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Abstract: The Internet of Things (IoT) has the potential to be applied to social
networks due to innovative characteristics and sophisticated solutions that
challenge traditional uses. Social network analysis (SNA) is a good example
that has recently gained a lot of scientific attention. It has its roots in social
and economic research, as well as the evaluation of network science, such
as graph theory. Scientists in this area have subverted predefined theories,
offering revolutionary ones regarding interconnected networks, and they have
highlighted the mystery of six degrees of separation with confirmation of the
small-world phenomenon. The motivation of this study is to understand and
capture the clustering properties of large networks and social networks. We
present a network growth model in this paper and build a scale-free artificial
social network with controllable clustering coefficients. The random walk
technique is paired with a triangle generating scheme in our proposed model.
As a result, the clustering control mechanism and preferential attachment (PA)
have been realized. This research builds on the present random walk model.
We took numerous measurements for validation, including degree behavior
and the measure of clustering decay in terms of node degree, among other
things. Finally, we conclude that our suggested random walk model is more
efficient and accurate than previous state-of-the-art methods, and hence it
could be a viable alternative for societal evolution.

Keywords: Social networks; small-world networks; network generation
models; graph theory; random walk; network design; social network analysis

1 Introduction

In recent years, social networks have gained popularity and the attention of researchers working
in different fields of science [1]. Social networks offer a combined solution for network growth [2]. A
few years ago, a trend in online social networks (OSNs) emerged. The number of OSNs is increasing
quickly, and they have become popular in recent years [3].The most popular OSNs are Facebook and
Twitter [4,5]. It was estimated that the number of Facebook users exceeded 1.8 billion in 2017 [6,7].
In a typical OSN, many users connect through several links [8]. Typically, the structure of a social
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network is dynamic because it grows quickly with the addition of new links [9]. These links denote
interactions among the users in a network [10]. In these networks, social interaction is a fundamental
problem [11]. The growth and evolution of networks is also a problem in network science, especially
since networks constantly change over time. In this direction, a lot of research has been done. Plenty of
graphical networks have been proposed, and are used for analyzing the structure of social networks.
In many cases, the networks such as World Wide Web (WWW) exhibit complex structures. These
networks are known as complex networks [12]. Generally, social networks are the same as complex
networks and contain many short paths, known as small-world networks [13]. The small world has
long been the subject of scientific interest in network growth and evolution. Initially, the small-world
phenomenon was proposed by Watts and Strogatz [14]. They have demonstrated that the topology of
some social and biological networks is neither completely random nor regular. Hence, they termed an
intermediate network a small world [15]. In reality, the small-world phenomenon refers to the principle
that all people are linked together by a short chain of acquaintances [16]. For instance, six degrees of
separation is the idea that everyone is linked by a chain that is, at most, six people long [16]. For
example, Fig. 1 demonstrates the small-world phenomenon. In this example, a group of people in a
social network is shown. Given two people, Emma and Lucas, there is a chain of other people such
that Emma knows Liam, who knows Noah, who knows Olivia, who also knows Lucas. Suppose that
Emma holds a letter and wants to forward this letter to Lucas (the target person). Under the six
degrees of separation theory, she forwards it to a neighbor (e.g., Liam). The condition imposed on this
network is that each participant can advance the letter only by forwarding it to a single acquaintance.
Hence, Emma forwards it to Liam, Liam sends it to Noah, then Noah to Olivia, and finally, it reaches
Lucas via Olivia. In this figure, we can observe that short paths (no more than six hops) always exist
between all people. This is known as six degrees of separation [14]. Small-world networks comprise
three significant properties: (i) degree distribution (ii) clustering coefficients, and (iii) path lengths [17].
The degree of a node in the network is the measure of how many connections the node has. A subgraph
of a small world contains many connections between any two nodes, termed a clustering coefficient.
Furthermore, in a network, pairs of nodes are linked by at least one short path, called the path length.
A lot of researchers have focused on the effect of different aspects of the small world, such as spreading
a disease [18,19], the Internet [20], and metabolic networks [21]. These networks share three significant
properties [21]. (1) The average path length remains as small as possible; hence, only a few edges are
available when two nodes on a graph are to be attached. (2) The average clustering coefficient is large
enough to yield a separation of nodes containing common neighbors that are far from each other. (3)
The degree distribution of these networks should be scale-free because it follows the power law [22].
Typically, the lack of a scale-free structure for node connectivity is often related to these networks
[23]. Social network analysis (SNA) [24], is a process of investigation to study a social structure through
graph theory and networks [7]. In a social network [25], it is nearly impossible to obtain the information
of all nodes in the network. Typically, SNA is observed in many practical circumstances where a social
network is addressed using publicly available interfaces, such as an application programming interface
(API) [26]. An API is used to answer a query regarding a target node. In many networks, a public
interface is available for analysis of a network. In Fig. 2, a scientist obtains a node ID and a friendship
list from a social network using a public API. The self-loop shows the repetition of the scientist’s
query. The estimation of structural measures in this network is performed by using the public API. The
research on providing public interfaces has received much attention in recent years [27]. To calculate
the clustering coefficient of these networks, scientists apply the query to nodes other than the sampled
nodes. In fact, in social networks and large scale networks, the estimation of network-based features
is difficult because the sizes of these networks are extremely large [28,29]. Also, they contain large
datasets that are occasionally unavailable because of privacy concerns [30]. To overcome these issues,
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authors have proposed several processes, such as the random walk [31]. The random walk is a Markov
chain process in which a sequence of nodes is visited using a succession of random steps [31]. Fig. 3
shows the simple process of a random walk in a network. In this figure, the number of nodes in graph
G = {A, E} is shown in orange. Node A, in blue, indicates the starting point of the random walk and is
called the current node. The next step is to identify the neighbors of the current node (i.e., Node B and
Node C). In this scenario, the random walk starts a tour from Node A, and after reaching the next node
(i.e., Node B), it continues randomly until reaching the final destination (e.g., Node E). In complex
networks, the random walk process is used for node selection and is beneficial for the growth of the
whole network. In particular, random walks are used to find paths in a network and help determine
dissimilarity in neighbors. The pathfinding methods are efficient, and hence, they are widely used in
online graphs. The research area in social sciences, marketing, and computer science etc. Usually, in
large networks such as social networks, a search engine provides a public interface as a part of the
service. The available public interfaces for social networks have been discussed elsewhere [32–34]; also,
they are used to estimate the clustering coefficient and the degree distribution. The authors discussed
a few studies related to OSNs [33,35]. In these studies, the walkers were used to find the number of
persons registered in the network. In practical scenarios, the underlying network may be available only
through a public interface. The public interface of most social networks, as shown in Fig. 2, provides
the ability to retrieve a list of connections by applying this function iteratively to a random member
of the list. By using this, one can easily perform a random walk on that network. Although the public
interface allows us to store the social network locally, this practice is considered impractical due to high
space/time/communication costs, and it often violates the terms-of-use agreement. In light of this, we
proceeded under the following assumptions: (1) we have no prior knowledge about the network, and
(2) only external access to the social network is available. The main insight offered in this work is that,
under these limitations, the presented random walk algorithm attains accuracy in the estimation of
the structural measure of the network. By constructing an artificial social network, this study provides
a solution for the growth and evaluation of networks. In this direction, we focused on two network
measurements. The first is performed by calculating the node degree distribution, and the second is
estimating the clustering coefficient. Both measures are important for understanding the structural
properties of a network [3,21]. The degree distribution is important in studying real networks, such as
the Internet and social networks. Through the degree distribution, we capture only a small amount of
information about a network. However, that information still gives important clues to the structure of
the network, such as the number of hubs. Conversely, triadic closure helps find the number of triangles,
which helps find the growth of the network. Our objective is to propose a purely local network growth
model that makes no use of global sampling across the nodes. To the best of our knowledge, earlier
methods used for random walks in social networks have only partially considered the abovementioned
properties. In this study, we consider how efficiently global graph properties can be estimated (e.g., the
number of links, triangles, and visited nodes) by using a random walk.
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Figure 1: An example of a small-world network

