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Abstract: The purpose of this research is to construct an integrated neuro
swarming scheme using the procedures of the artificial neural networks
(ANNs) with the use of global search particle swarm optimization (PSO)
along with the competent local search interior-point programming (IPP)
called as ANN-PSOIPP. The proposed computational scheme is implemented
for the numerical simulations of the third order nonlinear delay differential
Emden-Fowler model (TON-DD-EFM). The TON-DD-EFM is based on
two types along with the particulars of shape factor, delayed terms, and
singular points. A merit function is performed using the optimization of
PSOIPP to find the solutions to the TON-DD-EFM. The effectiveness of
the ANN-PSOIPP is certified through the comparison with the exact results
for solving four examples of the TON-DD-EFM. The scheme’s efficiency is
observed by performing the absolute error in suitable measures found around
10−04 to 10−07. Furthermore, the statistical-based assessments for 100 trials
are provided to compute the accuracy, stability, and constancy of the ANN-
PSOIPP for solving the TON-DD-EFM.

Keywords: Third-order nonlinear emden-fowler system; artificial neural
network; statistical results; particle swarm optimization; numerical
experimentations; local search programming

1 Introduction

The delayed form of the differential system is considered one of the noteworthy, historical, and
significant equation, which has attracted the research community because of its massive applications.
A few of them are biological models, dynamical-based population models, communication models,
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engineering/economical models, propagation, and transport systems [1–5]. To solve the delay differ-
ential models, many researchers suggested a numerical and analytical schemes to tackle the difficulty
of the delay terms. Brunner et al. [6] proposed a numerical discontinuous Galerkin approach, and
Hsiao et al. [7] applied the Haar wavelet scheme to handle the delay factor. Wang [8] proposed
the Legendre wavelet approach to solving the delay differential scheme. Rach and Adomian [9]
proposed the Adomian decomposition scheme to solve the delay form of the differential system.
Shakeri et al. [10] solved the delay differential model with the homotopy perturbation approach.
Erdogan et al. [11] applied the finite difference numerical scheme to solve the perturbed singular delay
differential system. The generic form of the delay differential is given as [12,13]:⎧⎪⎨
⎪⎩

d3v
dε3

= g
(

ε, v(ε − t),
d
dε

v(ε − t),
d2

dε2
v(ε − t)

)
,

v(0) = a,
dv(0)

dε
= b,

d2v(0)

dε2
= c,

(1)

where g indicates the linear or nonlinear-based function and t represents the delayed factor. The sin-
gular investigations have achieved huge significance because of numerous applications in engineering,
and physical and biological studies. It is not easy to solve the singularity-based systems because of their
hard, difficult, challengeable, and grim nature. One significant, famous, singular, and historical form
is the Emden-Fowler, which has many applications, like population growth, relativistic mechanics,
pattern formation, fluid dynamics, and chemical reactors modeling. The Emden-Fowler system is
mathematically given as [14–18]:⎧⎪⎨
⎪⎩

d2v
dε2

+ u
ε

du
dε

+ g(ε)h(v) = 0,

v(0) = a1,
dv(0)

dε
= a2,

(2)

where u ≥ 1 indicates the shape vector and the Emden-Fowler model given in Eq. (2) can become
the Lane-Emden for g(ε) = 1. The Lane-Emden is one of the singular systems that derived a few
centuries ago by the astrophysicists J. H. Lane and the R. Emden in their pioneer work. This prominent
model designates the inner polytropic of structure stars, cluster galaxies, radiative cooling and model
based on gas cloud. The Lane-Emden singular system has various applications in the isotropic based
continuous media [19], physical scientific fields [20], density field of gaseous stars [21], dusty fluid
systems [22], morphogenesis [23], stellar arrangement models [24], oscillating magnetic systems [25],
catalytic diffusion reactions [26], isothermal gas sphere systems [27], mathematical sciences [28],
electromagnetic theory [29] and quantum as well as classical mechanics [30]. The Lane-Emden model
is given as:⎧⎪⎨
⎪⎩

d2v
dε2

+ u
ε

du
dε

+ h(v) = 0,

v(0) = a1,
dv(0)

dε
= a2.

