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Abstract: Internet of things (IoT) comprises many heterogeneous nodes that
operate together to accomplish a human friendly or a business task to ease
the life. Generally, IoT nodes are connected in wireless media and thus they
are prone to jamming attacks. In the present scenario jamming detection
(JD) by using machine learning (ML) algorithms grasp the attention of the
researchers due to its virtuous outcome. In this research, jamming detection
is modelled as a classification problem which uses several features. Using
one/two or minimum number of features produces vague results that cannot be
explained. Also the relationship between the feature and the class label cannot
be efficiently determined, specifically, if the chosen number of features for
training is minimum (say 1 or 2). To obtain good results, machine-learning
algorithms are trained by large number of data sets. However, collection of
large number of datasets to solve jamming detection is not easy and most of
the times generation and collection of large data sets become paradigmatic. In
this paper, to solve this problem, more number of features with nominal num-
ber of data’s is considered that eases the data collection and the classification
accuracy. In this research, an efficient technique based on locality sensitive
hashing (LSH) for K-nearest neighbor algorithm (K-NN), which takes less
time for constructing and querying the hash table that gives good accuracy is
proposed and evaluated. From the results, it is clear that the obtained results
are validatable and the model is more sensible.
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1 Introduction

IoT is proliferated almost in all areas of engineering and technology to support ease, safe and
healthy life in living beings. IoT applications are now being deployed in agriculture, transport, health
care, grid, communications, etc. In IoT, sensor/actuators collect information from the environment
(where it is deployed) and send them to the centralized server. Sensors/actuators is installed in the
environment under study, they send the collected information to the base station and in turn the base
station forwards the collected information to a central server for analyzing and decision making.
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Mostly this setup is realized in wireless networks. Since IoT networks runs on the top of wireless
networks, it is susceptible to security attacks. Jamming is most powerful attack in IoT network due to
its stealthy behavior. In this paper, an efficient low complexity locality sensitive hashing mechanism
based on KNN by applying various network features to differentiate the normal and jammed network
is proposed and evaluated.

In the existing literature, mainly jamming detection is carried out based on threshold level of
the jamming detection metrics. The nominal quantity of jamming detection metrics such as packet
delivery rate (PDR), received signal strength indicator (RSSI) etc is determined by operating the
network under normal conditions. To determine the threshold value of the jamming detection metrics
during jamming, network is operated under jammed scenario. By examining the threshold value,
presence of jamming and absence of jamming can be determined. In the existing literature, this concept
of jamming detection is applied in several other numerous forms to detect the jamming attacks.
Recently, application of artificial intelligence (AI) technique such as machine learning algorithms and
deep learning algorithms for detecting the presence of jamming is carried out successfully in wireless
networks, sensor networks. Since the characteristics of sensor network and IoT networks are not same
the jamming detection methods that are applied in sensor network cannot be directly applied for IoT
networks. Therefore, jamming detection techniques for IoT networks have to be tailored specially
according to its characteristics.

The problem of jamming detection in IoT networks in recent days is at its hype because of the
inherent vulnerability of IoT networks. The issue of jamming detection based on machine learning
algorithms is addressed in many works. The main aim of this paper is to investigate and evaluate
the accuracy of the jamming detection by deploying LSH mechanism based on K-NN. For jamming
detection based on machine learning, K-NN, decision trees, support vector machines, neural networks,
deep neural network are used. K-NN is efficient, easy to use and implement. Currently, the research
community is focusing on explainable AI and the important advantage of K-NN is its simplicity to
use and explain because the results of K-NN depends upon all the training data points with minimum
number of manipulations. So to address jamming detection under explainable AI, K-NN is employed
in this paper.

1.1 Motivation

Jamming detection by setting up thresholds (either manually or statistically), jamming detection
by using machine learning algorithms are the two most popular techniques for jamming detection,
particularly in IoT networks and more generally in wireless networks.

Maximum threshold is set on the jamming detection metrics either manually based on the domain
knowledge or statistically by carrying out appropriate statistical test. Setting up threshold is a very
tedious task and often threshold are set based on trial and error method to find out the presence
of jamming. Threshold setting, often is not a good measure to be used in jamming detection. For
threshold setting, samples of PDR, RSSI is collected during the presence and absence of jamming.
From the observation, it is identified that the samples collected from the two sets often overlap with
each other. Therefore, it is concluded that jamming detection based on threshold setting available in
the literature [1], is not suitable for IoT networks. Threshold setting is not holding good even for two
metrics, so this cannot be implemented for a jamming detection system which involves with more than
two metrics.