Figure 2: Social network interaction using an API
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Figure 3: An example of a simple random walk process

1.1 Motivation

The motivation of our study is to capture the basic network properties of large-scale social
networks [3,21,36] These networks have larger clustering than the state-of-the-art Barabasi and Albert
(BA) model [22]. The artificial social network generation, growth, and evolution of networks is a
fundamental problem in network science [2], especially since networks constantly change over time.
The random walk process is helpful for the construction of an artificial social network. Therefore,
in this study, we discuss the concept of the artificial social network construction model. This growth
model reaches toward highly connected nodes and is attained by using a random walk. This study
intends to understand the key properties of small-world networks and to enable them to be used for
the growth of the network. Several network-generation models have been proposed in the past. These
models have both scale-free and small-world properties. For example the author network [37] and the
author’s collaboration network [38] etc. In general, randomly generated networks are used to explore
the predictions of a theory in the context of a social network. This study is a connection between small-
world networks and scale-free networks. More specifically, it is a unifying concept provided in a single
model.

1.2 Contributions

The main contributions of this study are given below.
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• We propose a scale-free, artificial social network generation model that is purely local, requiring
no global selection of nodes, or any initial network.

• The random walk model is used to generate artificial networks that incorporate the properties
of small-world and scale-free networks, with the additional advantage of having an adjustable
clustering coefficient.

• Using a visual analytics method introduced earlier [38], we demonstrated that there are
considerable structural differences between networks that are generated by real-world artificial
social networks.

The benefits of this study are given below.

• It will be helpful to researchers who wish to learn the methods of generating artificial networks.
• The researchers who want to understand the structural properties of a network.
• This research is also beneficial for several network mining problems including extrapolation,

sampling, model testing, etc.

In Section 2, we discussed standard network measures. Subsequently, we present prior studies
on scale-free and small-world networks. we discussed classic random walk models (along with their
limitations) and also the problem statement. We discussed our proposed model in Section 3. Section 4
offers detailed experimental results and a discussion related to this study. The conclusion and future
work from this study are presented in Section 5.

2 Standard Network Measures and Related Studies

This section is divided into three subsections. In Section 2.1, we discuss classic standard measures
in networks. In Section 2.2, we discuss the scale-free and small-world concepts along with their
limitations. In Section 2.3, we discuss a few studies related to the classic random walk.

2.1 Standard Network Measures

In this section, we first discuss the standard network measures, and then, we discuss the relation-
ships between these network measures.

