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Abstract: Traffic flow prediction becomes an essential process for intelligent
transportation systems (ITS). Though traffic sensor devices are manually
controllable, traffic flow data with distinct length, uneven sampling, and
missing data finds challenging for effective exploitation. The traffic data has
been considerably increased in recent times which cannot be handled by
traditional mathematical models. The recent developments of statistic and
deep learning (DL) models pave a way for the effectual design of traffic flow
prediction (TFP) models. In this view, this study designs optimal attention-
based deep learning with statistical analysis for TFP (OADLSA-TFP) model.
The presented OADLSA-TFP model intends to effectually forecast the level of
traffic in the environment. To attain this, the OADLSA-TFP model employs
attention-based bidirectional long short-term memory (ABLSTM) model for
predicting traffic flow. In order to enhance the performance of the ABLSTM
model, the hyperparameter optimization process is performed using artifi-
cial fish swarm algorithm (AFSA). A wide-ranging experimental analysis
is carried out on benchmark dataset and the obtained values reported the
enhancements of the OADLSA-TFP model over the recent approaches mean
square error (MSE), root mean square error (RMSE), and mean absolute
percentage error (MAPE) of 120.342%, 10.970%, and 8.146% respectively.
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1 Introduction

Currently, timely and accurate traffic flow data is powerfully required for government agencies,
business sectors and individual travelers, and business sectors [1]. Traffic data helps road users to
alleviate traffic congestion, take effective travel decisions, enhance traffic operation efficacy, and
decrease carbon emission. The density of logistics activities and its value as a key economic activity
has increased the structure of information and communication technology (ICT) as process to enhance
the levels of responsiveness, efficiency and visibility in supply chains relying in multimodal transport
operations. The aim of traffic flow prediction (TFP) is to offer traffic flow data. TFP is a significant
module of traffic management, modelling, and operation [2]. Accurate real-time TFP offer guidance
and information for road user to reduce cost and to improve travel decision. Also, it assists authorities
with traffic management strategies to lessen congestion, predict crowd density, behavior contact and
mobility patterns in mass gatherings events during emergency situations in smart environment.

With the accessibility of higher resolution traffic information from intelligent transportation
systems (ITS), TFP was gradually tackled with data driven approach [3]. TFP is based largely on real-
time traffic and historical information gathered from different sensors, including radars, inductive
loops, mobile Global Positioning System (GPS), cameras, social media, crowd sourcing, and so on.
With the conventional traffic sensor and emergent traffic sensor technology, traffic information is
exploding and has entered the period of big data transport systems. Now, transport control and its
management systems become additional data driven [4,5].

Even though there are previously numerous TFP models and schemes, many of them utilize
shallow traffic systems and still are slightly unsatisfactory. This stimulates reconsideration the TFP
issue depends on deep structure model with large quantity of traffic information [6]. In recent times,
deep learning (DL) that is a kind of machine learning (ML) technique, has gained considerable interest
in industrial and interest fields [7]. It is employed with achievement in reduction dimension, classifi-
cation task, natural language processing (NLP), motion modeling, object detection, etc. [8]. The DL
algorithm uses many deep architectures or layer architectures for extracting intrinsic characteristics
in information from the minimum level to the maximum level and determining massive number of
architecture in the information. Since a traffic flow progression is difficult naturally, DL algorithm
represents traffic feature without previous knowledge that has better efficacy for TFP [9,10]. Fig. 1
depicts the role of artificial intelligence (AI) in Internet of Things (IoT).

Figure 1: Role of artificial intelligence (AI) in the Internet of Things (IoT)
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Yang et al. [11] presented an enhanced method which attaches the maximum control value of
remarkably long structure time-steps to existing time-step, and these maximum control traffic flow
values were captured utilizing the attention process. Simultaneously, it can be smooth out several data
further than the normal range for obtaining optimum predictive outcomes. Liu et al. [12] presented
a privacy-preserving ML approach called federated learning (FL) and present an FL based gated
recurrent unit-neural network (GRU-NN) technique (FedGRU) for TFP. In FedGRU varies in existing
centralized learning approaches and upgrades universal learning approaches with a secured parameter
aggregation system before directly sharing raw data amongst organizations.

