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Abstract: In this article, we calculate various topological invariants such as
symmetric division degree index, redefined Zagreb index, VL index, first and
second exponential Zagreb index, first and second multiplicative exponential
Zagreb indices, symmetric division degree entropy, redefined Zagreb entropy,
VL entropy, first and second exponential Zagreb entropies, multiplicative
exponential Zagreb entropy. We take the chemical compound named Proan-
thocyanidins, which is a very useful polyphenol in human’s diet. They are
very beneficial for one’s health. These chemical compounds are extracted from
grape seeds. They are tremendously anti-inflammatory. A subdivision form of
this compound is presented in this article. The compound named subdivided
grape seed Proanthocyanidins is abbreviated as SGSP3. This network SGSP3,
is converted and modeled into its mathematical graphical formation with the
support of the latest mathematical tools. We have also developed many closed
formulas for the measurement of entropy for the general chemical structure
of the subdivided grape seed Proanthocyanidins network. The achieved out-
comes can be correlated with the chemical version of SGSP3 to get a better
understanding of its biological as well as physical features.

Keywords: Symmetric division degree; redefined Zagreb; VL index;
exponential; multiplicative Zagreb; subdivided grape seed
Proanthocyanidins; graphical model; genetics; entropy

1 Introduction

The study of the field of chemical graph theory (CGT) is linked to the discussion and formation
of chemical structures using various mathematical tools to grasp the knowledge of their physical and
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biological activities. We search the mathematical resolutions for the issues and questions raised in
molecular chemistry. Shannon developed the basic knowledge of entropy [1–4] in 1948.

The entropies measured for the given graph rely purely on the graph structure and its probability
distribution for the node set. In this article, we take and study the general structure of Proantho-
cyanidins [5], which are chemical in nature and provide colors to different foods, especially fruits and
vegetables.

Vukičević and Gašperov invented 148 types of chemical invariants. These are known as “discrete
Adriatic indices (DAI)”. The Symmetric division degree index is one of the DAI. Vukičević developed
[6,7] this graph invariant and formulated as:

SDD
(
ή
) =

∑
kl∈E(ή)

{
dk

dl

+ dl

dk

}

In 2013, Ranjini et al. computed again the Zagreb index [8]. They developed the third Zagreb index
for the graph ή and evaluated by:

ReZM
(
ή
) =

∑
kl∈E(ή)

{(dk × dl) (dk + dl)}

Recently in 2021, Deepika invented a new invariant named VL index [9,10].

VL
(
ή
) = 1

2

∑
kl∈E(ή)

{da + db + 4} where, da = dk + dl − 2 & db = dk × dl − 2

VL
(
ή
) = 1

2

∑
kl∈E(ή)

{(dk + dl) + (dk × dl)}

Definition 1: Consider the graph of the subdivided grape seed Proanthocyanidins network SGSP3

denoted by ή, then the first and second exponential Zagreb indices [11–13] are defined by:

EM1

(
ή
) =

∑
t∈V(ή)

edeg(t)2 & EM2

(
ή
) =

∑
kl∈E(ή)

edk×dl

Definition 2: Consider the graph of the subdivided grape seed Proanthocyanidins network SGSP3

denoted by ή, then the first and second multiplicative exponential Zagreb indices are defined by:

E
∏

1

(
ή
) =

∏
t∈V(ή)

edeg(t)2 & E
∏

2

(
ή
) =

∏
kl∈E(ή)

edk×dl

This paper consists of four sections. In Section 1, we have provided a brief introduction of
the importance and history of the topological invariants such as symmetric degree, redefined, VL,
first and second exponential and multiplicative exponential topological indices. In Section 2, we
have considered the general structure of grape seed Proanthocyanidins in its subdivision form and
discussed its construction. We have also introduced some new formulas. While in Sections 3 and 4,
we have formulated and discussed some entropy-based formulas such as symmetric division degree
entropy, redefined Zagreb entropy, VL entropy, first and second exponential Zagreb entropies and
multiplicative exponential Zagreb entropies.