(3)

The research community presented the solutions of the above model by applying different
techniques. A few methods for presenting the solutions of the Lane-Emden system are the Adomian
decomposition scheme suggested by Wazwaz and Shawagfeh [31,32]. Adel et al. [33] solved the
pantograph Lane-Emden model using the Bernoulli collocation method. Abdelkawy et al. [34] solved
the singular coupled functional Lane–Emden system using the famous spectral collocation scheme.
Parand et al. [35] introduced a numerical approach for the singular equation of the Lane-Emden type.
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Using stochastic procedures, Sabir et al. [36] presented a nonlinear singular functional differential
system.

In this study, the TON-DD-EFM is numerically discussed through the artificial neural networks
(ANNs) by using the optimization procedure based on the global particle swarm optimization (PSO)
aided with the local search-based interior-point programming (IPP), i.e., ANN-PSOIPP. The singular
models are assumed to be tough by using the traditional and conventional schemes, like Runge-
Kutta, Adams numerical method, Milne-Predictor-Corrector scheme, and many others. However, the
researcher’s alternative and best choice are to solve the singular-based models using procedures based
on the ANNs. There are several applications where ANNs have been exploited to solve many models
in recent years; a few of them are the multi-singular higher-order Emden–Fowler system [37–43],
nonlinear SIR dengue fever model [44], HIV infection system [45,46], third-order singular Emden–
Fowler equation [47], SITR system [48], second kind of singular model [49], mosquito dispersal model
[50] and many more [51–54]. By keeping the worth of these models, authors are interested in exploiting
the singular TON-DD-EFM, which has never been solved before by using the stochastic ANN-
PSOIPP. The general forms of the singular TON-DD-EFM are based on the two types given as [55]:⎧⎪⎨
⎪⎩

d3

dε3
v(ε − t) + 2χ

ε

d2

dε2
v(ε − t) + χ(χ − 1)

ε2

d
dε

v(ε − t) + g(ε)h(v) = f (ε),

v(0) = α,
dv(0)

dε
= 0,

d2v(0)

dε2
= 0,

(4)

⎧⎪⎨
⎪⎩

d3

dε3
v(ε − t) + 2χ

ε

d2

dε2
v(ε − t) + χ(χ − 1)

ε2

d
dε

v(ε − t) + g(ε)h(v) = f (ε),

v(0) = α,
dv(0)

dε
= 0,

d2v(0)

dε2
= 0,

(5)

where χ is a real number always taken positive and f (ε) represents the forcing factor. The terms g(ε)

and h(v) represent the ε and v functions. The singularity appears twice at ε = 0 in the first form of the
model, represented in Eq. (4), while a single singularity occurs in the second type derived in Eq. (5).
The shape factors in the 1st type are 2χ and χ(χ −1), whereas a single shape factor χ is observed in the
2nd type. Likewise, the delayed factors in the 1st type are noticed thrice than are observed in the first,
second, and third factors. In the 2nd case, the delayed factors appeared twice in the first and second
factors. The novel features of the proposed ANN-PSOIPP are concisely briefed as follows:

• A novel design of ANN-PSOIPP is proposed to solve the singular TON-DD-EFM numerically
along with its two types.

• The detail about the delay factors, singular point, and shape factor is provided for solving the
singular TON-DD-EFM.

• The intersection of the exact/proposed solutions through ANN-PSOIPP proves the worth in
the form of convergence to solve both cases of the singular TON-DD-EFM.

• The correctness of the ANN-PSOIPP is observed through the good performance of the absolute
error (AE) for solving the singular system.

• The statistical performance is provided for the dependability of the stochastic ANN-PSOIPP
by using the “Theil’s inequality coefficient (T.I.C)”, “root mean square error (R.MSE)”, and
“Nash Sutcliffe efficiency (NSE)” for solving both the cases of the TON-DD-EFM.

• Alongside the reasonable precise solutions of the cases of the singular TON-DD-EFM, stability,
ease of understanding, robustness, specific applicability, and smooth operation are other valued
advantages.
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The other paper parts are provided as follows: Section 2 describes the procedures of the stochastic
ANN-PSOIPP. Section 3 represents the performance operators. The results detail for solving the
singular TON-DD-EFM are provided in Section 4. Finally, the conclusions are listed in the final
section.

