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Abstract: In this article, we optimize the powers associated to Non Orthog-
onal Multiple Access (NOMA) users, sensing and harvesting duration for
Cognitive Radio Networks (CRN). The secondary source harvests energy
from node A signal. Then, it senses the channel to detect primary source.
Then, the secondary source transmits a signal that is reflected by Intelligent
Reflecting Surfaces (IRS) so that all reflections have a zero phase at any user.
A set Ii of reflectors are associated to user Ui. The use of M = Mi = 512, 256,
128, 64, 32, 16, 8 reflectors per user offers 45, 42, 39, 36, 33, 30, 27 dB gain vs.
the absence of IRS. We also suggest the use of IRS in energy harvesting. The
use P = 8 reflectors for energy harvesting and M = Mi = 8 reflectors per user
for data communications offers 7 and 38 dB gain vs. one IRS M = Mi = 8 and
the absence of IRS. The use of P = 16 reflectors for energy harvesting and
M = Mi = 8 reflectors per user for data communications offers 9 and 42 dB
gain vs. one IRS M = Mi = 8 and the absence of IRS.

Keywords: CRN; NOMA; spectrum sensing; energy harvesting; throughput
maximization

1 Introduction

IRS are used to maximize the throughput of wireless systems as all reflections have a zero phase
at the destination [1–5]. The phase of the p-th reflector is computed using the phase of channel gains
of the links between the source and IRS as well as that of the link between IRS and the destination
[6–8]. IRS have been used in NOMA systems where a set Ii of reflectors are associated to user Ui [9].
The results of [9] are not valid for CRN as a single network was studied without energy harvesting
and spectrum sensing. IRS have been deployed to maximize the throughput of millimeter wave and
optical systems [10–12]. The asymptotic behavior of wireless systems using IRS was derived in [13–16].
Experimental results of IRS were provided in [17–19]. Continuous reserve skyline queries in Wireless
Sensor Networks (WSN) was proposed in [20]. A self adaptive multivariate data compression with
error bound was proposed in [21] for WSN. A particle swarm optimization was used in [22] to enhance
the coverage in WSN. A hamilton loop based data collection algorithm can also be used in WSN [23].
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Optimal coverage using multipath scheduling scheme was suggested in [24]. In [25], asynchronous
clustering has been combined with data gathering scheme for WSN. In [26], the authors proposed a
power efficient gathering technique in sensor information systems. A minimal connected dominant
set was optimized in [27] to enhance WSN routing protocol. Coverage and network connectivity were
optimized in [28] for mobile sensor networks.

In this article, we optimize NOMA powers, sensing and harvesting durations to maximize the
throughput. After energy harvesting from node A signal, secondary source SS senses the channel to
detect primary activity. When no activity is detected, the secondary source transmits a signal that is
reflected by IRS so that all reflections have a zero phase at any NOMA user. A set Ii of reflectors are
associated to user Ui. The use of M = Mi = 512, 256, 128, 64, 32, 16, 8 reflectors per user offers 45, 42,
39, 36, 33, 30, 27 dB gain vs. wireless systems without IRS [29]. We also improve the energy harvesting
process using IRS between A and SS. In this case, energy harvesting uses reflected signals with zero
phase at SS. A second IRS contains different sets of optimized reflectors to deliver reflections with a
zero phase at any user Ui. The use P = 8 reflectors for energy harvesting and M = Mi = 8 reflectors
per user for data communications offers 7 and 38 dB gain vs. one IRS M = Mi = 8 and the without
IRS [29]. Using P = 16 reflectors for energy harvesting and M = Mi = 8 reflectors per user for data
communications offers 9 and 42 dB gain vs. one IRS M = Mi = 8 and the absence of IRS [29].

Next section optimizes the NOMA powers, sensing and harvesting durations. Section 3 improves
the energy harvesting process using IRS. Section 4 gives some results and Section 5 concludes the
paper.

