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Abstract: This paper proposes the first code-based quantum immune sequen-
tial aggregate signature (SAS) scheme and proves the security of the proposed
scheme in the random oracle model. Aggregate signature (AS) schemes and
sequential aggregate signature schemes allow a group of potential signers to
sign different messages respectively, and all the signatures of those users on
those messages can be aggregated into a single signature such that the size of
the aggregate signature is much smaller than the total size of all individual
signatures. Because of the aggregation of many signatures into a single short
signature, AS and SAS schemes can reduce bandwidth and save storage;
moreover, when a SAS is verified, not only the valid but also the order in
which each signer signed can be verified. AS and SAS schemes can be applied
to traffic control, banking transaction and military applications. Most of the
existing AS and SAS schemes are based either on pairing or Rivest–Shamir–
Adleman (RSA), and hence, can be broken by Shor’s quantum algorithm for
Integer Factoring Problem (IFP) and Discrete Logarithm Problem (DLP).
There are no quantum algorithms to solve syndrome decoding problems.
Hence, code-based cryptography is seen as one of the promising candidates
for post-quantum cryptography. This paper shows how to construct quantum
immune sequential aggregate signatures based on coding theory. Specifically,
we construct our scheme with the first code based signature scheme proposed
by Courtois, Finiasz and Sendrier (CFS). Compared to the CFS signature
scheme without aggregation, the proposed sequential aggregate signature
scheme can save about 90% storage when the number of signers is asymp-
totically large.

Keywords: Sequential aggregate signature; CFS signature; post-quantum
cryptography

1 Introduction

Security systems may often encounter the scenario which is to manage many different signa-
tures on many different messages generated by many distinct users. For example, in a Public Key
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Infrastructure (PKI) of depth n, user signatures are accompanied by a chain of n certificates. The chain
contains n signatures by n Certificate Authorities (CAs) on n distinct certificates. Another example is
secure border gateway protocol (S-BGP) [1] in which each router receives a list of n signatures attesting
to a certain path of length n in the network. A router signs its own segment in the path and passes the
resulting list of n+1 signatures to the next router. Both systems would benefit from a method which
can compress the different signatures on different messages issued by different users. The certificate
chain would be shortened by compressing the n signatures in the chain into a short single signature.

Aggregate signatures (AS), proposed by Boneh et al. [2] in 2003, are digital signatures that address
the problem of compressing signatures. AS allows n members of a given group of potential signers to
sign n different messages mi respectively, and all the signatures of those users on those messages can
be aggregated into a single short signature σ . This single short signature σ and the n original messages
mi are enough to convince the verifier that the n signers did indeed sign the n original messages mi

respectively. In the scheme of [2], the aggregate signature can be produced by anyone. Subsequently,
at Eurocrypt 2004, Lysyanskaya et al. [3] proposed another aggregate signature, namely sequential
aggregate signature (SAS). In a sequential aggregate signature scheme, the aggregate signature cannot
be produced by an outsider; instead, it must be constructed sequentially by each signer modifying the
aggregate-so-far signature in turn.

Because of the aggregation of many signatures into a single short signature, AS and SAS schemes
can reduce bandwidth and save storage; moreover, when a SAS is verified, not only the valid but also
the order in which each signer signed can be verified. AS and SAS schemes can be applied to traffic
control, banking transaction and military applications. Particularly, AS and SAS schemes are suitable
for the secure border gateway protocol (S-BGP) which is designed to improve the security of the global
Internet routing system. In the scenario of S-BGP, each router receives a list of n signatures attesting
to a certain path of length n in the network. A router signs its own segment in the path and passes the
resulting list of n + 1 signatures to the next router. When an AS scheme or a SAS scheme is used in
S-BGP, one can significantly reduce associated bandwidth overhead and memory space for signatures.

Since Boneh et al. introduced aggregate signature scheme, there are many AS schemes have been
presented [2–8], most of them are constructed either from pairings [2,4–8] or from Rivest–Shamir–
Adleman (RSA) [3]. The security of the above schemes except [7] is proved in the random oracle model,
and the security of [7] is proved in the standard model.