2 Designed Methodology

The designed ANN-PSOIPP approach is separated into two steps to demonstrate the performance
of singular TON-DD-EFM. First, to introduce a fitness function (FF) for solving the model and the
hybrid of the designed ANN-PSOIPP.

2.1 Modeling Based on ANNs

Several researchers implemented the modeling based on ANNs in various investigations to
understand the nonlinear models in various fields. v(ε) indicates the results based on continuous
mapping by implementing the FF, i.e., log-sigmoid s(ε) = (1 + e−ε)

−1 is written as:

v̂(ε) =
k∑

i=1

ais(wiε + ci) =
k∑

i=1

ai

(
1 + e−(wiε+ci)

)−1
,

dv̂
dε

=
k∑

i=1

ai

d
dε

s(wiε + ci) =
k∑

i=1

aiwie−(wiε+ci)
(
1 + e−(wiε+ci)

)−2
,

d2v̂
dε2

=
k∑

i=1

ai

d2

dε2
s(wiε + ci) =

k∑
i=1

aiw2
i

(
2e−2(wiε+ci)

(
1 + e−(wiε+ci)

)−3 − e−(wiε+ci)
(
1 + e−(wiε+ci)

)−2
)

,

d3v̂
dε3

=
k∑

i=1

ai

d3

dε3
s(wiε + ci) =

k∑
i=1

aiw3
i

(
6e−3(wiε+ci)

(
1 + e−(wiε+ci)

)−4 − 6e−2(wiε+ci)
(
1 + e−(wiε+ci)

)−3

+e−(wiε+ci)
(
1 + e−(wiε+ci)

)−2

)
,

(6)

where a = [a1, a2, . . . , ak], w = [w1, w2, . . . , wk] and c = [c1, c2, . . . , ck] show the weight vectors. To solve
the singular TON-DD-EFM given in Eqs. (4) and (5), the FF in the mean square error form is given
as:

e = efit−1 + efit−2, (7)

efit−1 = efit−a + efit−b, (8)

efit−2 = efit−c + efit−d, (9)

where efit−a and efit−b are the error based FFs in the form of differential model given in the Eqs. (4) and
(5), while efit−c and efit−d represent the corresponding initial conditions (ICs), written as:

efit−a = 1
N

N∑
k=1

(
d3v̂(εk − t)

dε3
k

+ 2χ

εk

d2v̂(εk − t)
dε2

k

+ χ(χ − 1)

ε2
k

dv̂(εk − t)
dεk

+ gkh(v̂k) − fk

)2

, (10)

efit−b = 1
N

N∑
k=1

(
d3v̂(εk − t)

dε3
k

+ χ

εk

d2v̂(εk − t)
dε2

k

+ gkh(v̂k) − fk

)2

, (11)

efit−c = 1
3

(
(v̂0 − α)

2 +
(

dv̂0

dεk

)
2 +

(
d2v̂0

dε2
k

)2
)

, (12)

efit−d = 1
3

(
(v̂0 − α)

2 +
(

dv̂0

dεk

− β

)
2 +

(
d2v̂0

dε2
k

)2
)

, (13)
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where, Nh = 1, v̂k = v̂(εk), gk = g(εk), fk = f (εk) and xk = kh.

2.2 Optimization: ANN-Psoipp

For the singular TON-DD-EFM given in Eqs. (4) and (5), the design of the ANN-PSOIPP scheme
is presented.

Particle Swarm Optimization (PSO): It is an optimization process known as replacing a genetic
algorithm [56]. PSO was introduced by Eberhart and Kennedy a few decades ago, which required
short memory and was applied as an easy implementation process. PSO has been extensively applied
as an optimization technique, like optical stuff based on multilayer thin films [57], electric daily peak-
load forecasting [58], high-dimensional clustering statistics [59], prediction differential models [60],
parameter approximation of chaotic plots [61], optimization of nonlinear benchmark model [62] and
parameter estimate models in electromagnetic waves of the plane [63].

