
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.030995

Article

TrustControl: Trusted Private Data Usage Control Based on Security
Enhanced TrustZone

Hong Lei1,2,3, Jun Li1,*, Suozai Li4, Ming Huang4, Jieren Cheng5, Yirui Bai1, Xinman Luo1 and
Chao Liu6

1School of Cyberspace Security (School of Cryptology), Hainan University, Haikou, 570228, China
2SSC Holding Company Ltd., Chengmai, 571924, China

3Oxford-Hainan Blockchain Research Institute, Chengmai, 571924, China
4China Electronics Corporation Hainan Joint Innovation Research Institute Co. Ltd, Chengmai, 571924, China

5School of Computer Science and Technology, Hainan University, Haikou, 570228, China
6The Blockhouse Technology Limited, Oxford, OX2 6XJ, United Kingdom

*Corresponding Author: Jun Li. Email: junli_1632021@163.com
Received: 07 April 2022; Accepted: 07 June 2022

Abstract: The past decade has seen the rapid development of data in many
areas. Data has enormous commercial potential as a new strategic resource
that may efficiently boost technical growth and service innovation. However,
individuals are becoming increasingly concerned about data misuse and leaks.
To address these issues, in this paper, we propose TrustControl, a trusted
data usage control system to control, process, and protect data usage without
revealing privacy. A trusted execution environment (TEE) is exploited to
process confidential user data. First of all, we design a secure and reliable
remote attestation mechanism for ARM TrustZone, which can verify the
security of the TEE platform and function code, thus guaranteeing data
processing security. Secondly, to address the security problem that the raw
data may be misused, we design a remote dynamic code injection method to
regulate that data can only be processed for the expected purpose. Our solution
focuses on protecting the sensitive data of the data owner and the function
code of the data user to prevent data misuse and leakage. Furthermore,
we implement the prototype system of TrustControl on TrustZone-enabled
hardware. Real-world experiment results demonstrate that the proposed Trust-
Control is secure and the performance overhead of introducing our prototype
system is very low.

Keywords: TrustZone; data usage control; privacy; security

1 Introduction

In recent years, the development of digitization has produced a large amount of data. Data is
continuously produced, collected, shared, analyzed, and traded. However, these rapid changes are
having a serious effect on data usage and have attracted huge attention. Once the data owner’s data

http://dx.doi.org/10.32604/cmc.2022.030995
mailto:junli_1632021@163.com

5688 CMC, 2022, vol.73, no.3

is processed as a valuable data resource, it needs to be ensured that the data is not leaked, misused,
freely distributed, etc. Otherwise, it is difficult for the data owner to provide sensitive data to the data
user, and therefore the data user cannot obtain high-quality services. Given the growing importance
of data and the reliance on private data, a flexible and configurable data usage control is needed.
Data usage control aims to process user private data expectedly to ensure the authenticity of data
processing results and reduce the risk of data leakages and misuses. Therefore, the ability to use
user-defined and validated function code for data processing is essential in data usage control. The
research community has done a lot of work to protect sensitive data security and privacy. In terms of
addressing data usage conditions, there are data anonymization [1–3] and various data access control
methods which include access control in internet of things [4,5], access control in cloud environments
[6–8]. To solve the purpose of data usage, many privacy-protection system architectures can be found
between decentralized data privacy with blockchain [9–11], data use policy [12], privacy property
[13], and data usage control [14]. In the existing data usage control methods, once the data owner
authorizes the user to obtain access to the data, the raw data is directly delivered to the user. However,
under normal circumstances, the data owner has almost no authority to control how the data user
will use the data. Therefore, the existing data usage control methods will expose the raw data of
the data owner and cannot effectively guarantee the security and privacy of data [15]. Fortunately,
as emerging technologies, hardware-enforced trusted execution environment (TEE) techniques are
attracting academic attention in terms of improving the reliability, privacy, and security of data and
code. There have also been studies focusing on secure data processing by levering TEE. For example,
reference [16] mainly uses TEE to protect the data collection process. Reference [17] proposed a new
blockchain-based data trading ecosystem. In this ecosystem, TEE is used for securing data processing.
Reference [18] uses TEE to implement a trusted off-chain contract execution engine. However, in these
studies, risk refers to the authenticity of the data processing code and the trustworthiness of the results.
TEE is considered secure by default and is extended to believe that the function code that processes
user data in TEE also performs as expected by the data user. Such solutions may face the challenge that
the data processing code in TEE is not reliable or does not process data in the way that the data user
expects. Hence, the mechanism to perform a specific data process operation should be verified before
usage, in case of inaccuracy of data processing results. The hardware supports for TEE is one of the
more practical solutions for data privacy protection. TrustZone has been recognized as a reliable data
security protection and processing technology on the ARM platform [19,20]. It implements a system-
level isolation environment by creating the TEE for security-sensitive code and data protection, thereby
protecting software from untrusted rich execution environments (REE) [21]. Popular trusted execution
environments also include Intel software guard extensions (SGX), but so far, remote attestation has
only been used with Intel SGX [22,23]. One of the goals of this paper has therefore been to establish
the remote attestation mechanism on ARM TrustZone.