ML based JD currently available in the literature exploits only a minimum number of jamming
detection metrics. From this, it is clearly understood that jamming detection based on threshold
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setting and ML based JD on minimum number of metrics is not suitable for sophisticated and rapidly
emerging IoT network environment. So the design and implementation of ML based JD with more
number of appropriate jamming detection metrics is the need of the hour. This paper focusses on such
research unlike the works available in the existing literature [2–4].

An efficient LSH based on K-NN for jamming detection in IoT network using the jamming
detection metrics such as PDR, RSSI, packet send ratio (PSR) etc. that varies significantly during
jamming is carried out. In this paper, the proposed method is developed, implemented and evaluated
for jamming detection in IoT network. Features/jamming detection metrics is used to influence the
proposed technique to discover whether the nodes in IoT network is jammed or not. The proposed
solution does not incur load on the IoT nodes. Rather, the jamming detection metrics is collected by the
IoT gateway and the same is responsible for jamming detection. Therefore, the classification/jamming
detection load on the node is negligible.

1.2 Contribution

The output produced by machine learning algorithms are usually hard to make sense out of it. The
recent research trend in AI is explainable AI. K-NN is fairly a straight forward algorithm. From the
output of K-NN, sufficient clarification can be given based on the majority class. That is, the output
can be easily explained/interpreted. Therefore, K-NN based on LSH is employed in this paper. In LSH,
the problem of placing the nearest neighbors (NN) is discovered and illustrated in Section 3.3.

In Section 3.6, to avoid the problem of the placement of NN in different bucket, a very simple idea
that reduces the time complexity to construct the hash table and to query the hash table is O (m.n.d)
and O (m.d) respectively, where m = # hyperplanes, n = # data point vector, d = # dimensions of data
point vector.

From the experiments, it is found that K-NN based on LSH cannot be applied to on-the-fly
detection. In the existing K-NN based LSH, ‘K’ sets of ‘m’ hyperplanes are constructed and the
training time increases with the value of ‘k’. These results are discussed in Section 4.3.

To compare and validate the results from other models, random model is constructed. The range
of log loss for cross validation, test data and percentage of in-correctly classified points is extracted
and is show cased in Section 4.5.

Finally, in Section 4.6, based on receiver operating characteristics (ROC) curve, it is identified that
the performance of the classifier is more sensible.

2 Related Work

Numerous jamming detection techniques are available in the literature. Jamming detection can
be performed by techniques such as setting up threshold level of the metrics [5–7], application of
game theory [8–10], modelling of jamming tolerant systems [11,12], cooperative strategy [13] etc.
Recently, jamming detection based on machine learning algorithms are popular [13]. In [14], Cross
layer based jamming detection for IoT using artificial intelligence is explored. Jamming detection
based on random forest, support vector machine, and neural network for 5G network is carried out in
[15]. In [16], ML based jamming detection is carried out for IEEE 802.11. In [17], jamming detection
using deep convolutional neural networks and deep recurrent neural network is done for cognitive
radio networks. In [18,19], jamming detection for vehicular network is done based on unsupervised
machine learning. In [20], ML based jamming detection for cellular mobile network is carried out.
Jamming detection for optical network is explored in [21]. Jamming detection for satellite networks
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is carried out using support vector machine, convolutional neural networks. In [22], ML approach is
proposed for jamming detection in unmanned aerial vehicles. In [23,24], ML based jamming detection
is performed for wireless ad hoc network. To the best of our knowledge in [25,26], ML based jamming
detection is carried out for wireless networks and in [27,28] ML based jamming detection is explored
specifically for IoT network. In [29], deep learning is used to mitigate jamming detection in cognitive
radio IoT. In [30], the authors explored ML based jamming detection for IoT which is the focus of
study in this paper. ML algorithms such as support vector machines, decision trees, K-NN, random
forest, real adaboost are used because they are white boxes in which the interpretation of the result is
much easy. In this paper unlike in [29], efficient low complexity LSH based K-NN is articulated and
implemented. Due to its straight forward design, research in selecting the NN in K-NN is optimized till
recently [31]. Because of its simple interpretation and easy implementation, K-NN is still a most used
ML algorithms for jamming, intrusion, anomaly detection in different kind of networks [32–36]. In
this paper, an efficient LSH based K-NN is developed, deployed and evaluated for jamming detection
in IoT networks.