In 1997, Shor [9] discovered a remarkable quantum algorithm which can solve both the factoring
problem and the discrete logarithm problem in finite fields and on elliptic curves in polynomial time.
So in the age of quantum, Shor’s algorithm will break all digital signature schemes, including Full
Domain Hash RSA (FDHRSA), the Digital Signature Algorithm (DSA) and the Elliptic Curve DSA
(ECDSA), which are based on factoring problem and the discrete logarithm problem. Thus, Shor’s
algorithm can also break all the aforementioned AS and SAS including Boneh et al.’s AS, Lysyanskaya
et al.’s SAS. In response, the cryptographic community has been focusing on a coordinated effort to
produce viable alternatives, based on hard problems which are not vulnerable to quantum cryptanalytic
attacks. These include cryptosystems based on lattices, linear codes, multivariate equations, and others.
Such an effort is led by NIST’s (National Institute of Standards and Technology) call for Post-
Quantum Standardization [10], which is currently nearing its end.

In1978, McEliece [11] constructed a public key encryption (PKE) based on coding theory. In 1986,
Niederreiter [12] proposed an equivalent code-based PKE. But the first practical code-based signature
scheme was proposed by Courtois et al. until 2001 [13], their signature scheme is also known as the
CFS signature. The CFS signature adapts the full domain hash (FDH) approach of Bellare et al. [14] to
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Niederreiter encryption scheme. The security of the CFS signature is based on two difficult problems
of coding theory: The Goppa Bounded Decoding problem (GBD), and the Permuted Goppa Code
Distinguishing problem (PGD) [13,15].

Our contribution. Up to date, there exists no quantum algorithm solving the GBD and PGD, so the
CFS signature is seen as one of the promising candidates for post-quantum signatures [16,17]. After the
publishing of the CFS scheme, there are just a few code-based signatures with special properties have
been presented, namely blind, (threshold) ring signature, and identity-based signature, for details, refer
to the survey paper [17]. To the best knowledge we know, there is no code-based aggregate signature
or sequential aggregate signature in the literature.

In this paper, we construct a code-based sequential aggregate signature from the CFS signature.
We prove the proposed SAS secure in the random oracle under reasonable assumptions for permuted
Goppa code. Due to the anti-quantum of the CFS signature schemes [16,17], to the best knowledge
we know, our scheme is the first code-based quantum immune sequential aggregate signature (SAS)
scheme. We compare our scheme with some other aggregate schemes in Tab. 1.

Table 1: The comparisons with other schemes

Scheme Boneh et al. [2] Lysyanskaya et al. [3] Lu et al. [7] Ours

Type AS SAS SAS SAS
Hardness assumption Paring RSA Paring Syndrome decoding
Security model Random oracle Random oracle Standard

model
Random oracle

Post-quantum No No No Yes

Related works. Recently, [18–20] used the Schnorr-Lyubashevsky framework to construct code
based signatures without trapdoors. The Schnorr-Lyubashevsky framework has been shown able to
produce secure and efficient signature schemes without trapdoors in the lattice-based setting. There
are some works [21] analyzed such Schnorr-Lyubashevsky framework code based signatures. Some
lattice based aggregate signatures have been proposed in [22,23]. Xu et al. proposed a post-quantum
blind signature in [24]. Quantum spin states can be used to construct hybrid cryptosystems and other
schemes [25–27].

Organizations. The rest of the paper is organized as follows: In Section 2, we give the formal
definitions and security model of sequential aggregate signature schemes. Section 3 reviews coding
theory and the CFS signature. A concrete code-based sequential aggregate signature scheme is
proposed in Section 4.We compare the efficiency between aggregate and non-aggregate for the CFS
signature in Section 5. Finally, we end with concluding remarks in Section 6.

2 Sequential Aggregate Signature Scheme

In this section, we give the formal definitions and security model of sequential aggregate signature
(SAS) schemes. We adopt the main notions in [3].

2.1 SAS Schemes

Definition 1. A sequential aggregate signature (SAS) scheme SAS = (KeyGen, AggSign, AggVerify)
consists of three algorithms:
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KeyGen(1k): KeyGen(1k) generates public and secret key pair (PKi, SKi)of each user Ui.