2.1.1 Node Degree

Perhaps the most important property of a node in a network is its degree. Node degree illustrates
the number of nodes that are directly connected. Generally, nodes may have any whole-numbered
degree (including zero, for an isolated node that is not connected to any other). In a network, the
degree will be twice the number of edges. In most networks, every edge is usually incident to two
different nodes.

2.1.2 Degree Distribution

The degree distribution is how the degrees of the nodes arise across the network, i.e., the number
of nodes in a network with degree 1, degree 2, and so forth. In short, any network will have the largest
(maximal) and the smallest (minimal) degree. P(k) denotes the fraction of nodes with degree k:

P(deg(v) = k) (1)

which indicates that deg(v), the degree of v, is equal to k. For brevity, it is usually written pk.
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2.1.3 Clustering Coefficient

The clustering coefficient is used to measure the grouping, or the triadic closure, in a graph. It is
a calculation of the number of triangles in the network. More simply, it is a measure of the extent to
which one’s friends are also friends of each other:

Ci = 2ni

ki(ki − 1)
(2)

where Ci is the clustering coefficient of node i, and ki indicates the degree of node ki. The clustering
coefficient for a network is defined as

C =
∑N

i=1 Ci

N
(3)

2.1.4 Path Length

The path length (geodesic) is the average distance between two nodes chosen at random. The
path length lies in the range between 1 and the diameter. Usually, the path length is a measure of
the denseness of the network, in the sense that a short characteristic path denotes a network in which
the shortest paths are indeed short. The average path length of graph G can be defined as follows:

G = 1
n(n − 1)

∑
i−j

d(vi, vj) (4)

where vi and vj are any two nodes. In addition, the longest geodesic in a graph is called the diameter
of the network. It consists of the largest values for d(vi, vj).

2.2 Concepts of Scale-free and Small-world Networks

We divided this section into three distinct subsections. In Section 2.2.1, we discuss a few studies
related to the small-world network. In Section 2.2.2, we discuss two basic concepts: scale-free and PA.
In Section 2.2.3, we performed a survey and compare various studies in tabular form.

2.2.1 The Small-world Network

The patterns in several networks, such as the social network [36,39], the technological network,
the biological network, and the information network, are explained by complex networks. A random
graph is a collection of randomly connected pairs of nodes with a Poisson degree distribution. The only
problem with that random model is that it is not completely appropriate for clarifying the behavior of
both random and complex networks. Traditionally, a few methods are used by random networks, such
as the Erdős-Rényi (ER) model [40]. The ER model is one of the simplest, in which every possible
edge is created with the same constant probability. This network starts with isolated nodes (having
no edges). It adds an edge between a pair of nodes at a random time. The addition of random edges
to a node is based on two parameters; the first is the number of nodes, i.e., n, and the second is the

probability, p, that an edge is present. For each edge,
n(n − 1)

2
is the possible number of edges in the

network, based on probability p.The best example is the flip of a coin. If we get heads, then it would add
an edge to the network; tails, it would not. Also, this is known as the G(n, p) model, where n denotes
a node; the associated probability is P(n1 . . . . . . nn). The ER model presents a small-world effect. This
effect is defined by two factors: the first is the slow increase of network diameter with the network
growth, and the second is the presence of an unexpectedly large number of triangles in the network.
The problem with the ER model is that it is a poor indicator of the degree distribution, compared to
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real-world networks. To minimize the abovementioned properties, Watts and Strogatz (WS) suggested
a model named the small-world model [14]. In this model, a regular lattice is constructed, and a pair
of nodes can be chosen randomly using shortcuts; subsequently, a connection between nodes is made.
Fig. 4 shows the small-world networks generated by the Watts–Strogatz (WS) model. In Fig. 4A, the
set of nodes is arranged in the form of a ring, and in Fig. 4B, a ring is constructed with random long-
range links, and fewer long-range links are added to the WS network. The suggested cuts in a ring
lattice yield the shortest average path length (as random paths), without affecting the local properties,
such as high clustering. This is known as a small-world property and can be achieved in any graph
with random and long-range links with high local clustering. The WS model was good, but could not
have additional properties, such as the discovery of service in large and real networks, and of node
degree distribution. It is vastly different from the distribution predicted by the earlier ER model. The
inspiring research conducted by Watts and Strogatz were completely focused on small-world networks.

Figure 4: The WS model

2.2.2 Preferential Attachment and the Existence of the Scale-free Network Structure

Saramäki et al. [5], introduced the power law by Barabási et al. [22]. This model is used to find
the formation of hubs in a network. In addition, it combines the simple principle of growth and PA.
According to the power law, when a new node is added to the network, it is preferentially linked to the
nodes already processing a large number of links. The proposed model is based on two fundamental
laws. The first is network growth, and the second is PA [5]:

• In the growth phase, at each timestamp, a new node is added with m links (where m ≤ m0) that
connect the new node to m nodes already in the network.