3 Proposed Framework
3.1 K-NN Based LSH for Cosine Similarity Theory

The conventional KNN algorithm classifies the test data point by finding the distance between the
test data point with every training data point. K nearest neighbors to the training data point is selected
and then training data point is classified based on the majority class of the K nearest neighbors. If
training data set is huge, then this requires huge number of computations. To alleviate this problem,
LSH based KNN is developed. Here the training data points are placed into different buckets. Test
data point is placed into a bucket based on its cosine similarity. Then the distance of the training point
to the test data point is computed only for the samples that are placed inside the bucket. This method
reduces the computations of finding the distance between the test data and all other training data
points.

A data point is a multidimensional vector of size d. The distance between any two data points can
be determined by various techniques listed in [5–9]. In this paper, cosine similarity is used to figure out
the distance between any two data points. The cosine distance between any two data points x1, x2 is
the measure of cos of angle between the vectors, θ (x1, x2). Similarly, the similarity between the two
vectors x1, x2 can be represented as the difference between one and the cosine distance.

Cosine Distance = Angle θ (x1, x2)

π
(1)

Cosine Similarity = 1 − Angle θ (x1, x2)

π
(2)

Generate m hyperplane such that m = log n, where n is the total number of training data points.

The following function maps input vectors x1, x2 ∈ Rd to {0, 1}2

hu,v(x1, x2) = (hu(x1),hv(x2)) = [sign(uT x1), sign(v T x2)], where sign (uT x1) returns 1 if (uT x1) ≥ 0,

and 0 otherwise, and u and v are from Gaussian distribution f (x) = 1
σ
√

2π
e(

x−μ
σ )

2

in N(0, 1). Hyperplane
is defined as follows

hH (Z) =
{

hu,v (z, z) , where z is a vector in training data
hu,v (z, −z) , where z is query point

(3)
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Hash (H) is represented as (r, r (1+ ε), p1, p2) sensitive for θ where r, ε > 0. To prove that the hash

is locality sensitive for cosine distance the hash (H) is further represented as {r, r (1 + ε) ,
1
4

− 1
π 2

r,
1
4

−
1
π 2

r(1 + ε)} based on cosine of angle between the two points x1, x2. “d” dimensional vectors u, v of the

hyperplane are generated. For hyperplane vector “w” and data point vector x, Pr [hH (w) = hH (x)] n is
solved as follows:

Pr[hu (w) = hu (x) and hr (−w) = hr (x)] (4)

Pr [hu (w) = hu (x)] Pr[hy (−w) = hy(x)] (5)

Pr
{
sign uTi = sign uTj

} = 1 − θ (i, j)
π

(6)

Pr {hH (w) = hH (x)} = θ (x, w)

π

(
1 − θ (x, w)

π

)
(7)

Pr {hH (w) = hH (x)} = 1
4

− 1
π 2

(
θ (x, w) − π

2

)2

(8)

Pr {hH (w) = hH (x)} ≥ 1
4

− r
π 2

(9)

similarly,
(
θ (x, w) − π

2

)2

≥ r (1 + ε) (10)

Pr [hH (w) = hH (x)] ≤ 1
4

− r (Hε)

π 2
= p2, for ε > 0 (11)

From the above proof it is evident that, the training data set vectors can be placed in the value
part of the hash table with its sign in the key part of the hash table. The hash for the query point is
calculated as wTxq for all hyperplane and its sign is determined. Based on the sign, the key is identified
and the nearest neighbors are retrieved from the value part of the hash table.

3.2 Steps of LSH

• First, make ‘m’ hyperplanes to split the n dimensional feature space into regions and create
slices/buckets such that cluster of points lie in a particular slice and be called their neighbor-
hood. Typically m = log (n).

• Next for each point, create a vector (also called hash function) by w1
T. xi, where w1 is the

hyperplane and xi is the training data vector. Examine w1
T. xi if it is greater than 0, it lies on

the same side of the hyperplane else other side. Based on that create a vector of size m. For eg,
the vector can be [1, −1, −1], denoting point xi lies on same side of normal to hyperplane 1
and opposite side to normal of hyperplane 2 and 3. Now this vector serves as key to the hash
table and all the points with the same key or vector representation, will go in to the same bucket
as they have similar vector representation denoting that they lie in the neighborhood of each
other.