2 Throughput Analysis with a Single IRS
2.1 System Model

In Fig. 1, there are a Primary Destination and Source PD and PS, a Secondary Source SS and K
secondary users, node A and IRS used as a reflector. In the first phase, energy harvesting is performed
at SS over μ T s using the signal of A where T is frame length in s and 0 < μ < 1. Then, SS senses
the channel over (1−μ)ζT s using samples of the received signal from PS. When PS is inactive, SS
broadcasts a signal to K NOMA users over (1−μ)(1−ζ )T s. The aim of the paper is to optimize the
powers of NOMA users as well as sensing and harvesting durations throughput the parameters μ and
ζ to maximize the total throughput while using intelligent reflecting surfaces.

Figure 1: Network model
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2.2 Energy Harvesting Without IRS

The harvested energy is given by

E = βμTPA|f |2 = βμL0EA|f |2 (1)

where β is an efficiency coefficient, PA = EA/Ts is the power of A, Ts is the symbol duration, f is channel
gain from A to SS, L0 = T/Ts. We can write E(|f|2) = 1/dASS

ple where dXY is the distance from X to Y
and ple is the path loss exponent.

The symbol energy of SS is computed as:

ESS = E
L0 (1 − μ) (1 − ζ )

= βμEA|f |2

(1 − μ) (1 − ζ )
(2)

In Fig. 1, the users are ranked as follows: U1 is the strong user, Ui is the i-th strong user and UK
is the weak user. The transmitted NOMA symbol by SS is equal to

s = √
ESS

K∑
i=1

POisi, (3)

si is the symbol of user Ui and 0 < POi < 1 is the power allocated to Ui such that 0 < PO1 < PO2 < · · ·
< POK < 1 and

K∑
i=1

POi = 1.

Let hp be the channel from SS to p-th IRS reflector. Let gp be the channel from p-th IRS
reflector to Ui. Ii is a set of reflectors associated to Ui and contains Mi = |Ii| reflectors. We have:
E(|hp|2) = 1/dSSIRSple. Furthermore, we have E(|gp|2) = 1/dIRSUiple.

We have hp = apexp(−jbp) where ap = |hp|. E(aq) = �(m + 0.5)/[�(m)
√

Mdple
SSIRS] and E(aq2) =

1/dSSIRS
ple [30]. We have gp = cpexp(−jep) where cp = |gp| and ep is the phase of gp. We have

E(cq) = �(m + 0.5)/[�(m)
√

Mdple
IRSUi] and E(aq2) = 1/dIRSUi

ple [30].

The phase of p-th reflector is equal to [1]

ϕp = bp + ep. (4)

The received signal at Ui is given by

ri = s
∑

i∈Ii

hpgpexp
(−jϕp

) + ni, (5)

where ni is a Gaussian r.v. of variance N0.

Eq. (3) gives

ri = s
∑

i∈Ii

apcp + ni = √
Yis + ni, (6)

where

Yi = ESSF 2
i (7)

Fi =
∑

i∈Ii

apcp, (8)
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In (6), we notice that the phase shifts of reflectors given in (4) have been chosen so that all
reflections have a zero phase at user Ui.

Using (2), we deduce

Yi = F 2
i

βμEA|f |2

(1 − μ) (1 − ζ )
(9)

Fi follows a Gaussian distribution with mean mFi = Mi �(m + 0.5)2/[�(m)2dSSIRS
ple/2dIRSUi

ple/2]
and variance σFi2 = M/[dSSIRS

pledIRSUi
ple][1−�(m + 0.5)4/Mi2/�(m)4]. Therefore, Fi2 has a non-central-

chisquare distribution with degree of freedom one. For Rayleigh channels, |f|2 has also a central-
chisquare distribution with degrees of freedom 2 m. Therefore, Yi is the product of a non-central and
a central chisquare random variables and we have [31]

PYi (x) = P(Yi < x) = e
−0.5

m2
X

σ 2
X

� (m)

+∞∑
q=0

(
m2

X

σ 2
X

)q

2q� (q + 0.5)
G2,1

1,3

(
N0 (1−) (1 − ζ ) xmdple

ASS

2βμEA

| 1
q + 0.5, m, 0

)
, (10)

where Gn,m
p,l(x) is the Meijer G-function.