• During PA, the attachment preference for a node is only assigned to high-degree nodes.
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According to the power law, when a new node is about to join a network, it is preferably linked to
the current nodes that constitute a large part of the links in the network. The computed probability,
pi, to link a new node to an existing node i depends upon the degree, ki, as follows:

pi = ki∑n

j=1 ki

(5)

Fig. 5 illustrates the PA process. In Fig. 5A, the network growth using PA is shown. The network
grows by adding a new node in the network. The new node selects a link, as indicated by the black
arrow. In Fig. 5B, a new node connects with equal probability to one of the two nodes at the ends
of the selected link. In this case, the new node connects to the node at the right end of the selected
link. This intuitive method results in the generation of a scale-free network [5]. The BA algorithm
uses global information. The BA model was proposed by assuming that in the WWW, new pages
link preferentially to the hubs (i.e., very well-known sites such as Google) rather than to pages that
hardly anyone knows about. In this model, the authors assumed that every new node has complete
information about the whole network, which is not true for large networks and real networks [41].
They did not state completely how PA should be performed. PA typically uses global information on
node degrees from the entire network but differs compared with many real networks, such as social
networks, the WWW, etc. In addition, the integration of new links in the network is difficult.

Figure 5: The preferential attachment

2.2.3 Comparison Between Scale-free and Small-world Networks

BA model provides the key information for scale-free networks, and the WS model has small-
world properties [41]. The WS model exhibits high clustering, but lacks power-law degree distribution,
whereas the BA model exhibits the scale-free property but does not possess high clustering. Doro-
govtsev and Mendes [42] proposed a simple clustering model for scale-free networks. The addition of
new, undirected vertices is made at each stage. However, their model does not describe real networks



6376 CMC, 2022, vol.73, no.3

because they have a fixed average degree. Tab. 1 provides a comparison of different network models,
along with the different metrics discussed in the previous section. In this table, we can see which
model has a lack of local properties, such as diameter and the clustering coefficient. In this tabular
representation, we can easily examine how each model is described. In addition, we can identify which
models lack network properties. The objective of this study is to propose a network growth model
combining the features of scale-free and small-world networks by using a random walk and producing
a network. For that purpose, we modified the BA model by using a random walk method, and our
objective is to incorporate a navigable triadic closure. The presence of scale-free structures in many
real networks inspired us to write this proposal and further investigate features of real networks, such
as short diameters, clustering, and long-tail distribution.

Table 1: Summary of the current network models’ properties

Model Year Diameter Adjustable clustering Scale-free Local info

Erdos 1960

Watts-Strogatz 1998

Barabasi & Albert 1999

Newman 2001

Holme et al. [3] 2002

Vazquez 2003

Newman 2011

Amorim et al. [2] 2016

H. Shah et al. [6] 2017

Matsumura et al. [7] 2018

2.3 Classic Random Walk Models and the Problem Statement

In this section, we first discuss a few classic random walk processes, and then, we discuss the
problem statement.

2.3.1 Classic Random Walk Models

Generally, in real networks, adding a new node would not require global information about the
network. Several studies have been conducted in which local network information is used to spawn
scale-free networks without using global information [43,44]. One of these approaches demonstrates
how a random walk process is used for the selection of a node that can be attached. This study proves
that it can be used for the growth of a network. In [12,5,45], the authors successfully employed different
random walk algorithms. A random walk having length L will end up on the node derived from Eq. (6),



CMC, 2022, vol.73, no.3 6377

where the probability of linking to one of two nodes (x to y) is given as seen below, in which ki and Nki

are the degrees with the probability given in (1):

px,y =

⎧⎪⎪⎨
⎪⎪⎩

1
ki

vj∈N(ki)Vj

0 otherwise
(6)

where y is the neighbor of x, and x is the out-degree of node y. Transition probability px,y is calculated
using a simple random walk (SRW) from [7] and is derived with (6). In the SRW, the authors assumed
that the SRW method is used to generate an artificial network. They discussed only the PA procedure,
but not the remaining network features, such as the clustering coefficient CC. In [43], the correlation
of closing a degree was analyzed under a mean-field hypothesis. The only limitation of this study is
that the CC was not considered. Matsumura et al. [7] discussed a crawling-based sampling random
walk method for estimating path length in social networks. They offered a solution based on Dijkstra’s
algorithm. In that study, a portion of a network for r samples was obtained by time: O(r)3. The only
tradeoff observed in this study was the non-existence of an evaluation. Ji et al. [46] discussed Sybil
attacks for OSNs. These attacks are used to establish fake accounts in various networks. In those
networks, the attacker maintains a massive number of fake accounts, later used for malicious activities.
The drawback in that study is the learning of edge weight, in which the labels are augmented for social
networks. They had not yet generalized their theoretical analysis to the Markov random field. Most
surveyed studies discussed Sybil detection as a problem of supervised learning. The key challenge in
the abovementioned approaches is that an attacker and the users in the network can produce similar
content, behaviors, and local graph structures. Hence, this renders the method less effective. Cheng
et al. [47] proposed two friendship prediction-based models for inferring the friendship circle in a
social network. Location entropy and check-in time interval were performed in the first model. In the
second model, they used a weighted number for colocation and used the average time interval for the
prediction of user relationships. In that study, the authors proposed a noise filtering approach (NFA)
for the prediction of links in social networks. The NFA is completely based on considering dissimilar
links, such as noise. Among the various studies, the approach of Cheng et al. [47] and Li et al. [48] are
closely related.