• Now it may happen that two points, which are very close neighbors, could fall on different
slice due to the placement of hyperplane and hence not considered as nearest neighbor. To
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resolve this problem, create L hash tables. In other words, repeat step-2, L times thus creating
L hash tables and m random planes L times. Therefore, to classify a query point, compute the
hash function L times and get its neighbors from each bucket. Finally, union them and find the
nearest neighbors from the list. So in each L iterations, create m hyperplanes. Region splitting
and thus vector representation or hash function of the same query point will be different in
each of the representations. Due to the placement of different hyperplanes, the hash table will
be different because the data points that lied on the same region in previous iteration might lie
in a different region in next iteration and vice versa. Time complexity is O (m ∗ d ∗ L) for each
query point. Time complexity for creating the hash table is O (m ∗ d ∗ L ∗ n). Space complexity
is O(n).

3.3 Illustration

Assume that there exist some random hyperplanes (π 1, π 2, π 3, π 4) that passes through the origin
in a d-dimensional space (represented by the dataset) and let w1, w2, w3, w4 be the unit normal vector
to the hyperplane respectively as depicted in Fig. 1. For illustration purpose, 2-dimensional space (two
features) is considered. To generate a hyperplane, d-dimensional vector (‘d’ is the dimension of the
dataset) is needed. Random hyperplanes with d-dimensions (2 dimension in illustration example) is
generated randomly from normal distribution with mean 0, standard deviation 1.

Figure 1: Projection of data points in random hyperplane

As it is shown in the Fig. 1, random hyperplanes passing through origin are considered. Since
the vectors of the hyperplane is generated from the normal distribution, the space is divided equally
into 8 buckets. For example, consider there are 24 data point vectors in the dataset for simplicity. For
illustration purpose, 24 training data vectors (x1 . . . x24) are considered and are placed into its respective
buckets as shown in the Fig. 1.

For each training data vector (x), hash is computed: x = h(x), where h(x) is a vector of size ‘m’ that
holds the sign of the hyperplane and for training data vector x, wT. x is computed for m hyperplanes, ‘m’
represents the number of hyperplane. Typically, m = log2n. However, here for illustration purpose, n,
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m is considered to be as 24, 4 respectively. Hash value of the vectors are computed as follows: Assume
the training vectors are x1, x2, x3

w1
T.x1 = w1

T.x2 = w1
T.x3 ≥ 0 (sign: +)

w2
T.x1 = w2

T.x2 = w2
T.x3 ≤ 0 (sign: −)

w3
T.x1 = w3

T.x2 = w3
T.x3 ≤ 0 (sign: −)

w4
T.x1 = w4

T.x2 = w4
T.x3 ≤ 0 (sign: −)

The vectors x1, x2, x3 are hashed to the sign (+, −, −, −) and falls into the bucket pointed by the
hash (+, −, −, −) as shown in the Fig. 1. Similarly, assume that the hash value of all the training data
vectors x4 . . . x24 are placed in the bucket as demonstrated in Fig. 1.

3.4 Hyperplane Hashing

The hash table is a data structure that is composed of buckets, each of which is indexed by a
hash code. Each data vector x is placed into a bucket h(x). Different from the conventional hashing
algorithm in computer science that avoids collisions (i.e., avoids mapping two items into same bucket),
the hashing approach using a hash table aims to maximize the probability of collision of near items.
Given the query q, the items lying in the bucket h(q) are retrieved as near items of q. To improve the
recall, L hash tables are constructed, and the items lying in the L (L′, L′ < L) hash buckets h1(q),
· · ·, hL(q) are retrieved as near items of q for randomized R-near neighbor search (or randomized
approximate R-near neighbor search). To guarantee the precision, each of the L hash codes, needs to
be a long code, which means that the total number of the buckets is too large to index directly. Thus,
only the nonempty buckets are retained by resorting to conventional hashing of the hash codes hl(x).