2 Material and Methods

Let ή be an undirected, connected, finite and simple graph having a set of vertices V ′(ή) =
{v′

1, v′
2, v′

3, . . . , v′
n} and a set of edges vertices E ′(ή) = {e′

1, e′
2, e′

3, . . . , e′
ή
}. Whereas

∣∣V ′(ή)
∣∣ and

∣∣E ′(ή)
∣∣
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depict the cardinality of the graph ή for all v′
i ∈ V ′(ή) and v′

iv
′
j ∈ E ′(ή). We consider the general structure

of grape seed Proanthocyanidins network symbolized by GSP3.

To obtain a new structure called a subdivided grape seed Proanthocyanidins network and
symbolized as SGSP3, a new vertex at every edge is inserted. The subdivided structure of GSP3 is
depicted in Fig. 1. Various topological invariants [14,15] are applied in the comparison of molecular
structure with its new mathematical structure to study its properties. The process of computation obeys
the following steps.

1. Consideration of graph: we associate the given molecular structure with the mathematical
graph.

2. Identification of nodes: we identify all different degrees and label them accordingly.
3. Division of edges: we separate the edges according to the labelled degrees.
4. Calculation: we obtain the general form after some computations.

We have noticed that two types of edges are attained that are (2, 2) and (2, 3). SGSP3 is illustrated
in Fig. 1.

Figure 1: SGSP3

Fig. 1 describes the molecular structure of a subdivided grape seed Proanthocyanidins network.

where, |V (
ή
) | shows the total number of vertices in ή, |E (

ή
) | shows the total number of edges in

ή, dt shows the vertices having degrees 2 and 3, |V (dt) | shows the general form of the cardinality of
its vertex set consisting of degrees 2 and 3, respectively.

And (dk, dl) for kl ∈ E(ή) shows the edges having degree 2 at its both ends and edges having degree
2 at its one end and 3 at its other end, |V (dk, dl) | shows the general form of the cardinality of its edge
set consisting of degrees 2 and 3.

Proposition 2.1: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its symmetric division degree index is SDD

(
ή
) = 79n − 5.



4458 CMC, 2022, vol.73, no.3

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1, we obtain

SDD
(
ή
) =

∑
kl∈E(ή)

{
dk

dl

+ dl

dk

}

SDD
(
ή
) = (20n + 4) (2) + (18n − 6)

13
6

= 79n − 5. (1)

Table 1: Shows the cardinality of the graph ή based on vertex set and edge set

Sr. no. |V (
ή
) | |E (

ή
) | dt |V (dt) | (dk, dl) for kl ∈ E(ή) |V (dk, dl) |

1 35n − 1 38n − 2 2 29n + 1 (2, 2) 20n + 4
2 3 6n − 2 (2, 3) 18n − 6

Proposition 2.2: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its redefined Zagreb index is ReZM

(
ή
) = 860n − 116.

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1, we obtain

ReZM
(
ή
) =

∑
kl∈E(ή)

{(dk × dl) (dk + dl)}

ReZM
(
ή
) = (20n + 4) (16) + (18n − 6) (30) = 860n − 116. (2)

Proposition 2.3: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its VL index is VL

(
ή
) = 179n − 17.

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1, we obtain

VL
(
ή
) = 1

2

∑
kl∈E(ή)

{da + db + 4} where, da = dk + dl − 2 & db = dk × dl − 2

VL
(
ή
) = 1

2

∑
kl∈E(ή)

{(dk + dl) + (dk × dl)}

VL
(
ή
) = 1

2
{(20n + 4) (8) + (18n − 6) (11)} = 179n − 17. (3)

Proposition 2.4: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its first and second exponential Zagreb indices are

EM1

(
ή
) = 50201n − 16152andEM2

(
ή
) = 8354n − 2202.

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1, we obtain

EM1

(
ή
) =

∑
t∈V(ή)

edeg(t)2

EM1

(
ή
) = (29n + 1) e4 + (6n − 2) e9 = 50201n − 16152. (4)
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and

EM2

(
ή
) =

∑
kl∈E(ή)

edk×dl

EM2

(
ή
) = (20n + 4) e4 + (18n − 6) e6 = 8354n − 2202. (5)

Proposition 2.5: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its first and second multiplicative exponential Zagreb indices are

E
∏

1

(
ή
) = e13

(
12n2 + 2n − 2

)
and E

∏
2

(
ή
) = e10

(
360n2 − 48n − 24

)
.

