
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.030878

Article

Swarm Optimization and Machine Learning for Android Malware Detection

K. Santosh Jhansi1,2,*, P. Ravi Kiran Varma2 and Sujata Chakravarty3

1Centurion University of Technology and Management, Paralakhemundi, Odisha, India
2Maharaj Vijayaram Gajapathi Raj College of Engineering, Vizianagaram, India

3Centurion University of Technology and Management, Bhubaneswar, Odisha, India
*Corresponding Author: K. Santosh Jhansi. Email: santosh.jhansi@gmail.com

Received: 04 April 2022; Accepted: 08 June 2022

Abstract: Malware Security Intelligence constitutes the analysis of applica-
tions and their associated metadata for possible security threats. Application
Programming Interfaces (API) calls contain valuable information that can
help with malware identification. The malware analysis with reduced feature
space helps for the efficient identification of malware. The goal of this
research is to find the most informative features of API calls to improve
the android malware detection accuracy. Three swarm optimization methods,
viz., Ant Lion Optimization (ALO), Cuckoo Search Optimization (CSO),
and Firefly Optimization (FO) are applied to API calls using auto-encoders
for identification of most influential features. The nature-inspired wrapper-
based algorithms are evaluated using well-known Machine Learning (ML)
classifiers such as Linear Regression (LR), Decision Tree (DT), Random
Forest (RF), K–Nearest Neighbor (KNN) & Support Vector Machine (SVM).
A hybrid Artificial Neuronal Classifier (ANC) is proposed for improving
the classification of android malware. The experimental results yielded an
accuracy of 98.87% with just seven features out of hundred API call features,
i.e., a massive 93% of data optimization.

Keywords: Android malware; API calls; auto-encoders; ant lion optimization;
cuckoo search optimization; firefly optimization; artificial neural networks;
artificial neuronal classifier

1 Introduction

Android, a Linux-based mobile Operating System (OS), is the most popular mobile OS worldwide.
Unlike other operating systems that are subject to numerous laws and copyrights, Android is open-
source, allowing developers from all around the world to contribute to it. Android is frequently
targeted by malware because of its widespread usage. Malware poses a threat to the data privacy,
integrity, and availability. Attackers take aid of malware infiltrated into a genuinely looking regular
Application (App). App downloads, in particular from unauthorized or not from play store, are
the most prevalent route for malware to infiltrate the android OS. When the victim installs an app
from unprotected sources, there is a possibility of malware attack. To avoid these attacks, more
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sophisticated malware detection techniques [1–3] are required due to the huge quantity of harmful
malware applications.

Predicting Android malware [4,5] is possible with a number of existing technologies. However,
these methods rely on signatures, which are digital traces beneath the code. The signatures are taken
from the app’s Android Application Package (APK) and compared to malicious signatures in a
database. This type of solution, on the other hand, is incapable of detecting malware that isn’t in the
database. As malware is becoming more prevalent, it is vital to present a solution that can accurately
detect all varieties of malware [6], while using the least amount of time and resources possible.

Many attempts have been made to identify malware on android devices [7,8] traditional, signature-
based malware detection methods compare the APK file signature to the signature of the malicious
program in the malware database, which excludes malware that isn’t in the database. In this scenario,
there is a necessity to develop advanced detection techniques [9] for the effective identification of
malware. This paper contributes to novel android malware detection based on API call features using
a hybrid model of swarm optimization algorithms (ALO, CSO, and FO) along with auto-encoders
evaluated on several ML classifiers. The main contributions of this paper are:

1. Detecting suspicious APIs for accurate classification of goodware and malware android apps.
2. Design and implementation of hybrid auto-encoders and swarm optimization wrapper feature

minimization methods.
3. Evaluation of the proposed models using various ML classifiers including novel artificial

neuronal classifier.
4. Determining the best algorithm for predicting android malware based on a variety of factors.

The remainder of the paper is ordered as follows: Section 2 presents the related work, methodology
of the proposed work explained in Section 3, Section 4 details the experimentation setup, performance
analysis and experimentation results are described in Section 5, and Section 6 presents the conclusion
& future work.

