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Abstract: Hazardous incidences have significant influences on human life,
and fire is one of the foremost causes of such hazard in most nations. Fire
prediction and classification model from a set of fire images can decrease the
risk of losing human lives and assets. Timely promotion of fire emergency
can be of great aid. Therefore, construction of these prediction models is
relevant and critical. This article proposes an operative fire prediction model
that depends on a prediction unit embedded in the processor UDOO BOLT
V8 hardware to predict fires in real time. A fire image database is improved
to enhance the images quality prior to classify them as either fire or non-
fire. Our proposed deep learning–based Very Deep Convolutional Networks
Visual Geometry Group (VGG-16) model (Parallel VGG-16) is an enhanced
version of the VGG-16 model, by incorporating parallel convolution layers
and a fusion module for better accuracy. The experimental results validate
the performance of the Parallel VGG-16 which achieves an accuracy of 97%,
compared to the compared state-of-the-art models. Moreover, we integrate
the prediction module into a UDOO BOLT V8 computer, which precisely
controlled the fire alarm so that it can cautious people from fire in real time.
In this paper we propose a complete fire prediction model using a camera
and the UDOO BOLT V8 embedded system. Our experiments validate the
effectiveness and applicability of the proposed fire model.
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1 Introduction

We live in a contemporary dynamic era with a lot of technology related devices. The volume of
fire related incidence is increasing due to demand for dangerous products, which can originate life
threatening hazards leading to loss of lives and assets [1]. Many countries such as the United states
and Australia suffer from outdoor huge fires and usually seek well-developed fire detection automated
models [2–5].
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Fires, if not detected in an early phase, will lead to human life and monetary losses. Forest and
outdoor fires are very dangerous and can highly spread fires that will need several years for loss
restoration. Therefore, it is vital to precisely and timely detect such fires [1–3].

Local sensors [3–6] are the frequently utilized fire detecting methods for screening temperature
and smoke and other vital fire features. In temperature sensors, the authors in [7] presented a sensor
set to rate the fire phases by measuring the heat variance between the different surfaces internally and
externally. The authors in [8] studied the close and distant field heat sensor set to identify fire phases.
Authors in [9] utilized electronic and heat-couple temperature sensors to detect heated surface in link
to fire phases. Gas sensors are described in [9] where gas and smoke detection are performed by the
output disparity of semiconductor devices, infrared and calorimetric devices. Using fire blob sensing,
both emission and hue features are used to form heat and spatial fire sensing methods [8–10]. Smoke
is considered a nonvisual measure with pyrolysis, and blobs visual features are captured by cameras
to detect blob movement. Smoke detection systems that identify fire phases are discussed in [11–14].
Usually, the flame sensing models can identify early-stage fires with fewer false negatives. Nevertheless,
as characteristic founded models, the current local sensors yield great false negatives for complicated
fire situations.