AggSign: AggSign takes as inputs a secret key SKi, a message mi ∈ {0, 1}∗, and a sequential
aggregate-so-far signature σ on messages m1, m2, · · · , mi−1 under respective public keys PK1, PK2, · · · , PKi−1,
where m1 is the inmost message. If i = 1, the aggregate-so-far σ is taken to be empty. It adds a signature
on mi under SKi to the aggregate, outputting a sequential aggregate σ ′ on all messages m1, m2, · · · , mi.

AggVerify: AggVerify takes as inputs a sequential aggregate signature σ , messages m1, m2, · · · , mi,
and public keys PK1, PK2, · · · , PKi, outputs 1 if σ is a valid sequential aggregate (with m1 inmost) on
the given messages under the given keys, otherwise outputs 0.

Fig. 1 shows how a sequential aggregate signature scheme works. SAS schemes can reduce
bandwidth and save storage; moreover, when a SAS is verified, not only the valid but also the order in
which each signer signed can be verified.

Figure 1: Workflow of a sequential aggregate signature scheme

2.2 Security Model of SAS Schemes

Let SAS = (KeyGen; AggSign; AggVerify) be a sequential aggregate signature scheme. To give the
security model of SAS schemes, we consider the following game associated to a challenger C and a
forger A. A’s advantage, AdvAggSigA, is defined to be his probability to win in the game.

Setup. The aggregate forger A is provided with a public key PK, generated at random.

Queries. Proceeding adaptively, A requests sequential aggregate signatures with PK on messages
of his choice. For each query, he supplies a sequential aggregate signature σ on some messages
m1, m2, · · · , mi−1 under distinct keys PK1, PK2, · · · , PKi−1, and an additional message mi to be signed
by the oracle under key PK (where i is at most N, a game parameter).

Response. Finally, A outputs i distinct public keys PK1, PK2, · · · , PKi. Here i is at most N. One of
these keys must equal PK, the challenge key. Algorithm A also outputs messages m1, m2, · · · , mi, and a
sequential aggregate signature σ by the i users, each on his corresponding message, with PK1 inmost.

The forger wins if the sequential aggregate signature σ is a valid sequential aggregate signature
on messages m1, m2, · · · , mi under keys PK1, PK2, · · · , PKi, and σ is nontrivial, i.e., A did not request a
sequential aggregate signature on messages m1, m2, · · · , mi∗ under keys PK1, PK2, · · · , PKi∗ , where i∗ is
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the index of the challenge key PK in the forgery. Note that i∗ need not equal i. The probability is over
the coin tosses of the key-generation algorithm and of A.

Definition 2. We say a sequential aggregate forger A (τ , qh, qs, N, ε)-breaks an N-user aggregate
signature scheme in the sequential aggregate chosen-key model if: A runs in time at most τ ; A makes at
most qh queries to the hash function and at most qs queries to the aggregate signing oracle; AdvAggSigA,
is at least ε, and the forged sequential aggregate signature is by at most N users. A sequential aggregate
signature scheme is (τ , qh, qs, N, ε) -secure against existential forgery in the sequential aggregate chosen-
key model if no forger (τ , qh, qs, N, ε)-breaks it.

3 Coding Theory and CFS Signature
3.1 Coding Theory

A binary [n, k]-code C is a linear subspace of dimension k of the linear space Fn
2 . Elements of Fn

2 are
called words and elements of C are codewords. A code is usually given in the form of a (n−k)×n parity
check matrix H. The codewords of C are words x that satisfies HxT = 0. A syndrome s ∈ Fn−k

2 is a vector
s = HxT for a word x. The support of a word x = (x1, x2, · · · , xn) is defined as support(x) = {i |xi �= 0}.
The Hamming weight of a word x denoted by wt(x) is the cardinality of support(x). The Hamming
distance d(x, y) between two words x, y is defined as wt(x−y). The minimum distance d of a [n, k]-code
C is min{d(x, y) |x �= y} . A syndrome s is said to be decodable according to a t-error correcting code
if there exists a word x ∈ Fn

2 such that s = HxT with wt(x) ≤ t. We recall that decoding a syndrome s
is retrieving such a word x. Decoding in a random linear code is difficult, which we will restate soon
later.