2 Related Work

Although the android platform is the most comprehensive, the variety and number of malware
have increased dramatically. As a result, researchers began looking for ways to detect and block these
dangerous applications [10–12] Tehrany et al. [13] addressed the problem of imbalanced datasets in
android malware detection using statistical analysis. Ranking methods, under-sampling, and Synthetic
Minority Oversampling (SMOTE) are used for pre-processing and balancing the dataset. SVM,
KNN, and Iterative Dichotomiser 3 (ID3) classifiers are used for the detection model. The SMOTE
technique with KNN classifier outperformed other comparing methods with an accuracy of 98.69%.
Dharmalingam et al. [14] experimented with Term Frequency-Inverse Document Frequency (TF-IDF)
for the identification of malware in android. The permissions are ranked and graded using permission
grader. The graded permissions are classified using Artificial Neural Networks (ANNs) and obtained
an accuracy of 94.22% when compared to competing algorithms. Yildiz et al. [15] demonstrated a
feature selection method based on linear regression for improving the performance of android malware
classification. The experimented methodology resulted in improved accuracy of 96.1% with reduced
training time.

Sarah et al. [16] introduced a model based on the recursive feature selection method combined
with an ensemble classifier for android malware detection. The influential features are selected using
the Recursive Feature Selection method and classified using the LightGBM classifier. The results
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indicate the experimented process proved its efficiency in classifying android malware with 99.5%
accuracy. Elayan et al. [17] addressed the inefficiency of traditional malware detection techniques
and upgraded to use deep learning techniques. Gated Recurrent Unit (GRU) is employed for the
classification of good ware from malware. The obtained model outperformed the classical methods
with 98.2% accuracy. Arif et al. [18] demonstrated a risk-based fuzzy approach using the Analytical
Hierarchy Process (AHP) for mobile malware detection. Further to detect the malware, the risk is
categorized into four different categories (very low, low, medium & high) and is also explored. The
overall approach achieved an accuracy of 90.54%.

The suggested method in this paper focuses on incorporating artificial neural networks to improve
the effectiveness of android malware application detection [19] and classification [20,21]. The most
influential features for distinguishing good ware apps from malware apps are first recognized by
employing auto-encoders in wrapper-based swarm optimization feature selection methods. Second, a
new artificial neuronal classifier for productive android malware classification is tested by combining
artificial neural networks and induction classifier.

3 Methodology

The architecture of the proposed wrapper-based feature selection technique using auto-encoders
for android malware detection is highlighted in Fig. 1. The entire data is categorized into train and
test sets in 7:3 ratio. The malware analysis process comprises two steps namely: feature selection
& classification. In feature selection, swarm-intelligence-based ALO, CSO & FO algorithms are
examined for iterative feature search selection. The selected features are passed onto auto-encoders to
obtain a compressed form of input features. The auto-encoder’s output is transferred to an induction
algorithm to find the fitness of features in classifying malware from good ware. The induction
algorithm induces a classifier by mapping feature space into a set of class values, useful in classifying
future cases. Finally, in classification, the obtained reduced feature set is evaluated using popular
induction algorithms and the proposed artificial neuronal classifier.

Figure 1: System architecture
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3.1 Feature Selection

The process of extracting the most consistent, relevant, and non-redundant features to employ in
model creation is known as feature selection. The purpose of feature selection is to improve the model’s
performance while lowering the modelling cost. It reduces the number of input variables in a machine
learning model by eliminating redundancies and unnecessary features and then restricting the set of
features to those that are most appropriate for the model.

The primary advantages of completing feature selection in advance rather than relying on the
ML model to determine which features are most important are: simple models, reduction in variance,
reduced training time of the model & avoiding high dimensionality curse.

Definition 1. For a given inducer I and data set D having features (x1, x2, x3, . . . , xn) with
distribution D over a labelled instance space, the optimal feature subset Xopt is the feature subset,
which maximizes the accuracy of the induced classifier C = I (D).