In this paper, we leverage ARM TtustZone as the TEE technology to implement the prototype of
TrustControl. TrustControl exploits the TEE to load, process, and protect sensitive code and data by
providing secure remote attestation, remote dynamic code injection, and secure storage. We design
the remote attestation mechanism to solve the lack of remote attestation for the ARM platform,
allowing the ARM platform to verify the authenticity and reliability of the platform and application
program. In particular, this paper also designs a remote dynamic injection method of trusted code
to perform security-critical data processing to ensure that data is processed with expected behavior.
The experiment results show that the system meets the goal of user-defined data usage control at a
reasonable cost. Our future research roadmap will focus on exploring ways to enhance the performance

CMC, 2022, vol.73, no.3 5689

of ARM TrustZone with the intention of applying it to the server side to conduct more in-depth privacy
protection research.

2 Background

TEE is widely used and will likely become even more pervasive, considering TEE can be found
on low-cost ARM processors [24]. TrustZone technology is composed of hardware security extension
of the ARM processor, among which hardware security extension has great advantages and has low
influence on core power consumption and performance [25]. The CPU has its own separate physical
address space when executing programs in TEE and REE. The REE software only has access to its
own physical address space, while the TEE software has access to both REE and TEE physical address
spaces. TrustZone technology divides system resources into normal world (NW) and secure world
(SW). The SW has higher access rights than the NW, so it can access the resources of the NW more
flexibly, while the access rights of the NW to the SW are strictly limited. In this way, the memory space
of the TEE cannot be viewed or tampered with, thereby improving security [26]. ARM TrustZone
technology introduces a special monitor mode mechanism [27]. The monitor mode is responsible for
the state switching of the processor, including the security state and the non-safe state.

The extension of the TrustZone hardware architecture embeds security in the processor, imple-
ments a trusted operating system (TOS). TOS has independent exception handling, interrupt handling,
scheduling, application, process, thread, and driver [26]. The TrustZone-based system realizes the trust
environment of the entire TEE, including multiple trusted applications (TAs) [28,29]. TA refers to a
trusted application running in SW, uses the services provided by the TEE kernel to access system
resources. The role of TA is to provide different services for standard user programs or other TAs.
By implementing various TAs with different functions in TEE, TEE systems are becoming more and
more usable and practical. As a trusted hardware platform, ARM TrustZone is widely recognized by
the industry for its security architecture and many open sources projects.

3 Overview of TrustControl
3.1 Threat Model and Assumptions

We assume that the hardware which is equipped with ARM TrustZone is properly implemented,
securely manufactured, and against malicious attacks from the operating system. We assume that
the operating system and the user space in the NW are not trusted. However, we assume that TEE
components, including the bootloader, firmware, secure monitor, and TOS, are trustworthy and
implemented according to the GlobalPlatform (GP) TEE specification. We assume the attestation
server will perform the required service correctly and is always available. We also assume that all
data operations required by data users and data owners are trustworthy, and the data owners do not
provide meaningless or false data on purpose. We also assume that TA sealed data is secure, which
means that no one else other than TA can decrypt the sealed data. We recognize that previous work
has demonstrated that the confidentiality of ARM TrustZone can be compromised via side-channel
attacks [30,31] preventing such attacks is an important but ongoing task. In light of this threat, the
mitigations which continue to be released can effectively mitigate the risk of TEE [32].

3.2 TrustControl Overview

We implement a prototype system of TrustControl, which uses ARM TrustZone hardware security
extensions to perform remote attestation and data usage control in the SW. The system architecture

5690 CMC, 2022, vol.73, no.3

of TrustControl is shown in Fig. 1. The application calls the code isolated in the SW through the GP
TEE Client application programming interface (API) and the GP TEE Internal API [33]. TrustControl
consists of four main functional components: data owner, data user, attestation server, and trusted
computing execution. The following four components are described in detail.