Goppa codes are subfield subcodes of particular alternant codes with efficient decoding algo-
rithm. Goppa codes are widely used in coding-based cryptography. For given integers m and t, Goppa
codes are of length n = 2m, of dimension k = n − mt and are t-correcting. The density of decodable
syndromes is approximately 1

t!
[13]. We denote by DecodeH the decoding algorithm associated with a

Goppa Code of parity check matrix H.

In order to establish the security of the CFS signature and the pro-posed SAS, we introduce some
problems on coding theory.

Definition 3. Goppa Bouned Decoding Problem (GBD): Given a random (n − k) × n binary matrix
H, a syndrome s ∈ Fn−k

2 , output a word e ∈ Fn
2 of weight wt(e) ≤ n−k

log2 n
such that s = HeT .

The associated decision problem of GBD is NP-complete [28].

Definition 4. Multiple Goppa Bounded Decoding (MGBD): Given a random (n−k)×n binary matrix
H, an arbitrary number c > 0 and a syndrome s ∈ Fn−k

2 , output a word e ∈ Fn
2 of weight wt(e) ≤ c n−k

log2 n

such that s = HeT .

The associated decision problem of MGBD is conjectured to be NP-complete, too [29].

Definition 5. We say an algorithm A is (τ , ε)-solves MGBD(GBD) if A runs in time at most τ , and
outputs a word e ∈ Fn

2 of weight wt(e) ≤ c n−k
log2 n

(wt(e) ≤ n−k
log2 n

) with at least probability ε, such that
s = HeT .

Lemma 1. There is no algorithm A which is (τ , ε)-solves MGBD and GBD.

Let Wn,t = {e ∈ Fn
2 |w(e) ≤ t}, l = ⌊

log2

∣∣Wn,t

∣∣⌋, To describe the CFS signature and the proposed
SAS, we need a one to one function φ : Wn,t → {0, 1}l. For the construction of such function φ and its
inverse φ−1, refer to [30].
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3.2 The CFS Signature

The basic idea of code-based cryptography is using a certain code which has efficient decoding
algorithm with trapdoor information as private key and publishing the random look like variant of
this code as public key.

The first code-based signature is the CFS signature which was introduced by Courtois, Finiasz
and Sendrier at Asiacrypt 2001 [13]. The CFS signature is obtained by applying full hash domain
approach to the Niederreiter public key cryptosystem. The CFS signature we will describe below is a
minor modification of the original CFS signature, and this modified CFS signature enables us to prove
its security more reasonable in random oracle [15,30]. The CFS signature consists of three algorithms
which are described as follows:

SystemParameters: Two integers m, t ∈ N.

CFSKeyGen (1κ): CFSKeyGen (1κ) generates a [n, k, d]-binary Goppa code C (n = 2m, k=n-mt,
d = 2t+1) with parity check matrix H0, then C is a t-error correcting code, let its efficient decoding
algorithm is DecodeH0

. CFSKeyGen (1κ) generates a random (n − k) × (n − k) invertible matrix S and
a random n × n permutation matrix P. Let H = SH0P, then H is a parity check matrix of the code C ′

which is a permuted code of C. C ′ is also a t-error correcting Goppa code, let its efficient decoding
be DecodeH(obtained from S, P,DecodeH0

). Finally, CFSKeyGen (1κ) outputs H as the public key, and
the corresponding private key is DecodeH.

Sign: Let h : {0, 1}∗ → {0, 1}n−k be a hash function. Let r = ⌈
log2(t! )

⌉
. To sign a message m, Sign

does

1. choose s randomly from {0, 1}r;
2. x = DecodeH(h(m ‖s)) ;
3. if no x was found go to 1.

Let z = φ(x) then the signature on m is (z, s).

Verification: Let x = φ−1(z). The signature is valid if and only if HxT = h(m ‖s) holds.

Security of the CFS Signature: The security of the CFS signature is based on two assumptions:
One is the intractability of GBD as stated in Lemma1; the other is the intractability of the Permuted
Goppa Code Distinguish (PGD) which we will describe below.

Definition 6. Permuted Goppa Code Distinguish Problem (PGD): Given H generated by CFSKey-
Gen (1κ) as the public key in the CFS signature, the Permuted Goppa Code Distinguish Problem is to
distinguish H from a parity check matrix of a random linear code.