In unsupervised feature selection techniques, the wrapper-based approach identifies the best
combination of features that maximizes the performance of the model. By analyzing different models
with the addition and/or removal of features using the greedy approach, the most influencing features
are chosen for model building. The wrapper-based feature selection process is represented in Fig. 2

Figure 2: Wrapper-based feature selection

The swarm-intelligence-based ALO, CSO & FO feature selection search techniques are employed
in order to replace the greedy approach. For the determination of near-optimal solution during fitness
convergence, the choice of objective function plays a pivotal role. In the iterative approach of wrapper-
based feature selection, the selected features count and the error obtained from the model after every
iteration are considered to evaluate the fitness of the chosen features in the proposed method as shown
in Eq. (1)

f (x) = error ∗ τ + u − s (l)
u

∗ (1 − τ) (1)

where, τ represents the penalty given to learning algorithm for obtaining error during fitness calcula-
tion and τ ε [0, 1]. The length of complete feature set is represented as u & the length of the solution
feature set is represented as l.

3.1.1 Auto-Encoders

Auto-encoders are a class of neural networks used to learn a compressed representation of input
data. An auto-encoder consists of sub-models called an encoder and a decoder. The encoder model
learns from input features and compresses them, while the decoder tries to regenerate the input from
the compressed output of the encoder. Once the encoder model is trained, the decoder is ignored. The
trained encoder is now used to extract features from raw data for the purpose of training machine
learning models.

As shown in Fig. 3 the proposed auto-encoder comprises of an encoder with an input layer having
N nodes, two hidden layers having [N ∗ 2, N] nodes each, another hidden layer called latent space
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having N/2 nodes and a decoder with 2 hidden layers with [N, N ∗ 2] nodes each and an output layer
with N nodes. Batch normalization is applied after each hidden layer and the LeakyReLU activation
function is used in all the layers, whose mathematical representation is given in Eq. (2)

LeakyReLU : f (hθ (x)) =
{

0.01 ∗ hθ (x) , if hθ (x) < 0
hθ (x) , if hθ (x) ≥ 0

(2)

where, hθ (x) is obtained using Eq. (3)

hθ (x) =
∑n

i=1
wixi + bias = w1x1 + w2x2 + . . . + wnxn + bias (3)

here, xi = (x1, x2, . . . , xn) indicates the inputs to the nodes, wi = (w1, w2, . . . , wn) represents the
weights assigned to nodes (initially weights are assigned randomly between [0, 1] and they are adjusted
during learning), a constant term bias is added to every layer, to assure the parameters are not passing
through the origin. A node is fired if the output of Eq. (3) is above the threshold as shown in Eq. (4)

Output = f (x) =
{∑n

i=1wixi + bias ≥ threshold
0 < threshold

(4)

Figure 3: Architecture of proposed auto-encoder

3.1.2 Wrapper-Based Ant Lion Optimized Feature Selection

The Ant Lion Optimizer developed by Seyedali [22] characterizes the hunting mechanics of
antlions for ants in nature. ALO finds the ideal solution regardless of the initial values of the
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parameters. The convergence of ALO is fast and can handle integer & discrete constraints. The steps
involved in prey hunting: ants random walk, building traps, entrapment of ants in traps, prey catching,
and rebuilding the traps are implemented.

Initially, all the ants and antlions populations are initialized randomly. For each ant, antlions are
selected based on the roulette wheel and a random walk is created and normalized using lines 9–10
and Eq. (5).