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1, we obtain

E
∏

1

(
ή
) =

∏
t∈V(ή)

edeg(t)2

E
∏

1

(
ή
) = (29n + 1) e4 × (6n − 2) e9 = e13

(
12n2 + 2n − 2

)
. (6)

and

E
∏

2

(
ή
) =

∏
kl∈E(ή)

edk×dl

E
∏

2

(
ή
) = (20n + 4) e4 × (18n − 6) e6 = e10(360n2 − 48n − 24). (7)

Definition 3: Consider the network GSP3, symbolized by ή, then its degree-based entropy can be
calculated as:

ENTSDD

(
ή
) = log (2q) − 1

2q

m∑
i=1

[
log

(
d(ti)

)d
(ti)

]
,

where dti denotes the vertex degree of node ti.

ENTSDD

(
ή
) = log (76n − 4) − 1

(76n − 4)

[
(29n + 1) × log (2)

2 + (6n − 2) × log (3)
3
]

ENTSDD

(
ή
) = log (76n − 4) − 26.04n − 2.26

(76n − 4)
. (8)

3 Discussion and Results

Proanthocyanidins are chemical in nature and are essential polyphenols in human foods. They
have many benefits for health. Proanthocyanidins that are obtained from grape seeds are extremely
anti-inflammatory. We discuss here its subdivided version. We have studied the chemical network of
subdivided grape seed Proanthocyanidins by converting and modeling it into a mathematical graphical
form with the help of mathematical tools. New formulas for measuring the entropy [16] of the general
molecular structure of the subdivided grape seed Proanthocyanidins network SGSP3 are developed
and discussed. The obtained results can be interlinked with the molecular form of SGSP3 to grasp its
biological as well as physical features.
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Proposition 3.1: Consider the graph of the subdivided grape seed Proanthocyanidins network

SGSP3, then its symmetric division degree entropy is ENTSDD

(
ή
) = log (79n − 5) − 25.13n − 1.95

79n − 5
.

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1 and Eq. (1), we obtain

ENTSDD

(
ή
) = log

(
SDD

(
ή
)) − 1

SDD
(
ή
) m∑

i=1

∑
kl∈Ei(ή)

log
{

dk

dl

+ dl

dk

}{
dk
dl

+ dl
dk

}

ENTSDD

(
ή
) = log (79n − 5) − 1

79n − 5

[
(20n + 4) × log (4) + (18n − 6) × log

(
13
6

)( 13
6 )

]

ENTSDD

(
ή
) = log (79n − 5) − 25.13n − 1.95

79n − 5
. (9)

Proposition 3.2: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its redefined Zagreb entropy is ENTReZM

(
ή
) = log (860n − 116) − [1182.96n−188.81]

860n−116
.

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1 and Eq. (2), we obtain

ENTReZM(ή) = log(ReZM(ή)) − 1
ReZM(ή)

m∑
i=1

∑
kl∈Ei(ή)

log {(dk×dl)(dk + dl)}{(dk×dl )(dk+dl )}

ENTReZM

(
ή
) = log (860n − 116) − [64 (5n + 1) × log (16) + 180 (3n − 1) × log (30)]

860n − 116

ENTReZM

(
ή
) = log (860n − 116) − [1182.96n − 188.81]

860n − 116
. (10)

Proposition 3.3: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its VL entropy is ENTVL

(
ή
) = log (179n − 17) − [121.46n−14.79]

179n−17
.

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1 and Eq. (3), we obtain

ENTVL

(
ή
) = log

(
VL

(
ή
)) − 1

VL
(
ή
) m∑

i=1

∑
kl∈Ei(ή)

log
{

(dk × dl) + (dk + dl)

2

}{
(dk×dl)+(dk+dl)

2

}

ENTVL

(
ή
) = log (179n − 17) −

[
4 (20n + 4) × log (4) + 11

2
(18n − 6) × log

(
11
2

)]
179n − 17

ENTVL

(
ή
) = log (179n − 17) − [121.46n − 14.79]

179n − 17
. (11)

Proposition 3.4: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its first and second exponential Zagreb entropies are

ENTEM1

(
ή
) = log (50201n − 16152) − [192783.28n − 63249.39]

50201n − 16152
and

ENTEM2

(
ή
) = log (8354n − 2202) − [20819.28n − 5928.06]

8354n − 2202
.
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Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1, Eqs. (4) and (5), we obtain