Katzir et al. [49] suggested the average clustering coefficient of a network using a random walk
process. In their proposed algorithm, an SRW algorithm was disseminated slowly over the space in a
social network. Their proposed algorithm performed better than other approaches, such as the one
in [32]. Iwasaki et al. [50] proposed an algorithm for the estimation of the clustering coefficient in
social networks using a sample query. They proposed a non-backtracking random walk (NBRW) [50].
That method is based on the counting of triangles obtained during sampling. They used the NBRW
as a public API interface that theoretically displays the information retrieval of a social network.
Cohen et al. [51] introduced the concept of reaching highly connected nodes by using random links. A
recent study was conducted by H. Shah et al. in [6]. In this study, the authors propose a random walk
network growth model using resource constraints. The objective of this model is to be to explain how
the real-world network properties were affected by using edge formation like resource constraints. In
this model, before starting a random walk, at first, each node that joins the network select a recent
node as a seed. The linking of the node is performed based on probability. Later on, it follows the
outgoing and the incoming of this seed node and arrived at each node. Every time the new incoming
node will decide to link with the same constant linking probability. Then each node either has to decide
whether to jump back to the seed node or may follow these incoming and outgoing links. This process
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is repeated several times. Briefly, this is a local procedure and the linking of a node will be performed
without contacting the whole network. The only problem with this method is that they did not discuss
the clustering coefficient along with degree distribution. Leskovec et al. [52] discussed the behavior
of a graph over a certain time. Their main concern in this paper is to confirm that does the graph
changes over a certain time or not. Therefore, they performed a careful analysis using three laws, the
densification power law, the community-guided attachment model, and the forest model. In this study,
they reported that all of these models behave differently. They observed that most graphs are heavily
trailed using in-degree and out degrees. In addition, they have also shrinking by increasing a diameter.
Briefly, they discovered a very interesting phenomenon that in a large number of graphs the diameter is
changed over the increasing interval of time [53]. Finally, they proposed a new graph generator model
based on ‘forest fire’. Their model requires very few parameters such as; the flammability of nodes.
They are producing a full range of properties observed in the present and prior studies. Amorim et al.
in [2] discussed a scale-free mechanism named No Restart Random walk (NRRW) for the growth of
a network using random walk. Initially, their network starts with a single node by using a self-loop.
The random walker placed on that node and each walk comprised s number of steps. At each time,
new nodes are added to the node, which resides the walker. The walk ends after completing n number
of nodes. The proposed model is good but they did not discuss the clustering coefficient in this study.
Matsumura et al. [7] discussed a random walk method for estimating the Average path length (APL)
in social networks. This crawling-based graph method is suitable for scale-free networks, but in this
study, they did not discuss the computation of the clustering coefficient. Saramäki et al. [5], introduced
a scale-free network method by adopting PA for local approximation in the network. It is based on BA
model; thus, it has three phases: network initialization, growth, and finally, linking. During network
initialization, the placement of vertices in the network is performed. In the growth phase, one of the
vertices is chosen as a starting point for the walk. Finally, in the linking phase, a new vertex is added
to the network, and a link is created between the new vertex and the existing vertices. We observed in
this method that when a new node has already been connected to the first chosen node, no triangle is
generated. Moreover, we can see that when l = 1, a walk continues from the first chosen node to the
new node, which results in the generation of a triangle (as we observed in the Holme and Kim [HK]
model [3]). Thus, the selected nodes via successive instances of l = 1 would add m − 1 triangles to
the network. This key observation recommends the possibility of implementing a triangle generation–
control mechanism by selecting the new starting point for the next walk, proportionally combined
with successive instances of l = 1. In brief, we performed a careful analysis of previous studies, and
our findings are as follows. In earlier methods, no control mechanism was specified; hence, a low-level
clustering coefficient is produced. Also, the node distribution in the network is improper [54]. Thus,
based on these observations, we are proposing a network growth model based on a random walk and
having a dynamic clustering control process.

2.3.2 Problem Statement

In our study, we consider the growth and evolution of networks as a fundamental problem in
network science, especially because networks constantly change over time. The random walk process is
helpful for the construction and growth of the network. We observed from earlier studies that although
triadic closure is helpful for the growth of a network, the incorporation of dynamic triadic closure will
produce more powerful and bigger networks. After reviewing several research ideas, our key findings
are as follows.

• The scale-free concept and the power law, including directing rules, are helpful in the growth
and the construction of an artificial network.
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• An algorithm is efficient if it uses its local information. The connections are also important in
a local network. The introduction of local immunization strategies is effective for the growth of
a network.

3 Proposed Model

In this section, we suggest a random walk model for the growth of a network where the clustering
coefficient can be estimated and adjusted dynamically. The proposed model is closely related to
the recent studies related to growing networks through random walk models by Amorim et al. [2],
Matsumura et al. [7], Saramäki et al. [5] and Katzir et al. [49] and Leskovec et al. [52]. These models
allow a random walk to take steps before linking a node. The key difference is that we use certain
random walk properties that can control the formation of a triangle in the network.

3.1 Basic Preliminaries and Notations

We denote as G = (V , E) an artificial network’s underlying undirected graph, where V =
{v1, v2, v3, . . . vn} for the network node-set, and E is the edge set; v = V defines the number of network
nodes, and m = E defines the number of edges. In addition, we denote by di the degree of node vi.
At each step t, the function f0 produces the probability of distribution, i.e., f(p). We use a Bernoulli
distribution. We denote as g a fixed-length graph, and G is a random graph. A random walk on graph
G starts at node v. The walk repeatedly moves along an edge to a randomly selected neighbor until V
edges have been closed.