Algorithm 1: Wrapper-Based Ant Lion Optimized Feature Selection (WALOFS)
1. Define objective function: f (x) : x = (x1, x2, . . . , xd)

2. Random initialization of ants and antlions population
3. Calculation of Ants and antlions fitness
4. Identify best antlions and presume as elite
5. While end criterion is not obtained or (t < maxGeneration)

6. For each ant
7. Using Roulette Wheel: select antlion

8. dt = dt

I
and Ct = Ct

I

9. X (t) = [0, cum_sum (2r (t1) − 1) , cum_sum (2r (t2) − 1) , . . . , cum_sum (2r (tn) − 1)]

10. Xt
i = ci +

(
Xt

i − ai

) × (
di − ct

i

)
(
dt

i − ai

)
11. Antt

i = Rt
A + Rt

E

2
12. End for
13. Calculation fitness for all ants
14. Replacement of antlion with equivalent ant, if it becomes fitter
15. If an antlion becomes fitter then
16. Antliont

j = Antt
i iff

(
Antt

i > Antliont
j

)
17. End while

r (t) =
{

1, rand > 0 · 5
0, rand ≤ 0 · 5

(5)

In Algorithm 1, cum_sum refers cumulative sum, no. of iterations is represented as n, indicates
current iteration is indicated using t, rand is a random number between [0, 1], r (t) is a stochastic
function, ai is the ith variable minimum random walk, di is the ith variable maximum random walk, ct

i is
ith variable minimum at tth iteration, dt

i is ith variable maximum at tth iteration, ct all variables minimum
at tth iteration, dt represents a vector of all variables maximum at tth iteration. The position of the ant
is updated using line 11. After every iteration, the fitness of all the ants is calculated and an antlion is
replaced with its equivalent ant if it is a good fit using line 16. Here, Antt

i indicates the position of ith ant
at tth iteration, I is a ratio, Antliont

j indicates the position of jth antlion at tth iteration, Rt
E represents the

random walk elite at tth iteration chosen by roulette wheel, Rt
A represents the random walk of antlion at

tth iteration chosen by roulette wheel. The global minimum solution validated by the built-in wrapper
classifier is returned after all iterations are complete.
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3.1.3 Wrapper-Based Cuckoo Search Optimized Feature Selection

The Cuckoo search algorithm developed by Yang et al. [23] depicts the egg-laying behavior of
cuckoos in the nests of other host birds. Each cuckoo lays an egg and drops it in a randomly chosen
nest. The best nests (solutions) with high-quality eggs are passed down to the following generation.
The host nests that are accessible are finite, and a host’s chances of discovering an alien egg are with
probability (0, 1). All of the nests are randomly initialized during the initiation phase, however once the
iterations begin, the Cuckoo traverses the solution space by modifying the nests through Levy flight
as shown in line 4 here, the step size is tuned by ∝, sigmoid function is used to convert the continuous
values generated by CSO in binary version of CSO, as shown in Eqs. (6) and (7).

Algorithm 2: Wrapper-Based Cuckoo Search Optimized Feature Selection (WCSOFS)
1. Define objective function: f (x) : x = (x1, x2, . . . , xd)

2. Initially generate population for n host nests xi (i = 1, 2, 3, . . . , n)

3. while (end criterion not achieved) or (t < maxGeneration)

4. Generate new solution by Ex+1
i = Ex

i + ∝ ∗ Levy (λ), with randomly chosen cuckoo
5. Evaluate the fitness of the solution Fi [For maximizing, Fi α f (xi)]
6. Randomly choose a nest j among n
7. if (Fi > Fj) then
8. j is replaced with new solution
9. end if
10. Abandon a part of worse nets by (pa) fraction
11. New nests are built in abandoned fraction (pa) using Ex+1

i = Ex
i + δ ∗ (

Ex
1 − Ex

2

)
12. Lay aside the finest nests/solutions
13. Obtain current best nest/solution by ranking them
14. Current best solution is passed onto the next generation
15. End while

M
(
Ej

i

) = 1

1 + e−E
j
i (x)

(6)

Ej
i (x + 1) =

{
1 M

(
Ej

i

)
> 0.5

0 otherwise
(7)

A few nests are abandoned and replaced with new nests at the end of an iteration using line 11 of
Algorithm 2 where, Ex

1 and Ex
2 are randomly chosen nests, δ ε [0, 1]. In wrapper-based CSO Feature

Selection, the nests are initialized and fitness is calculated at the beginning. After every iteration,
the iteration’s best solution is represented as the global best solution, gleaning on fitness. As per the
modalities of CSO, pa nests are abandoned and replaced using line 11. The global minimal solution,
as verified by the embedded wrapper classifier, is returned once all iterations have been completed.