Chen et al. [13] established data denoising methods (such as Wavelet (WL), Empirical Mode
Decomposition (EMD), and Ensemble EMD (EEMD)) for suppressing the potential data outlier.
Next, the LSTM-NN has been established for fulfilling the TFP task. Tang et al. [14] widely estimated
the multi-step predictive efficiency of models with distinct denoising techniques utilizing the traffic
volume data gathered in 3 loop detector placed on highway in city of Minneapolis. During the
predictive efficiency comparison, 5 denoising approaches were utilized. Tao et al. [15] presented a
pragmatic system with executing the efficient hinging hyperplanes neural network (EHHNN) easily
created on sparse neuron connection. During the presented approach, distinct traffic features were
combined as to the inputs containing its spatial-temporal data. Also, the detection of accuracy
can be more extended the statistical decomposition of EHHNNs to interpretation analysis with
specification for traffic information whereas the contribution regarding particular traffic variable is
noticed quantitatively.

This study designs optimal attention-based deep learning with statistical analysis for TFP
(OADLSA-TFP) model. The presented OADLSA-TFP model intends to effectually forecast the
level of traffic in the environment. To attain this, the OADLSA-TFP model employs attention-
based bidirectional long short-term memory (ABLSTM) model for predicting traffic flow. In order
to enhance the performance of the ABLSTM model, the hyperparameter optimization process is
performed using artificial fish swarm algorithm (AFSA). A wide-ranging experimental analysis
is carried out on benchmark dataset and the obtained values reported the enhancements of the
OADLSA-TFP model over the recent approaches.

2 The Proposed Model

In this study, a novel OADLSA-TFP model has been developed to effectually forecast the level
of traffic in the environment. The OADLSA-TFP model primarily employed the design of ABLSTM
model for predicting traffic flow. In order to enhance the performance of the ABLSTM model, the
hyperparameter optimization process is performed using AFSA and thereby boosts the predictive
results.

2.1 Process Involved in ABLSTM Based Prediction

At the initial stage, the OADLSA-TFP model primarily employed the design of ABLSTM model
for predicting traffic flow. Consider I = {i1, i2, i3, . . . . . . . . . , it} represent the set of encoded identifiers
of source code [16]. Then, An RNN implements for encoded ID it for t = 1 to n. The output vector of
recurrent neural network (RNN) yt is formulated by:

ht = tanh(Wxhxt + Whhht−1 + bh) (1)

yt = Whyht + by (2)
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whereas W denotes a weight matrix Wxh indicates a weight connecting input (x) to hidden stage (h),
ht indicates the hidden output, tanh signifies an activation function, and b represents a bias vector of
the hidden state. Eq. (1) is utilized for calculating the hidden output, whereas the hidden layer receives
the result of the preceding layer.

But because of the gradient exploding or vanishing problem [17], each input sequence is effectively
utilized in RNN. To produce a better result and prevent the problem, the RNN is expanded to long
short term memory (LSTM). Theoretically, an LSTM network is analogous to RNN, however, the
hidden state updating procedure can be replaced by a special unit named a memory cell. It can be
expressed in the following:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (3)

ft = σ(Wxfxt + Whfht−1 + Wcf ct−1 + bf ) (4)

ct = ftct−1 + it tan h(Wxcxt + Whcht−1 + bc) (5)

0t = σ(Wxoxt + Whoht−1 + Wcoct + b0) (6)

ht = ot tan h(ct) (7)

In which σ denotes a sigmoid function; c, f , i, and o indicates the cell state, forget gate, input, and
output; and b denotes bias function.

During this case, it can be integrated a bidirectional LSTM (BiLSTM) network with attention
process. The BiLSTM network procedures input in two approaches: primary, it procedures data in
the backward to forward directions, next it procedures the similar input in forward to backward. The
BiLSTM technique varies in unidirectional LSTM as the network run the similar input twice, for
instance, in forward to backward and backward to forward directions that preserve the further context
data which is extremely useful from tourism demand predict for improving the network accuracy more.
In the two input attention layers were utilized, one for feature and one for time step dimensional.
The formula demonstrates the attention layer on input X T . Afterward input feature, attention process
was executed before the BiLSTM layer. During the next step, the softmax function that offers the
probability was executed and the next multiplication was utilized by the feature vector. The outcome
in this layer is then sent to BiLSTM network, whereas the network learned the long-term dependency
and is then sent to dense layer (left side from the figure) which offers the outcome.