The data structure, hash table is represented by two columns called ‘key’, ‘value’. The column ‘key’
contains the hash key and the column ‘value’ contains the NN of the hash key. In the hash table ‘key’
and ‘value’ together constitutes a bucket, where the corresponding NN are placed based on the hash
key. Fig. 2, depicts the hash table. Hash function is defined such that it avoids collision. If a query
point is given, then the key which is equal to hash of the query point is computed and then this key
is used to retrieve the NN corresponding to the key. Given a query data point vector (xq), hash (xq)
is calculated and is used as the key in the hash table. The corresponding value part of the hash table
contains all the NN.

Key value
+, -, -, - x1, x2, x3

+, +, -, - X4, x5, x6

+, +, +, - X7, x8, x9

+, +, +, + x10, x11, x12

-, +, +, + x13, x14, x15

-, -, +, + x16, x17, x18

-, -, -, + x19, x20, x21

-, -, -, - x22, x23, x24

Figure 2: Hash table

For example, consider a query point (xq) as shown in the Fig. 1 Hash (xq) is computed as mentioned
above. If key of Hash (xq) = −, −, −, + then the NN, (x19, x20, x21) is retrieved from the corresponding
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value part of the hash table represented in Fig. 2. The same scenario is also depicted in Fig. 1. The
distance of the query vector (xq) to all the NN is computed and sorted in non-decreasing order. Finally,
the number of NN based on the hyper parameter ‘K’ is taken from the sorted NN and the class label
is determined according to the majority vote.

3.5 Time Complexity of K-NN Based LSH

To construct the hash table, each data point vector has to be multiplied with the each hyperplane.
There are ‘m’ hyperplanes and ‘n’ training data point vectors. The dimensionality of training data point
vector is ‘d’. So the vector ‘w’ (hyperplane) also has ‘d’ dimensions and thus (mxnxd) multiplications
are needed. Therefore, the time complexity to construct hash table = O (m.n.d), where m = #
hyperplanes, n = # data point vector, d = # dimensions of data point vector. Typically, number of
hyperplane ‘m’ = log2 n, where n = number of training data vector. Therefore, time complexity to
query a hash table = O (log2n. d). Given a query point (xq), to find its NN, first key has to computed by
performing hash (xq) for all the hyperplanes. There are ‘m’ hyperplanes. So time complexity for finding
the key for a given query point is = O (m.d). After finding the key, the NN can be retrieved from the
value part of the corresponding key in the hash table. All the NN have to be sorted in ascending order to
pick up the ‘k’ NN. Assume that there are ‘i’ NN in the bucket. The time complexity for sorting (merge
sort or heap sort) = O (i.log2i). After sorting ‘i’ NN, ‘k’ NN have to be taken in to consideration and a
majority vote have to performed to find the class label of the query point. Since the hyper parameter ‘k’
is considered to be very small, time complexity of doing majority vote is O (1). Total time complexity
= O (m.d) + O (i.log2 i) + O (1). But the number of NN (number of training data point vector in
a bucket), ‘i’ is typically a very small number. Therefore, time complexity to query a hash table = O
(m.d), where, m = # hyperplanes, d = dimensionality of training data vector. However, m = log2n.
Therefore, time complexity to query a hash table = O (log2n. d).

3.6 Discovering the Placement of Close Data Vectors in Different Bucket and its Solution

In this methodology of finding out the NN, there is a chance to miss out the most appropriate
NN, that is, two data point vectors which are originally closer can be put in different adjacent buckets.
Due to this, though the two data point vectors are very close to each other in terms of cosine similarity,
the placement of the vectors in different adjacent bucket makes them that they are not NN to each
other. As shown in the Fig. 3, the data point vector (z1) and the query point (xq) are closer but placed
in two different adjacent buckets represented by the key −, −, −, − and −, −, −, + respectively. Hash
(xq) results in the key −, −, −, + and so the NN are determined as x19, x20, x21. Here, the NN (z1),
which is very closer to (xq) is not taken into consideration as NN. This occurs because the hyperplane
π 4 separates the placement of the query point (xq) and (z1) to fall into two different adjacent buckets.
To overcome this problem, the following algorithm is employed

• ‘k’ sets of ‘m’ random hyperplane is constructed such as h1, h2, . . . hk

• Find h1(training data vectors) and construct hash table using m random hyperplanes. Find
h2(training data vectors) and construct hash table using m random hyperplanes.

• Random hyperplanes used in h1 �= random hyperplanes used in h2

• Construct ‘k’ sets of such hyperplanes
• Given a query point (xq), find h1(xq) and its NN called NN1, h2(xq) and its NN called NN2 . . . .