3.1.4 Wrapper-Based Firefly Optimized Feature Selection

The Firefly Optimization algorithm developed by Lindfield et al. [24] mirrors firefly action to draw
in different fireflies. The light intensity of the two fireflies is straightforwardly corresponding to their
engaging quality, while the distance between them is contrarily proportionate. Assuming that there is
definitely not a more brilliant firefly close by, the firefly will move aimlessly. The attraction between
any two fireflies is influenced by the brightness of the firefly. The firefly with a reduced brightness shifts
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towards the firefly with a greater brightness. When there are no brighter fireflies, random movement
is used. The attractive force between two given fireflies is calculated using line 15 of Algorithm 3 at
a distance r = 0, β0 represents attractiveness, the distance between fireflies j and k is indicated by rjk

which is calculated using line 10. Here, rji and rki represent the spatial components of ith component at
jth and kth fireflies, dimensions are shown by n. When one firefly is attracted to another, the movement
of the firefly is determined using line 11 where, rj represents the current position of j, random ε [0, 1].
Fireflies move randomly based on α (mutation rate) when there are no brighter fireflies. The solution
to the global minimum validated by the wrapper class built-in classifier is returned after all iterations
are complete.

Algorithm 3: Wrapper-Based Firefly Optimized Feature Selection (WFOFS)
1. Define Objective function: f (x) : x = (x1, x2, . . . , xd)

2. Initial generation of fireflies’ population xi (i = 1, 2, 3, . . . , n)

3. Calculation of light intensities I for fireflies
4. Define light absorption coefficient γ

5. while (end criterion is not obtained) or (t < MaxGeneration)

6. for each firefly i (∀ i = 1, 2, 3, . . . , n)

7. for every firefly j (∀ j = 1, 2, 3, . . . , i)
8. Get light intensities of Ii and Ij

9. if Ii < Ij then

10. rjk = ||xj − xk|| =
√∑n

i=1

(
xj,i − xk,i

)2

11. xj = xj + β0e
−γ r2

jk ∗ (
xj − xk

) + α ∗ (
random − 1

2

)
12. else
13. Randomly move firefly i
14. end if
15. Attractiveness is updated via βr = β0 ∗ e−γ r2

jk

16. New solution is evaluated & light intensity is updated
17. end for
18. end for
19. Obtain current best by ranking fireflies w.r.t light intensities

3.2 Classifier

The induction/classification algorithms [25,26] employed to evaluate the proposed android mal-
ware detection system are LR, DT, RF, KNN & SVM. Apart from these classifiers, a new hybrid
classifier combining artificial neural networks with induction algorithm, called artificial neuronal
classifier is proposed in this paper.

Artificial Neuronal Classifier

The architecture of the proposed artificial neuronal classifier is highlighted in Fig. 4. The artificial
neuronal classifier is an association of artificial neural networks [27] with the induction classifier [28].
The features are given as input to the ANN and trained to understand the patterns among the features
and the correlation between them. The acquired knowledge from ANN is transferred to the induction
classifier. The induction classifier induces the knowledge space into the learning algorithm to maximize
the accuracy in classifying malware from good ware.
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Figure 4: Architecture of proposed artificial neuronal classifier

After several experiments, the number of layers in ANN of ANC are configured as an input layer
with N nodes, three fully connected hidden layers having M nodes each, another fully connected
hidden layer with M/2 nodes, and an output layer with an induction classifier. The number of nodes
in hidden layer are calculated using the Eq. (8)

M = 2 ∗ N
α

+ 2 (8)

where, M represents no. of nodes in hidden layer, N indicates no. of features, and α ε [2, 10]. The
activation function decides whether a neuron is fire/activated or not. If the output is above a certain
threshold, the neuron will be fired otherwise it is not fired. Except for induction classifier layer, the
activation function used in all the layers is ReLU , which is given in Eq. (9)