A particular candidate result for the optimization process is authenticated as a particle in space
study. The network is revealed in the PSO scheme to make a swarm. For the ideal presentation of
the approach, the primary swarms escalate larger. To adjust the parameters of the PSO, Pn−1

LB and Pn−1
GB

indicates the swarm’s position as well as velocity. The mathematical notations are written as:

Xn
i = Xn−1

i + Vn−1
i , (14)

Vn
i = ωVn−1

i − n1r1(X
n−1
i − Pn−1

LB ) − a2r2(X
n−1
i − Pn−1

GB ). (15)

In the above equations, the particle and velocity components are X i and Vi for the ith vector, ω is
an inertia weight vector. The random vectors are r1 and r2, whereas the acceleration constants are n1

and n2. The velocity element vector lies in the interval [-vmax, vmax], (vmax shows the maximum velocity).

Interior-point programming (IPP): It adjusts the PSO parameters to converge more promptly by
integrating the best global weights. These best global PSO weights are applied as an initial input. In
recent years, IPP has been applied in numerous applications, e.g., riveting simulation in aircraft parts
[64], complementarity monotone systems [65], viscoplastic fluidics system [66], dispatch system of the
financial load [67], identification of the nonlinear stable system [68], non-smooth interaction dynamics
[69], reactive optimal power flow problem with discrete control variables [70] and flow constraints in
a pressure-dependent water distribution system [71]. This study is related presenting the hybrid form
of the PSOIPP, which is pragmatic to compute the variables for the TON-DD-EFM. The pseudocode
details using the ANN-PSOIPP are given in Tab. 1.

Table 1: Optimization procedure of the ANN-PSOIPP scheme

PSO procedure starts
1: Initialization: Produce the prime swarms and adjust the optimizations.
2: Fitness Assessment: Examine the e for each particle in Eq. (7).
3: Ranking: Define the Rank of each particle using the minimum e values
4: Stopping criteria: Stop if

• Fit level proficient
• Cycles performed

(Continued)



4838 CMC, 2022, vol.73, no.3

Table 1: Continued

If the terminating criteria obtain, move to Step-5
5: Regenerate: Check the velocity and position, using Eqs. (14) and (15).
6: Improvement: Replicate till the total flights are attained.
7: Storage: Store e with the best-accomplished values and indicate the global best particle,

i.e., WPSO.
PSO process ends
PSOIPP process starts

Inputs: WPSO

Output: Best PSOIPP vectors are signified as WPSOIPP

Initialize Use WPSO as an initial point.
Terminate: The method terminates, when (e = 10−20), (TolX = TolCon = 10−20), (Iterations =

850), (TolFun = 10−21), (MaxEvals = 262000).
While (Terminate)
Fitness Evaluations: For e, use the model (6)
Modifications: Invoke the routine of fmincon.
Move to the “fitness step” by taking the enhanced weight vector.
Store: WPSOIPP, the final weight vector, time, e, generations, and function count for the present

trials.
PSOIPP process ends

3 Statistical Performance

Three statistical measures T.I.C, R.MSE, and ENSE are presented in this section. The mathe-
matical form of these operators by taking the exact and proposed solutions v and v̂ are written as:

R.MSE =
⎡
⎣

√√√√1
n

n∑
m=1

(
vm − v̂m

)2

⎤
⎦ , (16)

T.I.C =a
b

, a =
√√√√1

n

n∑
m=1

(
vm − v̂m

)2

, b =
⎛
⎝

√√√√1
n

n∑
m=1

v2
m +

√√√√1
n

n∑
m=1

v̂2
m

⎞
⎠ (17)

NSE =
{

1 − c
d

, c =
n∑

m=1

(
vm − v̂m

)2
, d =

n∑
m=1

(vm − v̄m)
2, v̄m = 1

n

n∑
m=1

vm, (18)

ENSE = 1 − NSE (19)

4 Results and Discussions

The detail for two examples of both the types of the singular TON-DD-EFM using the design
ANN-PSOIPP scheme is provided in this section. The first two examples are obtained by taking the
values of χ = 2 and t = 1 in Eq. (4), while the third and fourth examples are obtained by taking χ = 1
and t = 1 in Eq. (5).
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Example 1: Consider the singular TON-DD-EFM having triple singular points is written as:⎧⎪⎨
⎪⎩

d3

dε3
v(ε − 1) + 4

ε

d2

dε2
v(ε − 1) + 2

ε2

d
dε

v(ε − 1) + εv2 = ε7 + 2ε4 + ε + 30 − 36
ε

+ 6
ε2

,

v(0) = 1,
dv(0)

dε
= 0,

d2v(0)

dε2
= 0.