Hk(xq) and its NN called NNk

• Find, NN1 ∪ NN2 . . . . ∪ NNk and sort all the NN and finally find ‘k’ NN
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Due to the construction of k hyperplanes, the probability of the vectors (xq) and (z1), falling into the
same hyperplane is high and therefore the placement of two close vectors falling into different bucket
can be solved. Since ‘k’ sets of ‘m’ random hyperplane is constructed and due to the presence of ‘n’
training data point vectors of ‘d’ dimensionality, time complexity is (mxnxdxk) multiplications. Time
complexity to construct hash table = O (m.n.d.k). Given a query point, since ‘k’ sets of ‘m’ random
hyperplane with ‘d’ dimensions are present, (m × d × k) multiplications are required. Therefore, time
complexity to query a hash table = O (m.d.k).

Figure 3: Placement of close data points in different bucket

3.7 Notion of the Proposed Algorithm

To avoid the problem of placing close data vectors in different bucket, in the enhanced version of
the algorithm, ‘k’ sets of ‘m’ hyperplanes are constructed. To overcome the problem of the placement
of two close data point vectors in different adjacent bucket, consider the scenario shown in the Fig. 4.
Bucket with the key (−, −, +, +), (−, −, −, +), (−, −, −, −) contains the data point vectors (x1, x2,
x3, z1), (x4, x5, x6, xq), (x7, x8, x9, z1) respectively. If xq is the query point, then hash(xq) will yield the key
(−, −, −, +) and the NN in this bucket is (x4, x5, x6). However, on careful examination of Fig. 4, it can
be noted that the data point vectors (z1), (z2) are more close to the query point (xq). Since (z1), (z2) are
placed in different buckets, though they are close NN, they are not designated as NN. To overcome this
issue, the idea explained in the above is proposed. The time complexity of this improved algorithm is O
(mxnxdxk). Here k sets of m hyperplane is constructed and for each training data point, k number of
hash is computed. This increases the solution time by the factor ‘k’. In addition, the procedure/thumb
rule to find the optimal value of ‘k’ is not known and proper literature is not available to determine
the value of ‘k’.
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3.8 Proposed Algorithm

D = {(
xi,yi

)n

i=1
|xi ∈ Rd, yi ∈ {0, 1}}

n = # data point vectors
m = logn2 = # hyperplane
w = w1, w2, w3 . . . . wk // w: normal of the hyperplane
xq = query point vector
NN = Nearest Neighbors
Array: key[k], sign[k], value[];

a. Create k = logn2 random hyperplane sampled from Normal Distribution N (0,1)
b. Create a hash table with key-value pair, ST: #key = #value = 2 ∗ k = #buckets
// find and fill in the entries of the index (key) in the hash table
c. for i = 0 to (2 ∗ k) − 1

a. k[i] ∈ {+, −} k

end for
// find the sign of the training data points and place it in the appropriate value part of the

hash table
d. for (i = 1 to n)

a. for (j = o to k−1)
sign[j] = sign [wT

j .xi]
end for

b. for (m = 0 to (2 ∗ k) − 1)
if (key[m] == sign)

place xi in the corresponding value part of the hash table
end for

end for
// Given xq, compute hash(xq)
e. for (i = 0 to k−1)

sign[i] = sign [wT
j .xi]

end for
//Find the NN of the given query point vector
f. for (i = 0 to (2 ∗ k) − 1)

a. if key[i] == sign
NN = data points of the corresponding value part +

the data point of previous bucket +
the data point of next bucket circularly

end for
g. Sort all the NN
h. Pick up the first ‘k’ NN
i. Apply majority vote and find the class label