ReLU : f (hθ (x)) = Max (0, hθ (x)) (9)

here, hθ (x) is calculated using Eq. (3). A neural network optimizer is a function or algorithm that alters
the weights and learning rate of the network. The optimizer used in ANC is Adam, where the decay
rate of mean of gradients m(t)

ij and the mean of the square of the gradients v(t)
ij for each weight ωi̇j be β1

and β2 respectively. Also, let N be the constraint learning-rate factor. Then, the update rules for Adam
are as shown in Eqs. (10) and (11).

m(t)
ij = β1m(t−1)

ij + (1 − β1)
∂C(t)

∂ωi̇j

(10)

v(t)
ij = β2v(t−1)

ij + (1 − β2)

(
∂C(t)

∂ωij

)2

(11)
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The normalized mean of the gradients m̂(t)
ij and the mean of the square gradients v̂(t)

ij are computed
using Eqs. (12) and (13).

m̂(t)
ij = m(t)

ij(
1 − β t

i

) (12)

v̂(t)
ij = v(t)

ij

(1 − β t
2)

(13)

The final update rule for each weight is given in Eq. (14).

w(t+1)

ij = w(t)
ij − η√

v̂t
ij + ε

m̂(t)
ij (14)

After adjusting the weights of the neural network, the error between the predicted output and
the actual output is calculated using a loss function. The Mean Absolute Error (MAE) is used in this
model, which is given in Eq. (15).

MAE = 1
n

∑n

i=1

∣∣yi − ŷi

∣∣ (15)

here, yi is the actual, and ŷi is the predicted output, and n is the total number of outputs. Once the
neural network is trained for certain epochs, the acquired knowledge from feature space is transmitted
to the induction classifier to differentiate between malware and goodware.

4 Experimental Setup

All experiments are performed on a 64-bit Windows 10 operating system having 2.30 GHz Intel®

Core™ i5 processor, 2TB Hard Drive and 8 GB RAM with Jupiter platform configured to support
machine learning and deep learning packages. The programming language used is Python 3.7.

The API call sequence data used in the experiment is collected from IEEE data port. The data
contains 43,876 API call sequences having 100 features, among them 42,797 are malware and 1,079
are good ware API call sequences. The size of the dataset is 17.1 MB. The experimented data is collected
using the cuckoo sandbox environment and verified using virus total [29].

5 Performance Analysis and Experimental Results

The proposed system for android malware detection confirms the classification accuracy through
various classification analysis metrics such as Mean Squared Error (MSE), Root Mean Square Error
(RMSE), Precision, Recall, F1-Score, and Accuracy which are defined as follows:

Precision = Truepos

Falsepos + Truepos

(16)

Recall = Truepos

Falseneg + Truepos

(17)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(18)

Accuracy = Truepos + Trueneg

Truepos + Falsepos + Trueneg + Falseneg

(19)
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MSE = 1
n

∑n

i=1

(
Yi − Ŷi

)2

(20)

RMSE =
√

1
n

∑n

i=1

(
Yi − Ŷi

)2

(21)

where, Truepos represents the samples identified correctly as good ware, Trueneg indicates the samples
identified correctly as malware, Falsepos is the samples incorrectly identified as goodware, Falseneg is he
samples incorrectly identified as malware, Ŷi is the predicted output, Yi is the actual output, and n
represents the number of samples.

In experiment no. 1, the ALO, CSO & FO algorithms wrapped with LR, DT, RF, SVM, and KNN
are evaluated for their performance on the API calls sequence dataset. All the experiments are run for
10 iterations with 10 agents. The results of the analysis are listed in Tab. 1 and its graphical illustration
is given in Fig. 5. The FO optimizer, when wrapped with the KNN classifier obtained better results
with an 88% reduced feature set and an accuracy of 98.29%.