Paralleled to local sensors, image models for fire prediction and classification could efficiently
decrease the impact of the external environment. At the breakout of a fire, smoke delivers well-timed
prospective data in contrary to fire flames. Consequently, operative smoke detection models have a
significant part in fire classification and detection. Computerized fire detection models are mainly
machine learning models that use mined features for classifiers learning phase such as random forest
model, and support vector machine system [15–17]. Nevertheless, most current research on intelligent
fire detection models usually uses single type of smoke or blob extraction from captured videos.
It is frequently hard to detect extra complex fire circumstances. Also, many fire detection models
only utilize images that include smokes only in an idyllic background with no noises. Video frame
segmentation is the main algorithm in image and video processing, which is of high importance to
automated vision procedures. Indeed, frame segmentation was comprehensively investigated in visual
recognition processes, such as I-ray image segmentation, surveillance imagery, etc. Authors in [18]
joined frame segmentation and regression to identify fluctuations in radar videos. Authors in [19],
employed fuzzy C-means clustering technique for magnetic resonance classification, and then mined
feature from the Magnetic resonance (MR) images to for classification. C-means algorithm was also
used to extract pedestrian edge as an objects in a complicated scenario and then predictors are
used for pedestrian identification [20]. A variation detection intelligent models, for aerial vehicle
movement detection, were created using fuzzy c-means algorithm to choose training features [21].
Smoke detection displayed a prominence part in fire identification. Authors in [22] proposed a
smoke identification model using an iterative classification support vector machine (SVM) model by
extracting spatial features of fire regions. Nevertheless, the images segmentation technique, they used,
mixed and distorted the detection accuracy. To extract spectral features from fire areas, the authors
in [23], segmented fire areas by Slice-Spectral model, then computed the local binary features such
as variant features. Though, the extracted features were found to be not robust for moveable fire
situations. The authors in [24], established a Gaussian feature mixture algorithm using hue-intensity-
pair segmentation for the preprocessing of fire videos with dynamic progress features of various fire
phases. Authors in [23] defined warm air imaging by fuzzy C-means algorithm for early stage detection.
In [24], they employed motion data and analyzed it using Markov random model for fire segmented
images.
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With the speedy advance of deep learning models [25–28], many studies investigated deep learning
models for classification for various applications [28–30]. Lately, the authors in [25] presented a smoke
concentration prediction neural network. The abundant semantic data needed by intelligent encoder-
decoder networks are used to compute smoke concentration from fire videos [26]. In [27], the authors
used an energy- efficient neural network for fire and flame identification, and semantic considerate
computation of the fire scenario. The authors in [28] joined the pixel and object-level prominent neural
architectures to mine the smoke feature maps utilizing video frame sequence. High efficient region
convolutional neural network (CNN). Long short-term memory neural network are utilized to identify
the alleged areas of fire and predict a Fire or Non-fire in a short-time [26]. In the meantime, deep
learning models was used for fire prediction modules using generic algorithms [17]. The authors in
[18] presented a video smoke identification model by incorporating Kalman coefficient, hue analysis
and image integration. Flame labeling using shape and color features were used for early stage alarm in
fire detection models. The authors in [28] established a bag-of-features function to produce a random
forest prediction model for high accuracy classification of the plane features to identify fire candidate
regions.

Therefore, a novel fire detection and classification deep learning model is proposed by integrating
a deep real time fire prediction model on UDOO BOLT V8 hardware. The experimental results prove
that our model outperforms several state of the art models in accuracy and time.

The rest of this article is organized as follows: Section 2 depicts the problem statement and the
methodology details of the proposed model. Experimental are depicted in Section 3. Conclusion are
depicted in Section 4.

2 Problem Statement

A deep real time fire prediction model on UDOO BOLT V8 should satisfy these requirements:

• A fire video frame from the dataset captured in real time should be detected as Fire or Non-fire.
• For real-time fire alarm system, an alarm of fire should be generated automatically and

transferred to the appropriate authority.
• The model should be accurate and with high practical value, especially to forest fires. These

fires can cause environmental hazards where life losses can reach an extraordinary threatening
level. Fire detection is one of the key element in receiving government venture.

Our research faced these challenges by:

• Presenting a real time accurate fire detection model to classify the fires in video frames with
high precision reducing false positives and negatives.

• Proposing an embedded hardware module in the high-performance UDOO BOLT V8 hardware
to efficiently detect fires and send alarms in real time.

• Testing the fire prediction model and comparing its accuracy to state-of-the-art models.

2.1 The Automatic Fire Prediction Model

Previous research studies, in the last years, are used feature extraction models for fire classification
and detection. The main issues with these models are their high time requirements for feature
extraction and their low accuracy for fire detection. These models also produce high number of false
positives and negatives particularly in images with shadows, noises and fluctuating illuminations, and
fire same-hue objects. To face these matters, we comprehensively investigated deep learning models for
early stage fire detection. Inspired by the current advances in embedded systems processing aptitudes
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and ability of deep feature extraction, we studied many deep neural networks to enhance the fire
detection performance and optimize the false positives and negatives rate. An outline of our platform
for fire detection in surveillance cameras architectures is depicted in Fig. 1.