ENTEM1

(
ή
) = log

(
EM1

(
ή
)) − 1

EM1

(
ή
) m∑

i=1

∑
t∈Vi(ή)

log
{

edeg(t)2
}{

edeg(t)2
}

ENTEM1

(
ή
) = log (50201n − 16152) −

[
e4 (29n + 1) × log

(
e4

) + e9 (6n − 2) × log
(
e9

)]
50201n − 16152

ENTEM1

(
ή
) = log (50201n − 16152) − [192783.28n − 63249.39]

50201n − 16152
. (12)

and

ENTEM2

(
ή
) = log

(
EM2

(
ή
)) − 1

EM2

(
ή
) m∑

i=1

∑
kl∈Ei(ή)

log
{
edk×dl

}{
edk×dl

}

ENTEM2

(
ή
) = log (8354n − 2202) −

[
e4 (20n + 4) × log

(
e4

) + e6 (18n − 6) × log
(
e6

)]
8354n − 2202

ENTEM2

(
ή
) = log (8354n − 2202) − [20819.28n − 5928.06]

8354n − 2202
. (13)

Proposition 3.5: Consider the graph of the subdivided grape seed Proanthocyanidins network
SGSP3, then its first and second multiplicative exponential Zagreb entropies are

ENTE
∏

1(ή) = log
(
e13

(
12n2 + 2n − 2

)) − [522695349.2n2 − 156207805.5n − 6007992.5]
e13 (12n2 + 2n − 2)

.

and ENTE
∏

2(ή) = log
(
e10(360n2 − 48n − 24)

) − [35894437.2n2 − 4785925n − 2392962.4]
e10(360n2 − 48n − 24)

.

Proof: Let ή be the graph of the subdivided grape seed Proanthocyanidins network SGSP3. Then,
by Tab.1, Eqs.(6) and (7), we obtain

ENTE
∏
1
(ή) = log

(
E

∏
1

(
ή
)) − 1

E
∏

1

(
ή
) m∏

i=1

∏
t ∈ Vi(ή)

log
{

edeg(t)2
}{

edeg(t)2
}

ENTE
∏
1
(ή) = log

(
e13

(
12n2 + 2n − 2

)) −
[
e4 (29n + 1) × log

(
e4

) × e9 (6n − 2) × log
(
e9

)]
e13 (12n2 + 2n − 2)

= log
(
e13

(
12n2 + 2n − 2

) ) − [3003996.26 (29n + 1) (6n − 2)]
e13 (12n2 + 2n − 2)

= log
(
e13

(
12n2 + 2n − 2

) ) − [3003996.26 (29n + 1) (6n − 2)]
e13 (12n2 + 2n − 2)

ENTE
∏
1
(ή) = log

(
e13

(
12n2 + 2n − 2

) ) − [522695349.2n2 − 156207805.5n − 6007992.5]
e13 (12n2 + 2n − 2)

.

(14)
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and

ENTE
∏
2
(ή) = log

(
E

∏
2

(
ή
)) − 1

E
∏

2
(
ή
) m∏

i=1

∏
kl ∈ Ei(ή)

log
{

edk×dl
}{

edk×dl
}

ENTE
∏
2
(ή) = log

(
e10

(
360n2 − 48n − 24

))
−

[
e4 (20n + 4) × log

(
e4

) × e6 (18n − 6) × log
(
e6

)]
e10

(
360n2 − 48n − 24

)
= log

(
e10

(
360n2 − 48n − 24

))
− [99706.77 (20n + 4) (18n − 6)]

e10
(
360n2 − 48n − 24

) .

ENTE
∏
2
(ή) = log

(
e10

(
360n2 − 48n − 24

))
−

[
35894437.2n2 − 4785925n − 2392962.4

]
e10

(
360n2 − 48n − 24

) . (15)

4 Conclusion

In this study, a chemical network of subdivided grape seed Proanthocyanidins has been discussed
to introduce new prepositions for symmetric division degree entropy, redefined Zagreb entropy, VL
entropy, first and second exponential Zagreb entropies, first and second multiplicative exponential
Zagreb entropies by using the results of symmetric division degree index, redefined Zagreb index,
VL index, first and second exponential Zagreb indices, multiplicative exponential Zagreb indices to
understand their physical features. The achieved outcomes can be interlinked with the molecular
properties [17] of chemical version of SGSP3 to get a better understanding of its biological features.
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