 2014.

[33] P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, “Object detection with discriminatively
trained part-based models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no.
9, pp. 1627–1645, 2009.

[34] S. -F. Lin, J. -Y. Chen and H. -X. Chao, “Estimation of number of people in crowded scenes using perspective
transformation,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol.
31, no. 6, pp. 645–654, 2001.

[35] B. Wu and R. Nevatia, “Detection and tracking of multiple, partially occluded humans by Bayesian
combination of edgelet based part detectors,” International Journal of Computer Vision, vol. 75, no. 2, pp.
247–266, 2007.

[36] A. B. Chan and N. Vasconcelos, “Bayesian poisson regression for crowd counting,” in 2009 IEEE 12th Int.
Conf. on Computer Vision, Kyoto, Japan, IEEE, pp. 545–551, 2009.



CMC, 2022, vol.73, no.3 5843

[37] D. Ryan, S. Denman, C. Fookes and S. Sridharan, “Crowd counting using multiple local features,” in 2009
Digital Image Computing: Techniques and Applications, Melbourne, Australia, IEEE, pp. 81–88, 2009.

[38] K. Chen, C. C. Loy, S. Gong and T. Xiang, “Feature mining for localised crowd counting.” Bmvc, vol. 1,
no. 2, pp. 3, 2012.

[39] J. Liu, C. Gao, D. Meng and A. G. Hauptmann, “Decidenet: Counting varying density crowds through
attention guided detection and density estimation,” in Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, Salt Lake City, Utah, pp. 5197–5206, 2018.

[40] L. Zhu, C. Li, Z. Yang, K. Yuan and S. Wang, “Crowd density estimation based on classification activation
map and patch density level,” Neural Computing and Applications, vol. 32, no. 9, pp. 5105–5116, 2020.

[41] V. A. Sindagi and V. M. Patel, “A survey of recent advances in cnn-based single image crowd counting and
density estimation,” Pattern Recognition Letters, vol. 107, pp. 3–16, 2018.

[42] H. Li and M. Zahr, “Learning to recognize objects in images,” Trends Cogn. Sci., vol. 3, no. 3, pp. 1–5,
2012.

[43] V. -Q. Pham, T. Kozakaya, O. Yamaguchi and R. Okada, “Count forest: Co-voting uncertain number of
targets using random forest for crowd density estimation,” in Proc. of the IEEE Int. Conf. on Computer
Vision, Santiago, Chile, pp. 3253–3261, 2015.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[45] M. Marsden, K. McGuinness, S. Little and N. E. O’Connor, “Fully convolutional crowd counting on highly
congested scenes,” arXiv preprint arXiv:1612.00220, 2016.

[46] X. Chen, Y. Bin, C. Gao, N. Sang and H. Tang, “Relevant region prediction for crowd counting,”
Neurocomputing, vol. 407, pp. 399–408, 2020.

[47] M. Saqib, S. D. Khan, N. Sharma and M. Blumenstein, “Crowd counting in low-resolution crowded scenes
using region-based deep convolutional neural networks,” IEEE Access, vol. 7, pp. 35317–35329, 2019.

[48] D. B. Sam, S. V. Peri, M. N. Sundararaman, A. Kamath and V. B. Radhakrishnan, “Locate, size and count:
Accurately resolving people in dense crowds via detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 8, pp. 2739–2751, 2020.

[49] S. Lamba and N. Nain, “A texture based mani-fold approach for crowd density estimation using Gaussian
markov random field,” Multimedia Tools and Applications, vol. 78, no. 5, pp. 5645–5664, 2019.

[50] S. Albelwi and A. Mahmood, “A framework for designing the architectures of deep convolutional neural
networks,” Entropy, vol. 19, no. 6, pp. 242, 2017.

[51] H. Xiong, H. Lu, C. Liu, L. Liu, Z. Cao et al., “From open set to closed set: Counting objects by spatial
divide-and-conquer,” in Proc. of the IEEE/CVF Int. Conf. on Computer Vision, Seoul, Korea, pp. 8362–
8371, 2019.

[52] H. Xiong, H. Lu, C. Liu, L. Liu, C. Shen et al., “From open set to closed set: Supervised spatial divide-
and-conquer for object counting,” arXiv preprint arXiv:2001.01886, 2020.

[53] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint
arXiv:1511.07122, 2016.

[54] L. -C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, “Semantic image segmentation
with deep convolutional nets and fully connected crfs,” arXiv preprint arXiv:1412.7062, 2014.

[55] L. -C. Chen, G. Papandreou, F. Schroff and H. Adam, “Rethinking atrous convolution for semantic image
segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[56] J. Cheng, H. Xiong, Z. Cao and H. Lu, “Decoupled two-stage crowd counting and beyond,” IEEE
Transactions on Image Processing, vol. 30, pp. 2862–2875, 2021.

[57] H. Lu, Y. Dai, C. Shen and S. Xu, “Indices matter: Learning to index for deep image matting,” in Proc. of
the IEEE/CVF Int. Conf. on Computer Vision, Seoul, Korea, pp. 3266–3275, 2019.

[58] X. Lu, W. Wang, J. Shen, D. Crandall and J. Luo, “Zero-shot video object segmentation with co-attention
siamese networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 2228–2242,
2020.