Our proposed fire prediction model is intended to perform the following processes:

• Capture an image every few seconds and submit it to the model.
• Detection of fire or no-fire in real time.
• Delete the image of non-fire or send an alarm if the image is classified

To recognize these processes, the proposed model will have two central modules:

• Fire prediction model on UDOO BOLT V8 hardware
• Surveillance module and servo motor hardware

In this paper, a proposed parallel deep neural network presented for Fire/Non-fire classification
and a 16 GB UDOO BOLT V8 model is embedded to control the surveillance camera, which captures
videos, and the servo motor. In Section 3 the dataset description and implementation details are
described. In Section 4, experimental results are demonstrated. Conclusions and limitations are
depicted in Section 5.

Figure 1: Framework of the proposed model

2.2 Fire Detection Module

Fire detection module is a key constituent of the whole fire detection model which regulates the
effectiveness of the model. We present a deep learning CNN utilizing VGG-16. Features of the VGG-
16, the utilized datasets, and the experimental setting are described in the following sub-sections.

2.2.1 VGG-16 Deep Convolutional Neural Network

Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG-16) [16] were intro-
duced in 2015 using ImageNet dataset detection and segmentation. There are various types of VGG-
16 networks with diverse layer structures such as VGG-21, VGG-34, VGG-64. In which the network
VGG is trailed by the layers count. VGG-16 is a deep CNN that has many convolutional/pooling and
output layers. A challenge has been encountered when designing a deep CNN with many layers is the
converging Gradient which restricts the training process as depicted in Tab. 1.



CMC, 2022, vol.73, no.3 6241

VGG-16 is a collection of blocks, built with many convolutional/pooling and output layers. VGG-
16 network is similar to ResNet model [26] with multiple stack convolutions layers. The main concept
is to avoid the current layer by connecting it to the preceding layer. The concept of the feedback
block is to feed the layer input to the convolutional-pooling-convolutional layers to compute G(I) and
Z(I) such that Z(I) = G(I) + I (Eqs. 1 and 2). The training process is superior if features extracted
from the preceding layers are summed. VGG-16 utilizes a feed forward network to go through several
convolutional layers. As depicted in Tab. 1.

Table 1: VGG-16 network layers

Layer # Layer type Properties

1 Input Layer 256, 256, 3 images
2 First Convolutional Layer 1:64 filters
3 First Pooling Layer Max pooling
4 Second Convolutional Layer Input Frame: (112,112)

1:128 filters

5 Second Pooling Layer 3 × 3 Maxpooling
6 Third Convolutional Layer Input Frame: (56,56)

1: 256 filters

7 Third Pooling Layer Maxpooling
8 Fourth Convolutional Layer Input Frame: (28, 28)

1: 512 filters
9 Fourth Pooling Layer Maxpooling
10 Fifth Convolutional Layer Input Frame: (14, 14)

1: 512 filters
11 Fifth Pooling Layer Maxpooling
12 Fusion module
13 First Fully Connected (FC1) Layer 2048 neurons, producing a (1, 2048)

feature vector
14 Second Fully Connected (FC2)

Layer
2048 neurons producing a (1, 2048)
feature vector

15 Third Fully Connected (FC3) Layer 2048 neurons producing a (1, 2048)
feature vector

16 Classifier Softmax
17 Output Layer Two output classes:

1. Fire
2. Non-Fire
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The value Z(I) is the predicted solution, while, the value of G(I) is the ground truth (the labeled
data item). Z(I) is probably equal to or nearly equal to G(I). G(I) is computed from the input I by
performing the following equation:

I → W1 → Relu → W2 (1)

where W1 and W2 are specified weights

and Z(I) is computed by:

Z (I) = G(I) + I → ReLU (2)

The VGG-16 is designed on the network depicted in Fig. 2.

Figure 2: The parallel VGG-16 network with parallel convolution and pooling layers with fusion layer

The Parallel VGG-16 CNN network has zero-padding layers, five convolution layers, 2 MaxPool-
ing layers, and several fully connected (FC) layer.

The FC layers employ Softmax classifier for input normalization into a probability distribution
function and then perform the prediction and classification the input frame into a labelled data item.
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3 Dataset Description and Implementation Details
3.1 Dataset Description

In the model, we use a public dataset (Fire-Dat) that is depicted in [15]. It is composed of videos
of indoor fires, outdoor fires and no-fire at different day time periods (day, night, dark and semi dark).