Definition 7. We say an algorithm A is (τ , ε)-solves PGD if A runs in time at most τ , and can
distinguish H from a parity check matrix of a random linear code with probability at least 1

2
+ ε.

Lemma 2 ( [13,15]). There is no algorithm A which is (τ , ε)-solves PGD.

Because of Lemma 2, we can apply Lemma 1 to permuted Goppa code. In fact, we have

Definition 8. Permuted Goppa Code Bounded Decoding (PGBD): Given H generated by CFSKey-
Gen (1κ) as the public key in the CFS signature, an arbitrary number c > 0 and a syndrome s ∈ Fn−k

2 ,
the Permuted Goppa Code Bounded Decoding Problem is to output a word e ∈ Fn

2 of weight wt(e) ≤
c n−k

log2 n
(=ct, since n−k=mt, n = 2m) such that s = HeT . We say an algorithm A is (τ , ε)-solves PGBD, if

A runs in time at most τ , and can output the demanding vector e with at least probability ε.

Lemma 3 ( [13]). There is no algorithm A which is (τ , ε)-solves PGBD.
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4 The Proposed Code-Based SAS

In this section, we propose a sequential aggregate signature based on CFS signature, and also
prove the security of the proposed SAS.

4.1 The Proposed SAS

We firstly introduce some notations for vectors. We write a vector as x and its length |x|.
The elements of x are x1, x2, · · · , x|x|. For a vector x, x

∣∣b
a denotes the subvector contains elements

xa, xa+1, · · · , xb. Suppose z ∈ {0, 1}l, where l = ⌊
log2

∣∣Wn,t

∣∣⌋, if needed, n − k − l 0’s can be padded
to z to obtain an n − k dimension vector z̄ = (00 · · · 0︸ ︷︷ ︸

n−k−l

‖z) . Meanwhile, for a vector z = (00 · · · 0︸ ︷︷ ︸
n−k−l

‖z) ,

the unpadding of z is denoted by ẑ = x.Henceforward, we denote by M the message vector whose
elements are m1, m2, · · · , mi, and denote by H the public key vector whose elements are H1, H2, · · · , Hi.

The proposed SAS consists of three algorithms which are described below:

SystemParameters: Two integers m, t ∈ N.

KeyGen (1κ): For each user Ui (1 ≤ i ≤ n), KeyGen (1κ) generates the key pair (Hi, DecodeHi ) (Hi

is the public key, and the corresponding private key is DecodeHi ) just as CFSKeyGen (1κ) does in the
CFS signature.

AggSign: The inputs are a secret key DecodeHi , a message mi ∈ {0, 1}∗, and a sequential
aggregate-so-far signature σ ′ = (z′, s1, s2, · · · , si−1) on messages M(message vector whose elements
are m1, m2, · · · , mi−1) under public keys H(public key vector whose elements are H1,H2, · · · , Hi−1). Let
h : {0, 1}∗ → {0, 1}n−k be a hash function. Let r = ⌈

log2(t! )
⌉

. To sign, AggSign does

1. choose si randomly from {0, 1}r;
2. x = DecodeHi(h(H ‖Hi , M ‖mi , si) ⊕ z′;
3. if no x was found, go to 1.

Let z = φ(x), then the sequential aggregate signature on messages M(whose elements are
m1, m2, · · · , mi−1) under public keys H( whose elements are H1,H2, · · · , Hi−1) is σ = (z, s1, s2, · · · , si).

AggVerify: The input is a sequential aggregate signature σ = (z, s1, s2, · · · , si) on messages M
under public keys H. To verify, let i = |H| = |M|, set zi = z. Then for j = i, i − 1, · · · , 1, compute
mj−1 = Hj(φ

−1(zj))
T ⊕ (h(H

∣∣j
1 , M

∣∣j
1 , sj) and set zj−1 = m̂j−1. Accept if z0 = 0.

Correctness of the proposed scheme. From the process of AggVerify, we know that

z0 = ̂H1(φ−1(z1))
T ⊕ h(H1, m1, s1) (1)

On the other hand, if the sequential signature is computed correctly, from the process AggSign we
have,

z1 = φ(DecodeH1
(h(H1, m1, s1) ⊕ 0) (2)

which implies H1(φ
−1(z1))

T ⊕h(H1, m1, s1) = 0. Hence, if the sequential aggregate signature is valid, we
have z0 = 0.