Table 1: Accuracy comparison of ALO, CSO & FO wrapped with LR, DT, RF, SVM & KNN

S. no Classifier Accuracy before
feature selection

Feature
selection
method

Accuracy
after feature
selection

% Change in
accuracy

Features
selected

% Decrease in
features

1 LR 94.6311 ALO 98.1882 3.56% 61 39%
CSO 98.2782 3.64% 88 12%
FO 97.5387 2.91% 14 86%

2 DT 95.6485 ALO 98.0971 2.45% 41 59%
CSO 98.4047 2.76% 79 21%
FO 97.9831 2.33% 18 82%

3 RF 95.9985 ALO 97.6719 1.67% 21 79%
CSO 97.7402 1.74% 83 17%
FO 97.9666 1.97% 13 87%

4 SVM 94.9654 ALO 98.2224 3.26% 91 9%
CSO 98.6098 3.64% 71 29%
FO 98.3933 3.43% 15 85%

5 KNN 93.6521 ALO 98.4731 4.82% 61 39%
CSO 98.5414 4.89% 77 23%
FO 98.2981 4.65% 12 88%
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Figure 5: Performance comparison of ALO, CSO & FO wrapped with ML classifiers

In experiment no. 2, initially, all the features are passed on to the Auto Encoders to obtain
latent space vector, which is passed on to the wrapper feature selection search methods. The FO
wrapper search method produced the best accuracy of 98.53% with the KNN classifier. The FO
optimizer showcased its supremacy with an 88% reduction in the dimensionality of the feature set. The
experiment results are listed in Tab. 2 and its graphical illustration is shown in Fig. 6. Furthermore, in
experiment no. 3, the ALO, CSO & FO are wrapped with the proposed artificial neuronal classifier to
evaluate the performance of the classifier. Out of all the combinations experimented within in artificial
neuronal classifier, the ANN combined with RF achieved a dominant accuracy of 98.87% with 93%
reduced feature space. The experimental results are shown in Tab. 3 and its graphical illustration is
shown in Fig. 7.

Table 2: Accuracy comparison of ALO, CSO & FO wrappers associated with auto-encoders

S. no Classifier Accuracy before
feature selection

Feature
selection
method

Accuracy
after feature
selection

% Change in
accuracy

Features
selected

% Decrease in
features

1 LR 94.6311 ALO 98.1426 3.51% 64 36%
CSO 98.1198 3.49% 76 24%
FO 97.5387 2.91% 10 90%

2 DT 95.6485 ALO 97.6754 2.03% 13 87%
CSO 97.7803 2.13% 85 15%
FO 97.7552 2.11% 12 88%

3 RF 95.9985 ALO 98.5198 2.52% 73 27%
CSO 98.4984 2.50% 76 24%
FO 98.5273 2.53% 12 88%

4 SVM 94.9654 ALO 98.3819 3.42% 93 7%
CSO 98.4503 3.48% 87 13%
FO 97.5387 2.57% 13 87%

5 KNN 93.6521 ALO 98.5186 4.87% 58 42%
CSO 98.3933 4.74% 73 27%
FO 98.5314 4.88% 8 92%
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Figure 6: Performance comparison of ALO, CSO & FO associated with auto-encoders

Table 3: Accuracy comparison of ALO, CSO & FO wrapped with artificial neuronal classifier