The dataset contains 6200 frame sequence in set of 5, of several sizes. The frames are labelled as
Fire or Non-fire by three specialists. To compute the agreement consensus value between the three
labels, we use kappa coefficient [13] as depicted in Eq. (3).

kappa = Cs (a) − Prob (e)
1 − Prob (e)

(3)

where, Cs (a) is the consensus agreement value computed from the input expert values, and Prob (e) is
the expected consensus likelihood. Then kappa coefficient of the used public dataset Fire-Dat labeling
is equal to 0.97 which depicts a high value of agreement consensus for the specialist labeling of the
three labels for the same fire frame-set.

In the following phase, the Fire-Dat dataset is divided into three subsets 70% for training, 15%
for testing and 15% for validation.

These frame-sets are transformed into 256 × 256 × 3 frames, and are associated with the defined
label in the corresponding folders. Fig. 3 shows some video frames in fire training and evaluation
folders with size 256 × 256 × 3 pixels.

Figure 3: Video frames from the Fire-Dat dataset, the first rows in Figs. 3(a, b) are frames including
fires, the last rows in Figs. 3(a, b) do not include fires

The distribution statistics of the dataset, according to Fire and Non-fire, and the distribution of
the training, validation and testing datasets, are depicted in Tabs. 2 and 3, respectively. Distribution of
fire sizes in the Fire-Dat dataset is depicted in Fig. 4.
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Table 2: Statistics of dataset according to fire/non-fire distribution

Type of frame Number of frame %

Fire 3235 52,19%
Non-Fire 2965 47.81%

Total 6200 frames

Table 3: Distribution of subsets

Subset Number of frames %

Training subset 4340 70%
Validation subset 930 15%
Testing subset 930 15%

Figure 4: Distribution of fire sizes in the Fire-Dat dataset

3.2 Experiment Setting

The proposed fire detection model is executed as an embedded UDOO BOLT V8 hardware using
the HP Pavilion 27-d1000, CPU: i7 (3.80 GHz), GPU: Pavilion GTX 1050 8 GB, RAM: 32 GB. The
simulation factors of the VGG-16 model are depicted in Tab. 4.
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Table 4: The simulation factors of the proposed fire detection model

Parameter Description

Input image size 256 x 256 x 3
Batch 64
Number of Epochs 200
Activation Rectified linear activation function (Relu)
Classifier Softmax

3.3 UDOO BOLT V8 Model Implementation

The model uses UDOO BOLT V8 on a 16 Gigabyte board with 64-bit Operating system. UDOO
BOLT V8 board is united with UDOO BOLT V8 Camera and Node-RED service. The camera has a
microcontroller which connects with the UDOO BOLT V8 through the MQTT controller. The model
will capture images every 5 s which are fed to the processing and prediction modules. Based on the
classification, UDOO BOLT V8 will rotate the servo motor to capture more images from different
directions to be a set of 5 images and will repeat the classification by changing the utilized parameters
weights.

UDOO BOLT V8 is employed in our model because of its benefits, such as:

General Features UDOO BOLT V8 is a high performance configuration.
Four cores each of 64 bits, Broadcom BCM2711, 64-bit SoC
@ 1.5 GHz, Memory (RAM) 16 GB, 40 pins input/output
(GPIO) with easy integration

CPU AMD V1605B Four Core @ 3.0 ghz (3.6 ghz Boost)
Operating System Windows 10 X86 64bit
Microcontroller XT32U4

Fig. 5. Depicts the parts of the parallel fire detection model:

• UDOO BOLT V8 Unit: comprises of a Camera with image procurement module; UDOO BOLT
V8 board and Servo motor. This unit obtains the classification results from the deep learning
unit and if the result is Fire, the servo motor will rotate to take images from different directions
and return them back to the deep learning module.

• Deep learning module: is implemented in Python 3, liable for acquiring, analysing and classi-
fying fire images.

4 Experimental Results

We performed experiments with the proposed Parallel VGG-16 and performed comparison with
the start-of-the-art models, such as Long Short Term Memory Networks, Recurrent Neural Networks,
Generative Adversarial Networks, Radial Basis Function Networks and Multilayer Perceptrons.
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Experiment results employing Parallel VGG-16 are depicted in Tabs. 5 and 6.