3.2 The Proposed Model

There are three basic steps involved in this model.

• Network initialization: In the first step, network initialization is performed by adding new
vertices to the network. One node at a time t is added to the network. Our algorithm takes
three parameters: first is the number of vertices, V; second is the m edges (E) to attach from a
new node to the existing nodes; third is the construction of an initial seed-connected network
with n0 vertices. Therefore, G contains nodes that are well connected as shown in Fig. 6.

Algorithm 1: Growing a network via random walk
Input: - Graph G(V , E)

Output: -Generate network growth model by using random walk
Start ()
Step 1:-Initial condition

{Add one node, i.e., v1 at time T in the network.}
Step 2:-Growth and scale-free structure

{Each node in the network is assigned an attribute P(vi), i = 1 . . . ..n0, based on random
distribution f (p).}

Step 3:-Linking by random walk
{Choose a random node, Vs, and place the random walker on it.}
{Find the neighbors of last marked vertices Vs and mark them accordingly.}
{Perform a walk L>1 from node Vs, randomly choosing at each step a neighbor of the current
node.}
{The arrived at node, i.e., Ve, is marked.}

(Continued)
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Algorithm 1: Continued
Step 4:-

{Start a new walk from last marked node V1 with probability P(vi). This is a 1-step or 2-step
walk.}
{Marked the arrived at node.}

Step 5:-
{Repeat Step 4 m − 1 times.}
{Add one new node, and add a link between newly added node and m marked nodes.}
{Assign probability P(vi) to that node.}

End ( )

Figure 6: Network initialization

• Network growth and scale-free degree distribution: In this step, the probabilities pi are associated
with each node in the network. A Bernoulli distribution, f (p), is assigned to each node. This
property ensures that our network follows a scale-free property. Fig. 7 presents the addition of
probabilities pi to the current network.

Figure 7: Imposing the bernoulli distribution

• Linking by random walk: The next step is to select a random node. Thus, node vs is selected
as a starting point. Node vs neighbors are identified and marked. The random walk, L > 1,
starts from node vs. The neighbors of the current node are identified, and the arrived-at node
is marked. A new walk from the last marked node is started, which is either a one-step walk or
a two-step walk. Finally, one new node is added to the network; we assign the probabilities to
the newly joined node and add a link between that node and the existing marked vertices. The
proposed model generated by the random walk is shown in Fig. 8. Algorithm 1 shows the step
by step network-growing. Initially, one node at a time t is added to the network and a random
distribution, f (p), is assigned to each node. Our random walk model requires the construction
of an initial seed connected with n0 vertices. We already know this also happens in the original
BA model. Our contribution to this new model is the incorporation of an assigned non-zero
probability to the initially isolated vertices, based on Eq. (7):
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Figure 8: The proposed model

p(k) ∼ k + a (7)

Hence, in our proposed algorithm we have used the following design parameters: n is the number
of nodes, v is the number of edges attached per node, m, and the probability distribution is represented
by f(p). Usually, in most growing networks, m allows us to control the average degree, since k = 2.
We assign p as the probability, pvi. This probability reflects the generic factor declared upon certain
distributions, such as f(p). The fraction of nodes is represented by the clustering coefficient (cc) having
p(vi) = 1, and the remaining nodes, p(pvi) = 0. This phenomenon may result in the identification of
different community structures of the network. In this study, the probability remains constant during a
node’s life, and it will be determined based on the length of the random walk starting from the node. In
Fig. 8, at first, a random node named Vs, is chosen as a starting point, and the random walk begins at
it. The neighbors of Vs are identified in this step. The walk for L > 1 is performed from the node Vs. We
assign probability P1 to walk L = 1; For a multihop, l = 2, it would be 1−p. This random walk model
enables us to implement triangle-generation control and select the next-hop nodes. The selection of a
link for walk L, where L > 1 for a single hop, or L > 2 for a second hop, is performed dynamically.
Accurate tuning and addition of the number of triangles were implemented using probability p1 for a
walk where L = 1. If L = 2, the probability will be 1−p1.The incorporation of probability and control
of a node attribute will facilitate the random walk. In particular, the probability remains the same as
that during the node’s life and can be determined by using the length of the random walk. Estimating
the network clustering coefficient C [17] is defined as done in [55] and in Eq. (8):

Ci =

⎧⎪⎪⎨
⎪⎪⎩

2eij

ki(ki − 1)

0 ki ≤ 1

ki > 1 (8)

where Ci indicates the clustering coefficient of node i, and ki indicates the degree of node ki to the
neighbors and the number of edges. The clustering coefficient for the entire network is calculated in
Eq. (9):

C = 1
N

∑
i

ci (9)

where N represents the number of vertices. In addition, the behavior of our proposed random walk
model is the same as the HK model [3]. The HK model exhibits a triad formation with probability
Pt = 1. In addition, the clustering properties are similar to the Dorogov model [56].
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4 Experimental Results and Discussion

In this section, we present our experimental results in detail. We have divided this section into two
subsections. At first, we have discussed the preliminaries of the power law, and then we have discussed
the achieved experimental results.