S. no Classifier Accuracy before
feature selection

Feature
selection
method

Accuracy
after feature
selection

% Change in
accuracy

Features
selected

% Decrease in
features

1 ANC •
LR

94.6311 ALO 98.2566 3.63% 76 24%
CSO 98.1654 3.53% 89 11%
FO 97.5387 2.91% 11 89%

2 ANC •
DT

95.6485 ALO 97.6982 2.05% 98 2%
CSO 97.7781 2.13% 82 18%
FO 97.6412 1.99% 31 69%

3 ANC • RF95.9985 ALO 98.5072 2.51% 47 53%
CSO 98.4958 2.50% 78 22%
FO 98.8728 2.87% 7 93%

4 ANC •
SVM

94.9654 ALO 98.1654 3.20% 31 69%
CSO 98.2654 3.30% 79 21%
FO 98.0628 3.10% 28 72%

5 ANC •
KNN

93.6521 ALO 98.3477 4.70% 21 79%
CSO 98.3249 4.67% 73 27%
FO 98.2566 4.60% 10 90%

The experimental results indicate that wrapper-based firefly optimized feature selection algorithm
reduced the dimensionality of feature space by maintaining classification accuracy using ANC. The
evaluation metrics of the artificial neuronal classifier with the WFOFS algorithm are presented in
Fig. 8. The list of 7 features selected by wrapper-based firefly feature selection algorithm using artificial
neuronal classifier are listed in Tab. 4.
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Figure 7: Performance comparison of ALO, CSO & FO wrapped with artificial neuronal classifier

Figure 8: Evaluation metrics of WFOFS with artificial neuronal classifier

Table 4: APIs selected by WFOFS using ANC

S. no. API no. API description

1 15 RegSetValueExW
2 23 HttpOpenRequestA
3 40 IsDebuggerPresent
4 55 CopyFileW
5 70 NtQueryMultipleValueKey
6 83 GetSystemTimeAsFileTime
7 98 CopyFileA

The Area Under Curve_Receiver Operator Characteristic (AUC_ROC) curves are generated
for FO algorithm wrapped with variants of ANC, which performed better than the comparison
algorithms. When compared to the area under the complete feature set, the area under the AUC_ROC
curve of the ANC classifier embedded with RF is smaller when employed with a reduced fea-
ture set. The AUC_ROC graphs for all the variants of the ANC classifier are represented from
Fig. 9–13. According to the literature survey, there is no feature selection algorithm using wrapper-
based firefly optimization on API call sequence data. Hence, AUC_ROC comparison based on related
work on API call sequence data is presented in Tab. 5.
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Figure 9: AUC_ROC curve of ANC + RF

Figure 10: AUC_ROC curve of ANC + DT
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Figure 11: AUC_ROC curve of ANC + SVM

Figure 12: AUC_ROC curve of ANC + KNN
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Figure 13: AUC_ROC curve of ANC + LR

Table 5: Accuracy comparison of related work

Paper, Year Classifier Feature selection Accuracy

[29], 2019 Deep graph convolutional neural network (DGCNN) - 92.44%
[30], 2022 Neural oblivious decision ensembles (NODE) - 90%
This paper Artificial neuronal classifier WFOFS 98.87%

6 Conclusion and Future Work

This work investigates a hybrid dimensionality reduction strategy for feature space using an auto-
encoder and swarm optimization. Initially, auto-encoders are given the entire feature set to investigate
patterns among the features. To identify the most influential features, the gathered knowledge is fed
into wrapper-based feature selection approaches. The machine learning model is subsequently trained
to distinguish between good and bad Android applications using the restricted feature set. In addition
to focusing on dimensionality reduction, this research proposes an artificial neuronal classifier, which
combines artificial neural networks and machine learning approaches.

The wrapper-based feature selection techniques such as WALOFS, WCSOFS & WFOFS reduced
the dimensionality of the feature space to a greater extent when incorporated with auto-encoders. Out
of ALO, CSO & FO, the FO when wrapped with ML algorithms, the KNN classifier achieved better
results in minimizing the size of the feature set to 88% having 98.29% accuracy without auto-encoders
and to 92% reduced feature set size with 98.53% accuracy using auto-encoders. The ALO, CSO &
FO when embedded with auto-encoders and wrapped with artificial neuronal classifier, the WALOFS
outperformed other algorithms in reducing feature set dimensionality to 93% while maintaining an
improved classification accuracy of 98.87%.
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We will examine the performance of other deep learning models using a variety of feature extrac-
tion processes with dynamic datasets in the future. Furthermore, we would like to put classification
systems to the test with adversarial threats based on malware imaging techniques. We would like to
learn more about how neurons in each layer contribute to the feature extractor process for malware
detection.
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