4.2 Security of the Proposed SAS

In this section, we prove the security of the proposed SAS in the random oracle model, we will
prove the security of our scheme based on the assumption in lemma 3.
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To make the proof easier, we firstly prove the following lemma.

Lemma 4. There is a forger A (τ , qh, qs, N, ε)-breaks the proposed SAS, if and only if there is an forger
B(τ ′, qh, qs, N ′, ε)-breaks the proposed SAS with the target public key is the last key in the key sequence.

Proof: The lemma can be immediately obtained by the observation that during the AggVerify
phase of our scheme, supposing σ = (z, s1, s2, · · · , si) on messages M under public keys H, each
sequential aggregate signature on M

∣∣j
1 under H

∣∣j
1 (1 ≤ j ≤ i) can also be achieved.

Henceforward, we suppose that matrix-vector multiplication, exclusive or of vectors and the
computation of φ and φ−1 take unit time. The security of our scheme is obtained from the following
theorem.

Theorem 1. If there is a (τ , qh, qs, N, ε) forger A to break the proposed SAS, then there exists an
algorithm (τ ′, ε′) B to solve the Permuted Goppa Code Bounded Syndrome Decoding of Problem (PGBD)
for c = 2, with

ε′ ≥ (1
/

2r)N(qs+1)−qsε, τ ′ ≤ τ + (qH + NqS + N)(3N + 1) + 3N + 2 (3)

where r = ⌈
log2(t! )

⌉
.

Proof: If A is (τ , qh, qs, N, ε) forger to break the proposed SAS. From Lemma 4, we can assume,
without loss of any generality, that the forgery aggregate signature generated by A has the target public
key is the last key i.e., the N-th key in the public key sequence.

Below we will show that if there is an algorithm A is (τ , qh, qs, N, ε) forger to break the proposed
SAS, we can construct an algorithm B which is (τ ′, ε′)-solves PGBD for c = 2, which contradicts the
assumption in lemma 3. The algorithm B is constructed as follows:

B is given a parity check matrix H of a random [n, k, d]-binary permuted Goppa code (n = 2m,
k=n-mt, d = 2t+1), a challenge syndrome y ∈ {0, 1}n−k, B’s goal is to find x ∈ {0, 1}n with wt(x) ≤ 2t
such that HxT = y. B sends H as the target public key to A. B runs A and answers its oracle queries as
follows.

Hash queries: The random hash function h has two properties: i.e., the property that the outputs
of h are random and the property that one output from t! outputs is decodable. B simulates the hash
function as follows.

B maintains a list of tuples < H(j), M(j), s(j), w(j), z(j), c(j)
1 , c(j)

2 > as the hash queries’ list. We call this
list the h-list. When A queries the hash oracle at point < H,M,s > B responds as below:

1. If the query < H,M,s > is already on the h-list, then B finds the entry < H, M, s, w, z, c1, c2 >

and outputs w as the answer to the query, i.e., w = h(H, M, s).
2. Otherwise set i = |H| = |M|, r = ⌈

log2(t! )
⌉

, B runs the hashing algorithm on input
< H

∣∣i−1
1 ,M

∣∣i−1
1 > to obtain the corresponding entry < H

∣∣i−1
1 , M

∣∣i−1
1 , s′, w′, z′, c′

1, c′
2 > with

c′
1 = 0 on the h-list. If i = 1, B sets z′ ← 0. B must now choose elements along with H,M,s in a

new entry on the h-list. Firstly, B chooses a random vector z0 ∈ {0, 1}n with weight wt(z0) ≤ t,
and B generates a random coin c1 ∈ {0, 1}, such that Pr [c1 = 0] = 1

t!
. B chooses a random

vector w0 ∈ {0, 1}n−k.

2.1 c′
1 = 1: B sets w ← w0, z ← ∗, c2 ← ∗ (∗ is a placeholder value.).