AT = softmax(W T × [[Xt]t=1T ]T + bT) × [[Xt]t=1T ]T , (8)

AT = softmax(W T × [[Xt]t=1T ]T + bT) × [[Xt]t=1T ]T , (9)

whereas input X T has the T time step of F feature from a vector procedure. The softmax function takes
a F×T dimensional vector that is a multiplication of time step T and n feature vectors F from the input
vector. W T , W F , bT , and bF are the parameter that is learned under the training. Fig. 2 demonstrates
the framework of BiLSTM.
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Figure 2: Structure of BiLSTM

2.2 Hyperparameter Optimization

Next, the hyperparameter optimization [18–20] process of the ABLSTM model is performed using
AFSA and thereby boosts the predictive results. The AFSA is an existing swarm based optimized
approach projected [21] and it could depend on flora migration and reproduction process. It can be
found on 6 normal functions and illustrates the powerful exploration abilities with fast convergence.
During this approach, an original plant was created initially and the scattered seeds are identified as
off-spring plants, with a particular distance. Primarily, the early population was generated arbitrarily
with N original plants.

Xi,j = r × D × 2 − D (10)

In which the original plant place was signified as Xi,j, i and j refer the dimension and amount
of plants correspondingly, also r signifies the uniform distribution in the range of zero and one.
Afterward, the propagating distance Dj was measured to every plant. The calculation of propagating
distance of plants was dependent upon prior 2 generations.

Dj = D1j × r × c1 + D2j × r × c2 (11)

whereas propagation distances of grandparent and parent plants represent D2j and D1j correspondingly,
c1 and c2 signifies the learning co-efficient, and r signifies the uniform distributing. The novel
grandparent propagate is offered as:

D
′
1j = D2j (12)

A novel parent distribution distance was offered as:

D
′
2j =

√∑N

i=1

(
Xij − X ′

ij

)2

N
(13)

The off-spring plant places toward the original plant were evaluated as:

X
′
i,j×m = Rij×m + Xi,j (14)

whereas X ′
ij implies the off-spring plant places, m refers the count of off-spring was generated with

single plant, and Ri,j×m refers the normal distributing arbitrary amount by mean zeroand variance Dj.
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Some generated off-spring is survived and others, also off-spring was alive/not is determined as the
likelihood of survived that was evaluated employing proportion-based election.

p =
∣∣∣∣∣∣
√

F
(
X ′

ij×m

)
Fmax

∣∣∣∣∣∣ × Qj×̇m−1) (15)

In which the selected probability was signified as Q(j×m−1) and their value was amongst [0,1], Fmax

signifies the maximal fitness of entire off-spring, and all the single off-spring plant represent F
(
X ′

i,j×m

)
.

The off-spring is continued if the probability of surviving p was superior related to r, whereas r signifies
the uniform distribution of arbitrary amounts from the interval [0,1]. The N off-spring plant was
selected by continued off-spring as new original plant for subsequent iteration. The AFSA approach
was frequent still it encounter the termination criteria. Eventually, a better outcome was chosen.

Algorithm 1: Pseudo-code of AFA
Initiation: Generate N original plant arbitrary by Eq. (10); compute fitness of all individuals; choose
a better outcome
If t < MaxIter do
for i from 1 to N ∗ M do
Estimate the proportion distance by Eqs. (11)–(13)
Make off-spring plant in Eq. (14)
if p > r then
Off-spring plant live
else
Off-spring plant not alive
end if
end for
Compute a new outcome
Arbitrary chosen N novel original plant
A new solution exchanges the older one once the value was optimal
end while
returned an optimal solution

3 Experimental Validation

This section assesses the predictive performance of the OADLSA-TFP model under several
aspects. Tab. 1 and Fig. 3 offer a detailed comparative study of the OADLSA-TFP model with existing
models on weather data interms of mean square error (MSE), root mean square error (RMSE), and
mean absolute percentage error (MAPE). The experimental results implied that the OADLSA-TFP
model has accomplished effectual outcomes over the other techniques such as radial basis function
(RBF) based prediction (RBF-P), RBF with Pearson Correlation Coefficient (RBF-PCC), RBF with
Principal Component Analysis (RBF-PCA), hybrid RBF, and AI based TFP (AITFP).
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Table 1: Predictive results of OADLSA-TFP with recent models on weather data