4.1 Preliminaries: Generating Power Law

First, we need to define the initial seed and N vertices. This affects the topology of the initial
network and the outcome. It is known that this may occur in the original BA model, in which a nonzero
probability is initially assigned to the isolated nodes in the network [57]. In many cases, such as in
implementation, it is performed by setting a parameter alpha a, in the distribution: i.e., (Discussed in
Eq. (7)) p(k) ∼ k + a; Where the degree of nodes is represented by k0, is equal to the N vertices in the
network. It is noteworthy that this value is equal to the a used in the BA model. The network topology
is typically based on degree distribution, clustering coefficient, and path length. Typically, a regular
lattice exhibits high clustering and a large path length, rather than random networks. Generally, it is
observed in random networks have short path lengths and also has low clustering [57]. The regular
lattice and random networks fail to explain the features of real networks, such as social networks,
citation networks, and movie-actor collaboration networks [57]. Typically, these networks exhibit
low-power degree distribution, a short path length, and large clustering [57]. Social networks or real
networks can achieve these features by reconstructing a link using a regular network. To do the first
walk, we need to construct a regular lattice where the degree k0 is equal to the n0 nodes. If we start
a network with the accomplishment of these requirements the performance of our model is affected
by the values selected for k0 and n0. A few points are noteworthy before further explanation. The first
point is that the value of P is 0, 0.2, or 1, and it may affect the structure of the ring lattice. The second
point is that if we change the value of n, it results in some undesirable effects. If we choose n = 10
or larger, it produces a fully connected graph where k0 = n0 − 1. It might be possible to produce
the deviation from power-law behavior. This effect is shown in Fig. 9 as a result of construction of a
completely connected graph. In this figure, a regular graph is shown. However, we are interested in a
network growth model rather than a regular network. This graph shows the abnormal behavior of this
study.

Figure 9: Visualization of a completely connected random graph

Hence, to address this issue, we have designed a ring lattice with n0 = max(10, m), which appears
to function properly in many cases. All the results presented below utilized this seed. Moreover, we have
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used L = 7 for the first walk per added node has been used, to avoid dependence on the neighbor’s
degree throughout the selection process.

4.2 Results and Discussion

In this section, we have discussed experimental results in terms of degree distribution and triadic
closure. We performed a series of experiments using Network X [58]. Network X is a powerful Python
package used for the manipulation, creation, and study of the network structure in complex networks.
It is used to study large complex networks represented in form of graphs with nodes and edges. Using
network X, we can load and store complex networks.

4.2.1 Degree Behavior and the Emergence of Scale-free Structure

The emergence of a scale-free structure during the growing process is discussed in this section.
Fig. 10 demonstrates the complementary cumulative distribution function (CCDF) of nodes on a log
scale for various values using Saramäki RW (Random walk) [5], No Restart Random Walk (NRRW)
[2], and our proposed model. We have calculated this result and got an average of over 100 runs with
N = 106. The networks are generated using a random walk for l = 1. In this figure, we observe that
the degree distribution of our proposed random walk model is more linear than both models. This
phenomenon is due to the high diameter and the occurrence of high clustering in our proposed model.
In this experiment, we used three datasets and performed an extensive series of experiments. A detailed
description of datasets is given in Tab. 2. In this table, a comparative summary of various statistics on
network-generation models was given. These experiments aimed to find the general shape of the degree
distribution by using the CCDF. A graph on a log scale was drawn to examine whether the tail follows
the power-law or not. The x-axis represents the maximum number of node neighbors k, while the y-axis
represents the degree distributions Pk. In this diagram, we see that because the random walk model
completely follows the power law, it is on a straight line. On the other hand, the existing model and
the BA model performed nearly equally. The calculated mean degree of the random walk is good, and
hence, this behavior and the arrangement of degrees show that our proposed model is efficient and
helpful in getting a high clustering. Hence, this result validates that the proposed random walk model
behaves like other preferential attachment models [22,52,59].In addition, the proposed random walk
model allocates well-organized node degrees, especially if applied on real datasets such as Facebook
or Bright kite. Fig. 11 demonstrates the accuracy of growth models by comparing our model with
the baseline Harshay shah et al. [6] Random walk (RW) model. In this graph, the line having blue
balls indicates our proposed model. On the other hand, the green line indicates the Harshay shah RW
model. In this figure, we can see that our model preserves degree distribution compared to the RW
model. Therefore, our model outperforms the other in jointly preserving heavy ailed distribution.
Tab. 3 demonstrates the description of real datasets that we have used in this experiment. In this
table, some statistics of social data sets including edges, nodes, average node degree, and the average
clustering coefficient cc are given. Fig. 12 demonstrates the degree distribution using the Bright kite
Dataset. In this figure, the vertical red line indicates the Power law proposed by Barabasi et al. in [22].
The blue line indicates the deployment of the node by using our proposed model. We can see that
the blue line is very close to the red line and it makes an almost ninety-degree angle. The objective
of this experiment is to determine that our proposed model behaves the same as the BA model. The
figure proves that the model behaves like a power law (Used by the current model). Similarly, Fig. 13
indicates the nodes distribution using the Facebook data dataset. The number of nodes is very large so
the distribution of nodes has more curves. The behavior is quite similar to the earlier graph. These
two results prove that our algorithm fits well and the distribution and performs it like power-law
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models. We have carefully reviewed a very recent random walk model by Amorim et al. named No
Restart Random Walk (NRRW) [2]. The authors initially apply a few values to test the behavior of
their model. Fig. 14, presents the complementary cumulative distribution of function (CCDF) of a
node for various values of pvi in a log scale. In this empirical experiment, we would like to examine
the behavior of our proposed model. we can see that when the value of pvi is small the coressponding
degree distrbutation behaves differently. Generally, it exhibits a kind of power-law for pvi values. It is
noted, that the degree behavior is changed. As the values of probability increases into the medium
range, the trends continue, and this distribution to each other. In case we are applying large values, the
degree distribution is getting closer and hence the results can’t be distinguishable. A noticeable point
when we increasing the value of probability the degrees power-law distribution. Therefore, it suggests
the effect of pvi values dominates the dynamics. In addition when the value of p is large then the CCDF
shows a power law with the exponent approximately −2. This phenomenon is very similar to the BA
model which is based on Preferential attachment (PA). As the coefficient increases, the probability of
one-edge nodes increases and the (probabilities of higher-degree nodes decreases.