3.9 Efficient K-NN Based LSH

In the proposed solution, a simple idea of retrieving the NN is followed. Instead of constructing ‘k’
hyperplane, discussed in Section 3.7, retrieve the NN by computing the key of the query point bucket
then include the NN of the bucket which is prior to the query point bucket and the NN of the bucket
which is subsequent to the query point bucket. NN = (NN of the bucket which is prior to the query
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point bucket) + (NN of the query point bucket) + (NN of the bucket which is subsequent to the query
point bucket). As it is depicted in Fig. 4, the query point (xq) is present in the bucket (−, −, −, +).
NN of the query point is (x4, x5, x6). The bucket which is prior to the bucket (−, −, −, +) is (−, −, +,
+) and the bucket which is subsequent to the bucket (−, −, −, +) is (−, −, −, −). According to the
proposed algorithm, NN of the bucket prior-to and subsequent-to the query point bucket is included
with the NN of the query point bucket. Therefore, NN of the query point bucket is (x1, x2, x3, z1, x4,
x5, x6, x7, x8, x9, z1). Here, it can be seen that the vectors (z1), (z2) are now available as the NN of the
query point. By using this simple idea, construction of ‘k’ sets of ‘m’ hyperplane is not necessary. Time
complexity to construct hash table = O (m.n.d). Time complexity to query a hash table = O (m.d).

Figure 4: Placement of query point and its NN

4 Performance Evaluation
4.1 Data Collection

Ns-3 jamming model is deployed to prepare the data set. In Ns-3, jamming detection by PDR,
Jamming detection by RSSI, jamming detection by PDR and RSSI is available as off the shelf
component for study purposes. Variants of jamming detection by using other parameters have to
be built as per the user requirements. However, in this paper NS-3 is used to construct network
configuration and collect data of various jamming detection metrics.

4.2 Network Configuration

IoT network with several legitimate nodes N = (n1, n2, . . . . nl) are considered. Some anchor nodes
are deployed randomly that collects the data transmitted by the IoT nodes. For simplicity, the IoT
nodes are maintained in static topology. Deliberately, jammer nodes are introduced in the network to
jam the data that is transmitted by the IoT nodes. To assure that there is no collision between the data
transmitted by the IoT nodes and anchor nodes Wireless-HART protocols is used. The communication
channel used is three log distance propagation loss model. The power at the receiver side is calculated

by log distance propagation loss model: Loss = Lo + 10nlog
(

d
do

)
, Where, Lo is referred path loss in
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dB, n is exponent of path loss distance, d is the original distance, d0 is the referred distance. To jam
the data packet from IoT node to the anchor node, jammer node is considered. Jammer propagates
signal with power P using its omni-directional antenna. Jamming is performed with probability p. The
jammer is defined such that it performs reactive jamming with arbitrary timings. To collect the class
labels of the data, the time for which the jammer must propagate jamming signal is set manually. To
capture the universal nature of jamming, jammer is placed at different locations and the measurement
of jamming detection metrics under different network scenario is done.

4.3 Training Time vs. Hyper Parameter K

Recently, jamming detection on-the-fly is more recommended than the jamming detection that
are carried out in off-line mode. Since real time jamming detection is required to exploit its purpose
practically to a large extend, it is essential to develop the same [1]. To do such detection, the training
time of the data point vectors must be low as possible. Also the training accuracy must not depend on
any hyper parameter. In the existing LSH, ‘K’ sets of ‘m’ hyperplanes are constructed and the optimal
value of ‘k’ is not available in the literature. An experiment to study the variations of training time with
respect to the value of ‘k’ (chosen arbitrarily) is performed. The Fig. 5 shows the training time for the
three data sets for each value of ‘k’. It can be noted that, the training time increases with the value
of ‘k’. Therefore, it can be concluded that LSH with cosine similarity cannot be applied to on-the-fly
detection. As opposed to this, in the proposed system the need for the construction of ‘k’ sets of ‘m’
hyperplane is not required and thus the training time is reduced by 0.65 ms for ‘k’ = 20. Algorithm
time of the proposed system is O (m.n.d) as derived in Section 3.6.
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Figure 5: Training time escalation vs. k

4.4 Cross Validation

To figure out optimum K in K-NN, k fold cross validation is carried out. For this the data set
(DS-1) is randomly divided into 60 percent for training, 20 percent for cross validation (for finding
the correct value of K) and 20 percent for finding out the performance of the algorithm. But in this
approach, only 60 percent of data is used to determine K. So 60 percent training data points and 20
percent of cross validation data points, put together 80 percent of data points is used to figure out K.
In this paper, 10-fold cross validation is performed. Algorithm for 10-fold validation cross validation
is furnished below. Log loss error is calculated for odd K values (3 to 17), and is plotted as shown in
Fig. 6. Log loss uses the actual probability values (lies between 0 to ∞). As it is shown in Fig. 6, for
K = 3, log loss error is low and so K = 3 is considered.
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Algorithm: Log loss error
A. Divide 80 percent of data randomly into 10 equal parts
B. For (i = 3, 5, 7, . . . .17)

a. For (k = 1, 2, . . . 10)
i. Train the model with i-NN
ii. Test the model with kth part
iii. Compute log loss error (Elog loss)

iv. Elog loss = − 1
n

∑n

i=1

{(
log ŷi

)
.yi + (1 − yi) . log(1 − ŷi)