2.2 c′
1 = 0: If i < N and c1 = 1, B sets w ← w0, z ← ∗, c2 ← ∗. If i < N and c1 = 0, B sets

w ← HizT
0 ⊕ φ(z′), and sets z ← z0, c2 ← ∗. If i = N, B generates another coin c2 ∈ {0, 1} such that
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Pr [c2 = 0] = 1
t!−1

. If i = N, c1 = 1 and c2 = 1, B sets w ← w0, z ← ∗. If i = N, c1 = 1 and c2 = 0, B
sets w ← HzT

0 ⊕ φ(z′) ⊕ y, z ← z0. If i = N, c1 = 0, B sets w ← HzT
0 ⊕ φ(z′), z ← z0 and c2 ← ∗.

3. Finally, B adds < H, M, s, w, z, c1, c2 > to the h-list, and responds to the query as
w = h(H, M,s).

In all cases, B’s response, w, is indistinguishable from the random oracle.

Aggregate signature queries: A supplies a sequential aggregate signature σ ′ = (z′, s1, s2, · · · , sN−1)

on messages M
∣∣N−1

1 under keys H
∣∣N−1

1 . A requests a sequential aggregate signature on message M
(MN = m), under keys H (HN = H). Firstly, B uses AggVerify to ensure that σ ′ is the correct sequential
aggregate signature on M

∣∣N−1
1 under keys H

∣∣N−1
1 . If σ ′ is incorrect, B responds with a placeholder value

∗. Otherwise, B runs the hash algorithm on (H, M) to obtain < H, M, s, w, z, c1, c2 >. If c1 = 0, B
responds to the query with σ ← (φ(z), s1, s2, · · · , s), we will show later that σ is the correct sequential
aggregate signature on (H, M). Otherwise, B reports failure and terminates.

B’s output:At last, algorithm A halts and produces a correct forgery sequential aggregate signature
σ ∗ = (z∗, s1, s2, · · · , sN) on (H∗, M∗), where H∗

N = H, and (H∗, M∗) is not queried to the aggregate sig-
nature queries. B now runs the hash algorithm on (H∗, M∗, sN), and obtains < H∗, M∗, s, w, z, c1, c2 >.
If c1 = 1 and c2 = 0, B then computes x = z ⊕ φ−1(z∗) and outputs x, we will show later that HxT = y
with wt(x) ≤ 2t.

This completes the description of algorithm B.

Claim 1. If A makes a valid sequential aggregate signature query on (H, M) with HN = H, supplying
a correct sequential aggregate signature σ ′ = (z′, s1, s2, · · · , sN−1) on messages M

∣∣N−1
1 under keys H

∣∣N−1
1 ,

then either B reports failure and halts or B’s output σ ← (φ(z), s1, s2, · · · , s) is the correct sequential
aggregate signature on (H, M).

Proof: Firstly, we introduce some notations. For each j, 1 ≤ j ≤ N, B’s hash algorithm associates
with input (H

∣∣j
1 , M

∣∣j
1 ) a tuple < Hj

1, Mj
1, s(j), w(j), z(j), c(j)

1 , c(j)
2 >. If B does not abort, then c(j)

1 = 0, c(j)
2 = ∗

for 1 ≤ j ≤ N. It is reasonable to assume that (H
∣∣j

1 , M
∣∣j

1 ) is queried to the hash query before it
is signed, for the hash function is random oracle. Hence, from the hash algorithm, we obtain that
z = z(N), z′ = φ(z(N−1)), s = s(N) and s(j) = sj (1 ≤ j ≤ N − 1). Also from the hash algorithm, we know
that

z′ = φ(z(N−1)) = h(HN
1 , MN

1 ,s) ⊕ HzT (4)

z(j) = φ−1(h(Hj+1
1 , Mj+1

1 ,s(j+1)) ⊕ Hj+1(z(j+1))T) (5)

z(j) = φ−1(h(Hj+1
1 , Mj+1

1 ,s(j+1)) ⊕ Hj+1(z(j+1))T)(1 ≤ j ≤ N − 2) (6)

H1(z(1))T ⊕ h(H1, m1, s(1)) = 0

The last equation shows that σ ← (φ(z), s1, s2, · · · , s) is a valid sequential aggregate signature on
(H, M).

Claim 2: If A outputs a valid nontrivial forgery sequential aggregate signature σ ∗ = (z∗, s1, s2, · · · , sN)

on (H∗, M∗), then B either reports failure and halts or outputs the correct solution x such that HxT = y
with wt(x) ≤ 2t.