We deduce

ri = √
Yi

K∑
j=1

POjsj, + + ni (11)

2.3 Signal to Interference Plus Noise Ratio (SINR) and Throughput Analysis

Ui performs Successive Interference Cancelation (SIC) and detects first sK since POK > POi. The
corresponding SINR is

�i→K = YiPOK

N0 + Yi

∑K−1

p=1 POp

(12)

The contribution of the detected symbol sK is removed and Ui estimates sK−1 with the following
SINR

�i→K−1 = YiPOK−1

N0 + Yi

∑K−2

p=1 POp

(13)

The process is continued by detecting sl with SINR

�i→l = YiPOl

N0 + Yi

∑l−1

p=1 POp

(14)

The probability of an outage event at Ui is computed as

Pout, i (x) = 1 − P(�i→i > x, . . . , � i→K > x)

= PYi

(
maxi≤l≤K

N0x

POl − x
∑l−1

p=1 POp

)
(15)

where PYi(y) is provided in (10). In Eq. (15) �i→l>x corresponds to Yi >
N0x

POl−x
∑l−1

p=1 POp
. Therefore, Yi

should be larger than the maximum of these values for l = i, . . . , K which is maxi≤l≤K
N0x

POl−x
∑l−1

p=1 POp
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The Packet Error Probability (PEP) at Ui is equal to [32]

PEPi(PO1, PO2, . . . , POK, μ, ζ ) <Poutage (T0) (16)

where T0 is defined as [12]

T0 = +∞∫
0

1 −
[

1 − 2

(
1 − 1√

Q

)
erfc

(√
3ulog2 (Q)

2Q − 2

)]PL

du, (17)

where PL is packet length.

The total throughput is equal to

Thr (PO1, . . . , POK , μ, ζ ) = (1 − μ) (1 − ζ ) log2 (Q) Pidle (1 − Pf )

×
K∑

i=1

[1 − PEPi (PO1, . . . , POK , μ, ζ )] (18)

where Pf is the probability of a false alarm

Pf = � (�(1 − μ) ζL0�, T1/2)

� (�(1 − μ) ζL0�) , (19)

where T1 is the energy detector threshold

The powers of NOMA users, sensing and harvesting durations μ and ζ are optimized as follows:

(PO1
opt, . . . , POK

opt, μopt, ζ opt) = argmaxThr(PO1, . . . , POK, μ, ζ ) (20)

3 IRS to Enhance the Energy Harvesting Process
3.1 System Model

Fig. 2 shows that data transmission can use two IRS. IRS1 contains P reflectors between A to
SS to enhance the energy harvesting process. IRS2 is between SS and users Ui with Mi reflectors to
improve the throughput.

Figure 2: IRS used in energy harvesting

3.2 Energy Harvesting Using IRS

When energy harvesting uses IRS, we have

E = βμL0EAC2, (21)
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where

Z =
P∑

p=1

δpηp (22)

where δp = |up|, up is the channel from A to p-th IRS1 reflector and ηp = |vp|, vp is the channel from
p-th reflector of IRS1 to SS.

The mean and variance of C are equal to

mC = P�(m + 0.5)
2

m�(m)
2dple/2

AIRS1d
PLE/2
IRS1SS

(23)

σ 2
C = P

dple/2
AIRS1d

ple/2
IRS1SS

[1 − � (m + 0.5)

M1
2
�(m)

4

4

] (24)

We deduce

ESS = E
L0 (1 − μ) (1 − ζ )

= βμEAC2

(1 − μ) (1 − ζ )
(25)

The variable Yi should be replaced by Zi written as

Yi = F 2
i

βμEAC2

(1 − μ) (1 − ζ )
(26)

where Fi is defined in (8).

Zi is the product of two non central chisquare r.v. Therefore, we have [31]

PZi (x) = e
−0.5

m2
Fi

σ 2
Fi e

−0.5
m2

C

σ 2
C

+∞∑
q=0

+∞∑
l=0

(
m2

Fi

σ 2
Fi

)l(m2
C

σ 2
C

)q

2q+l� (q + 0.5) � (l + 0.5) q! l!