}(
yi = actual classlabel, ŷi = probability of predicted class label

)
End for

b. Find CV error CV(k) = 1
10

∑n

i=1 Elog loss

End for

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

3 5 7 9 11 13 15 17

Lo
g 

Lo
ss

 E
rr

or

K

Figure 6: K in K-NN vs. log loss error

4.5 Random Model

The value of log loss varies from (0, ∞), a model with good accuracy has log loss of 0. Finding the
worst case log loss is not straight forward. If the worst case log loss is known then by using this value,
the performance of the model can be figured out easily. Worst case depends on various parameters
such as the feature itself, number of features, number of training data point vector etc. To find out
the worst case performance of a model, random model is used. In random model, the probability of
data point vector belonging to its class label is generated randomly by using a simple random number
generator. Finally, the random number is normalized such that the sum of probability is equal to one.
From the results of the random model, the following results are observed. Log loss for cross validation
is 3.47. Log loss on test data is 3.31. Percentage of in-correctly classified point is 91.21. From the results,
the range of log loss for cross validation, test data and percentage of in-correctly classified points are
known. Therefore, this result can be used as a reference to validate the results obtained from other
models.

Precision Matrix:

97.3 percent of points are predicted as class + which are actually + and 2.7 percent of points which
are actually − are predicted to be as +. 96.2 percent of data points which are actually − are predicted
to be as − and 3.8 percent of data points which are actually + is predicted to be as −.
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Recall Matrix:

Among the set of all points that belongs to class +, 99.17 percent of data points are predicted to
be + and 0.83 percent of points are predicted to be −. Among all the points that belong to −, 97.9
percent of points are predicted to be − and 2.1 percent of points are predicted to be +.

In both precision and recall, the percentage of jammed points (+) that are classified as normal
data points is minimum. Therefore, the reliability of the system is more generalizable.

4.6 ROC Curve

The important metric for binary classification is receiver operating characteristics. Fig. 7 shows
ROC curve plotted between true positive rate vs. false positive rate computed at different thresholds.
ROC curve can be easily applied to compare the performance of yet another method that is available
in the literature or can be used to compare the new algorithm that is going to be emerging in future.
The sensitivity can be visualized from the curve. The optimal threshold value can be determined for
the classification problem. As shown in the Fig. 7, ROC curve is close to the top left corner which
indicate that the performance of the classifier is more sensible.
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5 Conclusion

IoT is currently at the top of the hype cycle with investments from companies and venture capital
firms. The key areas of research in IoT security includes jamming, authentication, secure routing
etc. Though, most of the revenue in IoT comes from the data and not from the devices, the devices
have to be protected safely from the vulnerabilities because the IoT devices are the one which is
generating the data. Jamming attack surface in IoT is very broad. Jamming can be launched in IoT
devices, IoT wireless access technology, IoT Gateway, home LAN, higher layer protocols, cloud,
management platform, life cycle management. In the present scenario the IoT devices can self-discover,
self-organize, self-configure, self-monitor, self-manage, self-diagnose and self-heal. But because of this
open platform, jamming is becoming big challenging task in IoT. Since IoT is emerging field, the
researchers and companies are concentrating more on the development of IoT applications and only
little amount of work is focused on the security part of the IoT. Jamming detection in IoT network
is a big challenge and lot of work is needed to be done in this area in order to safe guard the IoT
devices because, the IoT devices are the one which produces the data for information retrieval. In
this paper, an efficient technique based on LSH for K-NN is proposed and evaluated. Thereafter,
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K-NN based LSH for cosine similarity theory, illustration, discovering the placement of close data
vectors in different bucket and its solution, efficient K-NN based LSH with reduced time complexity is
constructed. Finally the proposed algorithm is evaluated and the results are validated. In this research
paper, jamming detection is carried out only on the IoT nodes. In future it is planned to build a
holistic jamming detection framework that comprises all the building block of the whole IoT network
components: devices, gateway, server, cloud data center, life cycle.
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