Proof: We use the same notations introduced in Claim 1. If B does not abortion, then c(N)

1 = 0,
c(N)

2 = 0. Hence, from the hash algorithm, we know that

h(H∗, M∗, sN) = H(z(N))T ⊕ φ(z(N−1)) ⊕ y (7)
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Thus,

H(φ−1(z∗))T = h(H∗, M∗, sN) ⊕ φ(z(N−1))

= H(z(N))T ⊕ φ(z(N−1)) ⊕ y ⊕ φ(z(N−1))

= H(z(N))T ⊕ y (8)

And hence, we can obtain that if we set x = z(N) ⊕ φ−1(z∗), then HxT = y with wt(x) ≤ 2t.

It remains to show that the success probability ε′ that B outputs x is at least (1
/

2r)N(qs+1)−qsε. We
define three events as below:

E1: B does not abort during the qs aggregate signature queries phase.

E2: A outputs a valid and nontrivial forgery sequential aggregate signature.

E3: B does not abort during the output phase.

Then B succeeds in giving the correct solution if all of the above events happen, i.e., ε′ = Pr[E1 ∧
E2 ∧ E3] = Pr[E1] · Pr[E2 |E1] · Pr[ E3 |E1 ∧ E2].

On the other hand, we have the following three claims.

Claim 3. Pr[E1] = ( 1
2r )

(N−1)qs .

Proof: If B does not abort during each aggregate signature query, then all c(j)
1 = 0(1 ≤ j ≤ N − 1),

which implies the probability that B does not abort during each signature query is ( 1
2r )

(N−1). Hence, the
probability that B does not abort during the qs signature queries is Pr[E1] = ( 1

2r )
(N−1)qs .

Claim 4. Pr[E2 |E1] ≥ ε .

Proof: Trivially.

Claim 5. Pr[E3 |E1 ∧ E2] = ( 1
2r )

N .

Proof: If B does not abort during the output phase, then all c(j)
1 = 0(1 ≤ j ≤ N −1), c(N)

2 = 0 which
implies the probability that B does not abort during the output phase is ( 1

2r )
(N−1). 1

2r = ( 1
2r )

N . Hence,
Pr[E3 |E1 ∧ E2] = ( 1

2r )
N.

Combine the results of the above claims, we obtain immediately that ε′ ≥ (1
/

2r)N(qs+1)−qsε.

The running ting τ ′ of B equal to the running time τ plus the time of B’s time to respond A’s qH

hash queries and qs aggregate signature queries, each hash query involves at most N matrix-vector
multiplication, at most N + 1 exclusive or of vectors and at most N computation of the function φ.
Each aggregate signature query needs at most N hash queries, at most N computation of φ and φ−1, N
exclusive or of vectors. At last, in order to give x, B needs one exclusive or of two vectors and N hash
queries. Then, the total time of B’s is at most

τ + (qH + NqS + N)(3N + 1) + 3N + 2 (9)

5 Efficiency Comparisons

We now compare the efficiency between our scheme and the original CFS scheme without
aggregate in N users setting. To achieve security, for the CFS signature, [31] suggests the parameters:
m = 22, t = 9, n = 222, and for each signature (z, s), one needs about 182 and 19 bits to store
z and s respectively. So in order to store N signatures, the total bits needed in the CFS scheme
is (182 + 19)N = 201 N, while one needs only 182 + 19 N bits to store the signatures by using the
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sequential aggregate signatures we proposed. Hence, one can save about (1− 19
201

)≈ 90% storage when
N is big. It is not difficult to see that the signature generation and verification are of the same time.
We give the comparison in Tab. 2.

Table 2: Efficiency comparison (m = 22, t = 9, n = 222)

Signature numbers Signature length

Plain CFS N 201 N
Aggregate CFS N 182 + 19 N

6 Conclusions and Open Problems

In this paper, we propose the first code based sequential aggregate signature, and prove the security
of the scheme in the random oracle model. We note that the length of the aggregate signature in our
scheme is not constant. It is an open problem to construct code based sequential aggregate signatures
with constant length. It is also an interesting problem to construct code based aggregate signatures
using the Schnorr-Lyubashevsky Framework [18,20].
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