Figure 5: Training and validation using Parallel VGG-16

Table 5: Experiment results using Parallel VGG-16

Parameter Description

Experiment result accuracy 97%
Test loss 4%
Deep learning Parallel VGG-16 Training time 640 min
epochs 80
Average time per epoch 8 min

Table 6: Performance evaluation of fire detection

Model Mean average
precision mAP %

mAP % for fire mAP % for
no-fire

Run time
(seconds)

Long Short Term Memory
Networks [12]

75.6 71.6 77.9 23.6

Recurrent Neural Networks
(RNNs) [15]

73.9 69.7 76.8 33.5

Generative Adversarial
Networks [23]

74.7 70.2 79 18.9

Radial Basis Function
Networks [20]

80.5 75 82 26.5

Multilayer Perceptrons [13] 84.7 77 87 22.4
Our proposed model ( 3
parallel blocks)

95.9 93.3 97 13.5

The training and validation accuracy and loss using VGG-16 are shown in Fig. 5.

The deep learning training model takes 640 min with 80 epochs, the mean training time for each
epoch takes 8 min. The accuracy attained is high with 97.4% accuracy.



CMC, 2022, vol.73, no.3 6247

We employed our Parallel VGG-16 with different number of parallel blocks for evaluation of
accuracy and time comparisons. The parallel VGG-16 underwent deep training on a the mentioned
public dataset [26]. Different parallel blocks models contributing to the experiment are:

• Serial 1-block VGG model with a single block of convolutional/Maxpooling layers followed by
FC/Softmax classifier layers (no fusion layer)

• The 3-parallel block parallel VGG model encompasses two parallel convolutional/Maxpooling
layers blocks followed by fusion layer and then FC/Softmax classifier layers.

• The 5-parallel block parallel VGG model encompasses two parallel convolutional/Maxpooling
layers blocks followed by fusion layer and then FC/Softmax classifier layers.

• The 7-parallel block parallel VGG model encompasses two parallel convolutional/Maxpooling
layers blocks followed by fusion layer and then FC/Softmax classifier layers.

• The 10-parallel block parallel VGG model encompasses two parallel convolutional/Maxpooling
layers blocks followed by fusion layer and then FC/Softmax classifier layers.

Experimental results, of different parallel blocks configuration, are shown in Fig. 6. The results
display the compromise between accuracy and time complexity using a weighted metric AccT as
depicted in Tab. 7.

AccT is computed as follows:

AccT =
Accuracy

100
+ Fusiontime

Classification time
(4)

From the results in Tab. 5 it is seen that with 5 blocks there is a compromise between accuracy and
classification time. Fire detection experiment results are averaged over 200 runs for various blocks and
are depicted in Tabs. 7 and 8.

Table 7: The comparison of proposed model and nominate models

Model Epochs Prediction
accuracy

Fusion time (s) Classification
time

AccT

1-Block serial VGG 80 83% 0 8 0.104
3-Block Parallel VGG 80 89% 1.5 13.7 0.174
5-Block Parallel VGG 80 92% 3.2 20.5 0.201
7-Block Parallel VGG 80 97% 4.7 23.5 0.241
10-Block Parallel VGG 80 98.9% 8.7 29.9 0.326
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Table 8: Detection experiment results averaged over 200 runs for our proposed model with different
number of parallel blocks

Model Accuracy % Sensitivity
%

Specificity
%

Fire
detection
accuracy %

No-fire
detection
accuracy %

Our proposed
model: one block

89.67 87.37 87.92 90.17 87.78

Our proposed model:
3 parallel blocks

91.32 91.62 91.18 92.59 92.47

Our proposed model:
5 parallel blocks

93.41 91.33 91.93 94.91 91.91

Our proposed model:
7 parallel blocks

95.42 93.32 93.88 96.99 93.87

Our proposed model:
10 parallel blocks

98.8 95.4 96.2 97.7 96.8

Figure 6: Area under the curve comparison

Some real-time images on fire prediction are shown in Fig. 7.