(20)

The true solution of the above Eq. (20) is 1 + ε3.

Example 2: Consider the singular TON-DD-EFM having triple singular points involving trigono-
metric ratios are given as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d3

dε3
v(ε − 1) + 4

ε

d2

dε2
v(ε − 1) + 2

ε2

d
dε

v(ε − 1) + εv2 = ε5

4
− 2

ε2
+ 6

ε
+

ε2 − 2
ε2

sin(ε − 1) − 4
ε

cos(ε − 1) + ε3 cos ε + εcos2ε,

v(0) = 1,
dv(0)

dε
= d2v(0)

dε2
= 0.

(21)

The true solution is cos(ε + 0.5ε2).

Example 3: Consider the singular TON-DD-EFM involving exponential based function is written
as:⎧⎪⎨
⎪⎩

d3

dε3
v(ε − 1) + 1

ε

d2

dε2
v(ε − 1) + εev = 12 − 6

ε
+ εe1+ε+ε3 ,

v(0) = 1,
dv(0)

dε
= 1,

d2v(0)

dε2
= 0.

(22)

The true solution of Eq. (22) is 1 + ε + ε3.

Example 4: Consider the singular TON-DD-EFM involving trigonometric based function is
written as:⎧⎪⎨
⎪⎩

d3

dε3
v(ε − 1) + 1

ε

d2

dε2
v(ε − 1) + εv2 = εsin2

ε + 2ε sin ε + ε − cos(ε − 1) − 1
ε

sin(ε − 1),

v(0) = dv(0)

dε
= 1,

d2v(0)

dε2
= 0.

(23)

1 + sin(ε) is the exact solution of Eq. (23).

The proposed procedure based on the ANN-PSOIPP is implemented for the singular TON-DD-
EFM based Examples for 100 trials to get the system optimization of the model parameters. The best
vectors are described to demonstrate the estimated forms of the TON-DD-EFM using ten neurons.
The obtained numerical standards are given as follows:

v̂1(ε) = −0.6281
1 + e−(4.500ε+5.8496)

+ 6.3747
1 + e−(2.429ε+4.0923)

− 3.2890
1 + e−(−3.4927ε−7.719)

+ . . . − 5.9939
1 + e−( 1.187ε+0.0367)

, (24)

v̂2(ε) = 8.6741
1 + e−(3.964ε−13.084)

+ 8.3218
1 + e−(−2.947ε−11.536)

+ 1.4436
1 + e−(−20.00ε+10.213)

+ . . . − 9.9861
1 + e−( 5.377ε−7.163)

, (25)

v̂3(ε) = 1.5221
1 + e−(−1.0355ε+5.657)

+ 5.5844
1 + e−(−0.805ε−2.2374)

+ 0.4464
1 + e−(1.8942ε+5.7719)

+ . . . − 5.2812
1 + e−( −2.0613ε−2.5638)

, (26)

v̂4(ε) = −15.5417
1 + e−(14.063ε−15.968)

+ 6.999
1 + e−(−6.825ε−9.814)

+ 7.3535
1 + e−(0.942ε−1.5638)

+ . . . + 1.0763
1 + e−( −0.2511ε+14.2354)

. (27)
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Optimization is performed for solving the singular TON-DD-EFM based examples 1-4 using the
combination of the PSOIPP for 100 runs. Figs. 1a–1d signifies the optimized weight vectors of ANNs
to solve each example of the singular TON-DD-EFM, and these weights are given in Eqs. (24)–(27).
The result comparisons for all the examples of the singular TON-DD-EFM based on the obtained and
exact solutions are provided using the proposed ANN-PSOIPP scheme in Figs. 1e–1h. The results are
overlapped for the TON-DD-EFM, which specifies the exactness of ANN-PSOIPP. For the level of
accuracy, the absolute error (AE) is calculated in Fig. 2. The second portion of Fig. 2 specifies the
performance procedures of T.I.C, ENSE, and R.MSE, for each example of the singular TON-DD-
EFM. It is indicated that the RMSE lies as 10−04 to 10−06. The TIC measures for each Example lies
10−08 to 10−10 , and the ENSE for each example lie 10−06 to 10−08, whereas, for example four the ENSE is
found 10−10 to 10−12. These achieved results state the good tendency of routine using different measures
for TON-DD-EFM.