× G2,1
1,3

(
N0 (1−) (1 − ζ ) xm

βEA2
| 1
q + 0.5, l + 0.5, 0

)
, (27)

4 Numerical Results

Fig. 3 depicts the total throughput for K = 2 users, QPSK modulation, m-fading figure m = 2,
β = 0.5, T1 = 1, dASS = 1.1, dSSIRS = 1.2, dIRSU1 = 1.1, dIRSU2 = 1.5 and ple = 3. We notice that
the use of M = Mi = 512, 256, 128, 64, 32, 16, 8 reflectors per user offers 45, 42, 39, 36, 33, 30, 27 dB
gain vs. the absence of IRS [29]. Fig. 3 corresponds to optimal POi, μ and ζ .

Figs. 4 and 5 compares the total throughput for M = Mi = 8, 16 with optimal μ and ζ to (μ = 1/3,
ζ = 1/2). We observe that optimal harvesting and sensing duration μ and ζ offers a better throughput
than (μ = 1/3, ζ = 1/2), (μ = 1/3, optimal ζ ) and (optimal μ, ζ = 1/2).

Fig. 6 shows the total throughput for K = 3 users and 16QAM modulation, m-fading figure m = 2,
T1 = 1, d = 1, dSSIRS = 1.2, dIRSU1 = 1.1, dIRSU2 = 1.3, dIRSU3 = 1.5. M = Mi = 512, 256, 128,
64, 32, 16, 8 reflectors per user offers 47, 44, 41, 38, 35, 32, 29 dB gain vs. NOMA without IRS [29].
In Fig. 6, we used an optimal powers as well as optimal μ and ζ .
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Figure 3: Total throughput for two users and QPSK

Figure 4: Total throughput for two users QPSK and M = 8
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Figure 5: Total throughput for two users, QPSK and M = 16

Figure 6: Total throughput for three users and 16QAM

Fig. 7 depicts the throughput for M = Mi = 16 reflectors per user. We optimized NOMA powers
in Fig. 7. We observe that optimal sensing and harvesting durations ζ and μ offers a better throughput
than (μ = 1/3, ζ = 1/2), (μ = 1/3, optimal ζ ) and (optimal μ, ζ = 1/2).
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Figure 7: Total throughput for three users, 16QAM and M = 16

Fig. 8 shows the total throughput for the same parameters as Fig. 6. We have studied the effect of
m-fading figure. For m = 3, we observe up to 8 and 2 dB gain vs. m = 1 and m = 2 that corresponds to
Rayleigh channels.

Figure 8: Total throughput for three users, 16QAM and M = 16



5242 CMC, 2022, vol.73, no.3

In Fig. 9, we plotted the total throughput for K = 3 users and 16QAM modulation. The param-
eters are the same as Fig. 6. We have plotted the throughput when a energy harvesting uses IRS.
The parameters are dAIRS1 = 1.1 and dIRS1SS = 1.3. The use P = 8 reflectors for energy harvesting
and M = Mi = 8 reflectors per user for data communications offers 7 and 38 dB gain vs. one IRS
M = Mi = 8 and without IRS [29]. The use of P = 16 reflectors for energy harvesting and M = Mi = 8
reflectors per user for data communications offers 9 and 42 dB gain vs. one IRS M = Mi = 8 and
without IRS [29].

Figure 9: Total throughput using two IRS: three users, 16QAM

5 Conclusion

In this article, we optimized the powers of NOMA users, sensing and harvesting duration for
CRN. Secondary source senses the channel over (1−μ)ζT s to detect primary activity. If no activity
is detected, SS broadcasts a signal during (1−μ)(1−ζ )T s to NOMA users. The signal is reflected by
Intelligent Reflecting Surfaces (IRS) towards K users. A set Ii of reflectors is associated to user Ui.
The use of M = Mi = 512, 256, 128, 64, 32, 16, 8 reflectors per user offers 45, 42, 39, 36, 33, 30, 27 dB
gain vs. wireless systems without IRS [29]. We also suggest the use of IRS in energy harvesting. The
use P = 8 reflectors for energy harvesting and M = Mi = 8 reflectors per user for data communications
offers 7 and 38 dB gain vs. one IRS M = Mi = 8 and without IRS [29]. The use of P = 16 reflectors
for energy harvesting and M = Mi = 8 reflectors per user for data communications offers 9 and 42 dB
gain vs. one IRS M = Mi = 8 and without IRS [29].
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