5844 CMC, 2022, vol.73, no.3

[59] R. Perko, M. Klopschitz, A. Almer and P. M. Roth, “Critical aspects of person counting and density
estimation,” Journal of Imaging, vol. 7, no. 2, pp. 21, 2021.

[60] S. Sarangi, N. P. Rath and H. K. Sahoo, “A comparative study of filters for denoising mammograms,” in
2021 Int. Conf. on Intelligent Technologies (CONIT), Hubli, India, IEEE, pp. 1–5, 2021.

[61] Q. Wang, Y. Ma, K. Zhao and Y. Tian, “A comprehensive survey of loss functions in machine learning,”
Annals of Data Science, vol. 9, no. 2, pp. 1–26, 2020.

[62] H. Idrees, I. Saleemi, C. Seibert and M. Shah, “Multi-source multi-scale counting in extremely dense crowd
images,” in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Portland, Oregon, USA,
pp. 2547–2554, 2013.

[63] H. Idrees, M. Tayyab, K. Athrey, D. Zhang, S. Al-Maadeed et al., “Composition loss for counting, density
map estimation and localization in dense crowds,” in Proc. of the European Conf. on Computer Vision
(ECCV), Munich, Germany, pp. 532–546, 2018.

[64] Q. Wang, J. Gao, W. Lin and Y. Yuan, “Learning from synthetic data for crowd counting in the wild,” in
Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Long Beach, California, pp.
8198–8207, 2019.

[65] T. Han, J. Gao, Y. Yuan and Q. Wang, “Focus on semantic consistency for cross-domain crowd under-
standing,” in ICASSP 2020-2020 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, IEEE, pp. 1848–1852, 2020.

[66] J. Gao, T. Han, Q. Wang and Y. Yuan, “Domain-adaptive crowd counting via inter-domain features
segregation and Gaussian-prior reconstruction,” arXiv preprint arXiv:1912.03677, 2019.

[67] Q. Wang, T. Han, J. Gao and Y. Yuan, “Neuron linear transformation: Modeling the domain shift for crowd
counting,” IEEE Transactions on Neural Networks and Learning Systems, 2021.

[68] X. Zeng, Q. Guo, H. Duan and Y. Wu, “Multi-level features extraction network with gating mechanism for
crowd counting,” IET Image Processing, vol. 15, no. 14, pp. 3534–3542, 2021.

[69] V. A. Sindagi, M. Vishal and Patel, “Cnn-based cascaded multi-task learning of high-level prior and
density estimation for crowd counting,” in 2017 14th IEEE Int. Conf. on Advanced Video and Signal Based
Surveillance (AVSS), Lecce, Italy, IEEE, pp. 1–6, 2017.

[70] S. D. Khan, Y. Salih, B. Zafar and A. Noorwali. “A deep-fusion network for crowd counting in high-density
crowded scenes.” International Journal of Computational Intelligence Systems, vol. 14, no. 1, pp. 1–12, 2021.

[71] E. Walach and L. Wolf, “Learning to count with cnn boosting,” in European Conf. on Computer Vision,
Amsterdam, Netherlands, Springer, pp. 660–676, 2016.

[72] Y. Yang, G. Li, D. Du, Q. Huang and N. Sebe, “Embedding perspective analysis into multi-column
convolutional neural network for crowd counting,” IEEE Transactions on Image Processing, vol. 30, pp.
1395–1407, 2020.

[73] A. Hafeezallah, A. Al-Dhamari, and S. A. R. Abu-Bakar, “U-ASD net: Supervised crowd counting based
on semantic segmentation and adaptive scenario discovery,” IEEE Access, vol. 09, pp. 127444–127459,
2021.

[74] Z. Ma, X. Wei, X. Hong and Y. Gong, “Bayesian loss for crowd count estimation with point supervision,”
in Proc. of the IEEE/CVF Int. Conf. on Computer Vision, Seoul, Korea, pp. 6142–6151, 2019.

[75] Y. Tian, Y. Lei, J. Zhang and J. Z. Wang, “Padnet: Pan-density crowd counting,” IEEE Transactions on
Image Processing, vol. 29, pp. 2714–2727, 2019.

[76] X. Jiang, L. Zhang, M. Xu, T. Zhang, P. Lv et al., “Attention scaling for crowd counting,” in Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Virtual, pp. 4706–4715, 2020.

[77] S. Bai, Z. He, Y. Qiao, H. Hu, W. Wu et al., “Adaptive dilated network with self-correction supervision
for counting,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Virtual, pp.
4594–4603, 2020.

[78] L. Liu, H. Lu, H. Zou, H. Xiong, Z. Cao et al., “Weighing counts: Sequential crowd counting by
reinforcement learning,” in European Conf. on Computer Vision, Springer, pp. 164–181, 2020.


	A Deep Learning Approach for Crowd Counting in Highly Congested Scene
	1 Introduction
	2 Related Works and Understanding the Different Computer Vision Techniques for Crowd Counting
	3 CNN and Deep CNN Frameworks for Highly Congested Scene
	4 Limitations of State-of-the-Art Methods
	5 Understanding the Architecture of Congested Scene Crowd Counting Network CSCC-NET
	6 Training Methods and its Detail
	7 Conclusions