Statistics presentations using 100 executions for the proposed ANN-PSOIPP scheme using the
analysis of fitness, RMSE, TIC, and ENSE together with the histogram (Hist) plots are provided in
Figs. 3–6 for solving the singular TON-DD-EFM. It is evident in the figures that the maximum values
of these statistical operators lie in suitable ranges for solving all examples of the singular TON-DD-
EFM.

The convergence inquiries of the proposed ANN-PSOIPP scheme are shown further for global
minimum and median performances of ‘G-FIT’, ‘G-TIC’, and ‘G-ENSE’ in Tab. 2. The Min G-FIT,
G-TIC and G-ENSE lie 10−09-10−10, 10−09-10−11, 10−07-10−11, while the Med G-FIT, G-TIC, and G-
ENSE were found as 10−06 to 10−08, 10−05 to 10−08, 10−02 to 10−06 for solving all examples of the sin-
gular TON-DD-EFM using the proposed ANN-PSOIPP scheme. The relative optimal performances
enhance the accuracy of the ANN-PSOIPP scheme.

The complexity of the ANN-PSOIPP scheme is observed over the generations, execution time
and count of functions. Complexity investigations for each example of the singular TON-DD-EFM
are provided. Tab. 3 shows the average generations, implementation time, and function counts are
348.52201, 5925.55750, and 113290.64250, for each example of the singular TON-DD-EFM using
the proposed ANN-PSOIPP scheme.

Figure 1: (Continued)



CMC, 2022, vol.73, no.3 4841

Figure 1: Best weights and results comparison using the ANN-PSOIPP scheme for the TON-DD-EFM

Figure 2: AE and performance measures using the ANN-PSOIPP scheme for solving all examples of
the singular TON-DD-EFM
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Figure 3: Statistics measures of ANN-PSOIPP over Fit values together with the histogram for the
TON-DD-EFM

Figure 4: (Continued)
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Figure 4: Statistics measures based on ANN-PSOIPP through R.MSE values for the plots of the
histogram for the TON-DD-EFM

Figure 5: Statistics measures for ANN-PSOIPP over TIC values using the plots of the histogram for
the TON-DD-EFM
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Table 2: Global measures for the TON-DD-EFM

Problem G-FIT G-TIC G-ENSE

Min Med Min Med Min Med

1 3.6451E-09 2.7317E-06 6.0194E-09 5.0914E-05 4.9722E-08 8.0258E-03
2 1.4088E-10 2.5963E-06 2.2477E-09 6.9910E-07 1.0648E-07 1.2287E-02
3 5.2131E-10 2.4361E-07 7.2487E-11 2.7574E-07 1.1618E-08 1.3322E-05
4 1.0169E-10 1.0808E-08 2.9898E-10 6.0008E-08 6.8193E-11 1.6666E-06

Figure 6: Statistics measures for the ANN-PSOIPP over ENSE values for the TON-DD-EFM

Table 3: Complexity performance for the TON-DD-EFM

Example Generations Implementation time Function counts

Mean SD Mean SD Mean SD

1 308.41584 101.38361 5850.68000 1903.06119 100782.91000 20986.77951
2 520.50647 1896.54312 6021.64000 1726.61116 103962.76000 22631.48651
3 284.61720 66.05547 5946.71000 1892.85971 124857.60000 26124.96281
4 280.54852 65.36187 5883.20000 1974.41039 123559.30000 26577.49751
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5 Conclusion

The present study shows that a precise, stable, accurate, and reliable ANN-PSOIPP scheme is
accessible for the third-order delay differential Emden-Fowler model by applying the continuous
mapping and approximation capability of ANNs. The optimization of the fitness/merit of these
networks is obtained by applying the global and local search capabilities of PSO and the IPP approach.
The ANN-PSOIPP scheme is viably executed to solve four examples of the third kind of singular
delay differential singular system. The precise performances are examined using the numerical ANN-
PSOIPP scheme for singular delay differential Emden-Fowler system based on AE with reliable
precision of about 5-7 decimals of correctness from the true solutions. The statistical explanations
are also obtainable in the form of Min, Mean and Median actions to authenticate the robustness of
the numerical ANN-PSOIPP scheme for the singular model.
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