We investigated the models with the 5, 7 and 10 parallel blocks with the greatest accuracy, including
5-block parallel VGG, 7-block parallel VGG-16, and 10-block parallel VGG-16. Fig. 8 depicts the
confusion matrices showing the false positives and negatives which are decreased highly using our
proposed model.
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Figure 7: Experimental results on real images in the dataset with accuracy percentage

Predicted cases
Positive Negative

Actual casesPositive 482 9

Negative 10 382

Predicted cases
Positive Negative

Actual casesPositive 487 4

Negative 6 386

Predicted cases
Positive Negative

Actual casesPositive 489 2

Negative 3 389

(a) 5-Block Parallel VGG (b) 7-Block Parallel VGG (c) 10-Block Parallel VGG-16

Figure 8: Confusion matrices using 7% of the images in the dataset for 5, 7 and 10 block parallel
VGG-16 models
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5 Conclusion

Fires, if not detected in an early phase, will lead to human life and monetary losses. Forest and
outdoor fires are very dangerous and highly spread fires that will need several years for loss restoration.
Therefore, it is vital to precisely and timely detect such fires. This research proposed an intelligent
fire prediction model that combined deep learning with embedded system. This article proposes an
operative fire prediction model that depend on a prediction unit embedded in a UDOO BOLT V8
hardware to predict fires in real time. A fire image database is improved to enhance the images quality
prior to classify them as either fire or non-fire. Our proposed deep learning–based VGG-16 model
(Parallel VGG-16) is an enhanced version of the VGG-16 model, by incorporating parallel convolution
layers and a fusion module for better accuracy. The experimental results validate the performance
of the Parallel VGG-16. Our model achieves an accuracy of 97%, as compared to the state-of-art
models. Moreover, integrating the prediction module into a UDOO BOLT V8 computer, precisely
controls the fire alarm so that it can cautious people from fire in real time. In this paper, we proposed
a complete fire prediction model using a camera and the UDOO BOLT V8 embedded system. We
employed our Parallel VGG-16 with different number of parallel blocks for evaluation of accuracy
and time comparisons. The parallel VGG-16 CNN underwent deep training on the mentioned public
dataset. Our experiments validated the effectiveness and applicability of the proposed fire model.
We investigated models with the 5, 7 and 10 parallel blocks with the greatest accuracy, including 5-
block parallel VGG, 7-block parallel VGG-16, and 10-block parallel VGG-16. The results depicted
the confusion matrices showing the false positives and negatives which are decreased highly using our
proposed model.

Limitations of the proposed model is the cost of the UDOO BOLT V8 processor as it is expensive
and might not be appropriate to be installed in households. Other embedded system can be employed
and validated by experiments. In future extension we can use multiple cameras instead of one rotating
camera for better performance. Although, this can be suitable for big incorporations but it will be
costly for typical households.

Acknowledgement: We would like to thank Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2022R120), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Funding Statement: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022R120), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] P. Foggia, A. Saggese and M. Vento, “Real-time fire detection for video-surveillance applications using

a combination of experts based on color, shape, and motion,” IEEE Transaction on Circuits Systems and
Video Technology, vol. 25, no. 1, pp. 1545–1556, 2019.

[2] K. Muhammad, J. Ahmad and S. W. Baik, “Early fire detection using convolutional neural networks during
surveillance for effective disaster management,” Neurocomputing, vol. 288, no. 2, pp. 30–42, 2019.

[3] J. Choi and Y. Choi, “An integrated framework for 24-hours fire detection,” in Proc. of European Conf. of
Computer Vision, Paris, France, pp. 463–479, 2020.



CMC, 2022, vol.73, no.3 6251

[4] X. Zhang, Z. Zhao and J. Zhang, “Contour based forest fire detection using FFT and wavelet,” in Proc. of
the Int. Conf. on Computer Science and Software Engineering, Hubei, China, pp. 760–763, 2019.

[5] C. Liu and N. Ahuja, “Vision based fire detection,” in Proc. 17th Int. Conf. of Pattern Recognition, Athens,
Greece, pp. 134–137, 2019.

[6] T. Chen, P. Wu and Y. Chiou, “An early fire-detection method based on image processing,” in Proc. Int.
Conf. of Image Processing (ICIP), Cleveland, Ohio, pp. 1707–1710, 2020.
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