Methods MSE RMSE MAPE (%)

RBF-P 398.644 19.966 17.694
RBF-PCC 310.280 17.615 17.522
RBF-PCA 316.261 17.784 17.472
Hybrid RBF 440.097 20.978 17.343
AITFP Model 300.483 17.334 16.580
OADLSA-TFP 285.120 16.885 14.259

Figure 3: Overall predictive results of OADLSA-TFP with recent models on weather data (a) MSE,
(b) RMSE, (c) MAPE



5276 CMC, 2022, vol.73, no.3

With respect to MSE, the OADLSA-TFP model has provided lower MSE of 285.120 whereas the
RBF-P, RBF-PCC, RBF-PCA, Hybrid RBF, and AITFP models have offered higher MSE of 398.644,
310.280, 316.261, 440.097, and 300.483 respectively. Moreover, with respect to MAPE, the OADLSA-
TFP model has gained least MAPE of 14.259% whereas the RBF-P, RBF-PCC, RBF-PCA, Hybrid
RBF, and AITFP models have offered higher MAPE of 17.694%, 17.522%, 17.472%, 17.343%, and
16.580% respectively.

Next, a comprehensive comparative study of the OADLSA-TFP model with recent models is
made in Tab. 2 and Fig. 4. The results indicated that the LSTM, GRU, and cascaded LSTM models
have shown worse performance with increased error values. In addition, the Cascaded GRU, stacked
encoder, F-ANN, and SAERBF models have gained slightly reduced error values. Though the AITFP-
WC model has accomplished reasonable MSE, RMSE, and MAPE of 127.762%, 11.303%, and
9.724%, the presented OADLSA-TFP model has gained effectual outcome with MSE, RMSE, and
MAPE of 120.342%, 10.970%, and 8.146% respectively.

Table 2: Comparative predictive results of OADLSA-TFP with recent models

Methods MSE RMSE MAPE (%)

LSTM model 131.251 11.456 11.988
GRU model 135.889 11.657 11.360
Cascaded LSTM 137.157 11.711 11.313
Cascaded GRU 165.866 12.879 10.799
Stacked encoder (SAE) 137.908 11.743 10.758
F-ANN 134.976 11.618 10.142
SAERBF 153.582 12.393 10.021
AITFP-WC 127.762 11.303 9.724
OADLSA-TFP 120.342 10.970 8.146

Figure 4: (Continued)
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Figure 4: Comparative predictive results of OADLSA-TFP with recent models (a) MSE, (b) RMSE,
(c) MAPE

Tab. 3 and Fig. 5 offer an MSE examination of the OADLSA-TFP model with existing ones
under distinct durations. The results implied that the OADLSA-TFP model has shown improved
performance with minimal values of MSE under all-time durations. For instance, with 5_min, the
OADLSA-TFP model has offered reduced MSE of 120.342.

Table 3: MSE study of OADLSA-TFP model with existing models

MSE

Methods 5_min 10_min 15_min 20_min 25_min 30_min

LSTM model 131.251 137.450 143.065 151.874 160.306 166.802
GRU model 135.889 142.470 150.675 159.396 166.602 174.984
Cascaded LSTM 137.157 145.746 154.724 163.000 168.240 174.337
Cascaded GRU 165.866 174.764 180.355 186.564 193.565 200.791
Stacked encoder 137.908 145.644 152.696 158.800 164.474 171.405
F-ANN 134.976 143.374 148.539 154.399 163.232 170.203
SAERBF 153.582 161.160 167.924 176.718 184.119 190.654
AITFP-WC 127.762 136.690 145.658 152.476 157.933 163.148
OADLSA-TFP 120.342 126.654 131.751 137.446 143.296 151.175

Similarly, with 10_min, the OADLSA-TFP model has provided least MSE of 126.654. Likewise,
with 15_min, the OADLSA-TFP model has gained decreased MSE of 131.751. Moreover, with
20_min, the OADLSA-TFP model has depicted minimum MSE of 137.446. Furthermore, with
30_min, the OADLSA-TFP model has accomplished least MSE of 151.175.
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Figure 5: Comparative MSE examination of OADLSA-TFP model under distinct time durations

Tab. 4 and Fig. 6 deal with an RMSE inspection of the OADLSA-TFP model with existing ones
under distinct durations. The results inferred that the OADLSA-TFP model has revealed enhanced
performance with nominal values of RMSE under all-time durations.