Figure 10: Comparison of degree distribution

Table 2: Comparative summary of various statistics of real-world and network generation models

Parameters No Restrat Random Walk (NRRW) model [2] RW model [5] Our model

Nodes 7640 7413 7640
Edges 274865 2244905 2777029
Average degree 2303 352 1271
Clustering
coefficient

0.09 0.61 0.87

Average path length ∗ ∗ ∗
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Figure 11: Accuracy of growth models

Table 3: Experimental datasets and properties

Parameters Nodes Edges d CC

Facebook [1] 40399 88234 8.5 0.11
Bright Kite [4] 58228 40399 8.9 0.8
Epinions [4] 75,877 405,739 10.7 0.14

Figure 12: Bright kite
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Figure 13: Facebook

Figure 14: Empirical CCDF

4.2.2 Adjustable Clustering Coefficient Control

We have implemented the clustering coefficient control mechanism by changing the value of
probability, i.e., clustering control parameter (cc). A walk for length l in the network is started by
selecting a specific point. Fig. 15 presents the implementation of the clustering coefficient control
mechanism by using a 2-step walk strategy. The y-axis exhibits the computed clustering coefficient (C)

and the x-axis demonstrates the estimated clustering control parameter (CC). The blue point shows
the mean clustering coefficient and the red line indicates the standard deviation. In this figure, we easily
examine that our proposed model drives a high level of variance for small values of cc.We have tested
this experiment 20 times for each value of cc. We adopted a two-step procedure and hence it produced
a high value for clustering. we examine that the value of C depends upon the values of CC. The result
indicates that triadic closure dependence is based on networks with N = 104 (the number of nodes) and
m = 4 (the number of links). This result proves that the achieved C remains constant for a given value
of cc, and hence, the network grows quickly. The results of our proposed random walk model show
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better results by following a linear relationship and are characterized by C = 0.53864 and CC with R2
= 0.999. We have also performed two experiments to measure the control capability of the clustering
coefficient. Fig. 16, presents the empirical results of the first experiment. we have plotted a log-scale
graph with the fixed network size, N = 1600 to N = 50.103. The result can be seen for three values
different values of CC. The black color indicates the value of CC = 0. The blue color indicates the
value of CC = 0.5. Finally, the green color indicates the value of C = 1.s We can see that applying three
different values to our proposed algorithm will produce in getting different clustering coefficients. The
lower value of CC indicates the getting of a lower clustering value. Similarly, by increasing the value
of CC, we can achieve a higher clustering coefficient. These results prove that our proposed algorithm
is efficient in all aspects. In addition, this result validates that controlling the value of the clustering
parameter helps in getting a large triadic closure. Similarly, the results of the second experiment are
shown in Fig. 17. In this figure, clustering coefficient decay with an average degree is shown. The
achieved result indicates that the variation of the maximum clustering coefficient can be generated by
our proposed model, especially, when the value of m increases. This result validates that the behavior of
the proposed random walk is the same as other recent tunable clustering models such as; [3,60]. Some
researchers have proposed the use of an alternative definition of triadic closure since large values of
m will bias the degree of clustering correlation in scale-free networks when the standard definition of
clustering is employed.

Figure 15: Clustering coefficient control

Figure 16: Empirical result of variation in clustering coefficient
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Figure 17: Clustering coefficient decay with average

5 Conclusion and Future Research Directions

We herein define a network growth model that is completely based on the properties of self-
organized networks.

Typically, highly clustered and scale-free networks are used. We considered the dependence and
growth of networks that are similar to the small-world transition. This phenomenon was observed
in many cases of static networks, especially when link rewiring to a regular grid is required. Hence,
our study demonstrated a connection between the small-world and scale-free networks. Our proposed
random walk model dynamically estimates the clustering coefficient and degree distribution in the
network. The proposed random walk model considerably outperformed state-of-the-art methods. We
tested our algorithm and concluded that our random walk model is helpful for network growth.
Moreover, it is also highly efficient in terms of attaining the node degree and high clustering. Our
model is beneficial for several network mining problems including extrapolation, sampling, and model
testing. The path length was not discussed, although it is an important property of small-world
networks. This will be addressed in future studies.
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