Table 4: RMSE study of OADLSA-TFP model with existing models

RMSE

Methods 5_min 10_min 15_min 20_min 25_min 30_min

LSTM model 11.46 11.72 11.96 12.32 12.66 12.92
GRU model 11.66 11.94 12.27 12.63 12.91 13.23
Cascaded LSTM 11.71 12.07 12.44 12.77 12.97 13.20
Cascaded GRU 12.88 13.22 13.43 13.66 13.91 14.17
Stacked encoder 11.74 12.07 12.36 12.60 12.82 13.09
F-ANN 11.62 11.97 12.19 12.43 12.78 13.05
SAERBF 12.39 12.69 12.96 13.29 13.57 13.81
AITFP-WC 11.30 11.69 12.07 12.35 12.57 12.77
OADLSA-TFP 10.97 11.25 11.48 11.72 11.97 12.30

For instance, with 5_min, the OADLSA-TFP model has presented reduced RMSE of 10.97. In
the same way, with 10_min, the OADLSA-TFP model has provided least RMSE of 11.25. Equally,
with 15_min, the OADLSA-TFP model has gained decreased RMSE of 11.48. Also, with 20_min,
the OADLSA-TFP model has depicted minimum RMSE of 11.72. Additionally, with 30_min, the
OADLSA-TFP model has accomplished least RMSE of 12.30.
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Figure 6: Comparative RMSE examination of OADLSA-TFP model under distinct time durations

Tab. 5 and Fig. 7 deal with a MAPE inspection of the OADLSA-TFP model with existing ones
under distinct durations [22,23]. The results inferred that the OADLSA-TFP model has revealed
enhanced performance with nominal values of MAPE under all-time durations. For instance, with
5_min, the OADLSA-TFP model has presented reduced MAPE of 8.146%. In the same way, with
10_min, the OADLSA-TFP model has provided least MAPE of 11.195%. Equally, with 15_min, the
OADLSA-TFP model has gained decreased MAPE of 14.359%. Also, with 20_min, the OADLSA-
TFP model has depicted minimum MAPE of 17.563%. Additionally, with 30_min, the OADLSA-TFP
model has accomplished least MAPE of 23.150%.

Table 5: MAPE study of OADLSA-TFP model with existing models

MAPE (%)

Methods 5_min 10_min 15_min 20_min 25_min 30_min

LSTM model 11.988 14.340 17.462 19.580 21.852 25.169
GRU model 11.360 13.498 15.975 18.424 21.074 23.176
Cascaded LSTM 11.313 14.763 18.659 20.711 22.965 26.097
Cascaded GRU 10.799 14.021 17.266 20.476 23.809 25.890
Stacked encoder 10.758 13.563 17.495 21.170 23.506 26.961
F-ANN 10.142 12.453 15.872 19.451 21.683 23.800
SAERBF 10.021 13.540 16.770 18.873 21.985 24.986
AITFP-WC 9.724 11.997 15.748 18.767 22.730 25.619
OADLSA-TFP 8.146 11.195 14.359 17.563 19.710 23.150

By observing the above mentioned tables and figures, it is apparent that the OADLSA-TFP model
has resulted in maximum TFP performance over the other methods.
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Figure 7: Comparative MAPE examination of OADLSA-TFP model under distinct time durations

4 Conclusion

In this study, a novel OADLSA-TFP model has been developed to effectually forecast the level
of traffic in the environment. The OADLSA-TFP model primarily employed the design of ABLSTM
model for predicting traffic flow. In order to enhance the performance of the ABLSTM model, the
hyperparameter optimization process is performed using AFSA and thereby boosts the predictive
results. A wide-ranging experimental analysis is carried out on benchmark dataset and the obtained
values reported the enhancements of the OADLSA-TFP model over the recent approaches. Thus,
the OADLSA-TFP model can be used for effective TFP in real time platform. In future, hybrid
metaheuristic algorithms can be designed for improved hyperparameter tuning processes.
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