Rich Execution Environment (REE)

Client
Apps

Privilege TA
Client

GlobalPlatform TEE Client
Application Programming Interface (API)

TrustZone Driver

Trusted Excution Environment (TEE)

GlobalPlatform TEE
Internal API

Monitor

Trusted Computing Execution

Data Processing
Service

Privilege TA

Remote
Attestation

Service

Standard
Library

TEE
Service
Library

Trusted Operating System (TOS)

TA

Data User

Data Owner

Attestation Server

Data/Code
Validation

Platform
Validation

User Code/Data

Remote Attestation

Computation
Result/Commit

Trusted Application
(TA)

Untrusted
Application

Figure 1: An overview of TrustControl

Data Owner (DO). The DO refers to the person who owns the data. And DO will only provide the
raw data based on the remote attestation result, to ensure that the raw data can be processed expectedly.

Data User (DU). The DU refers to the person who provides the data processing function code
and gets the data processing results.

Attestation Server. The attestation server aims to verify the legitimacy of remote attestation data,
the security and reliability of the platform, application programs, and function codes. Now we assume
that the attestation server is sufficiently secure.

Trusted Computing Execution. Trusted computing execution provides data processing and remote
attestation services. The data processing service is responsible for the loading, execution, and unload-
ing of function code, etc. Remote attestation service responsible for responding to the request,
generating attestation data and certificates required for remote attestation. By using the function code
of the DO to perform data operations in the TEE, the correctness of the data processing results is
guaranteed.

Generally speaking, the main workflow of TrustControl is as follows. Firstly, DUs and DOs
perform remote attestation to TrustControl and proceed to the next step after successful attestation.
Secondly, DUs deploy data processing code to TrustControl, TrustControl receives the code and

CMC, 2022, vol.73, no.3 5691

validates it, and loads it into the TEE for execution after successful validation. Thirdly, DOs send data
to TrustControl, and TrustControl loads the data into TEE after successful authentication, which is
processed by secure TA. TrustControl is used to perform remote attestation, remote dynamic code
trusted injection, and secure data processing.

4 System Design
4.1 Remote Attestation Design

Remote attestation provides a highly secure and reliable mechanism that can verify the security
and reliability of platform and applications. The remote attestation mechanism can request and
import attestation keys and perform remote attestation through the system calls. To this end, we
implemented a privilege TA to request and import attestation keys, and prohibit other TA to perform
these operations. Privilege TA refers to the remote attestation executor, responsible for applying for
the certificate of the attestation key, interacting with the TEE, attestation server, executing requests,
and importing remote attestation certificates.

We assume AK = attestation key, which contains the secret key pairs for attestation. The privilege
TA calls AKRequest method to request open-source portable trusted execution environment operating
system (OP-TEE OS) to generate AK. Specifically, the privilege TA will call the method in the NW
to request the AK. The remote attestation service will check whether the AK exists after receiving the
request in the SW. If the check result is true, the AK will be returned, otherwise, the remote attestation
service will use the RSA algorithm provided by the crypto service to generate the AK. After that, the
AK will be stored in the SW.

AK = {pubAK, privAK} (1)

sigAK = Sign(pubAK) (2)

In Eq. (1), pubAK represents the public key of attestation key, while privAK represents the secret
key, which is only known by TEE itself and will not be disclosed to REE. After the AK is generated,
OP-TEE OS signs the pubAK with the TEE private key to get sigAK, see Eq. (2). The sigAK is used
to prove that AK was generated in the TEE. Then send the sigAK and pubAK to the privilege TA.

As shown in Eq. (3), we assume AD = attestation data, which contains pubAK and sigAK, the
privilege TA sends AD to the attestation server.

AD = {pubAK, sigAK} (3)

If the attestation server can verify sigAK, it will issue a certificate certAK for the pubAK and
send the certAK to the privilege TA. Then OP-TEE OS will save the certAK. When the verification is
passed, the privilege TA will call AKSeal to seal the AK, so that after the TEE platform restarts, we
don’t need to generate a new AK again. The sealing operation will be completed in TEE.

To complete the TEE platform initialization for the remote attestation process, the following
remote attestation methods were designed.

Privilege_TA init: initialize the TEE platform.

Privilege_TA import_ak: import AK from the sealed key.

Privilege_TA connect: connect to the attestation server, issue a certificate to pubAK, and send the
certAK to TEE.

5692 CMC, 2022, vol.73, no.3

Privilege_TA export_cert: export the certAK in TEE.

We now sketch the process of TEE platform initialization in Fig. 2.

Attestation server

Step1: Request attestation key
(AK)

Step3: Return the generated remote attestation data
Step4: Send remote attestation data

Step5: Verify sigAK,
issue a certificate

certAK for the pubAK

Step6: Send remote attestation results and certAK

Step7: Remote attestation success

Privilege trusted application
(TA)

Remote attestation
service

Open-source portable trusted
execution environment

operating system
(OP-TEE OS)

Send demand

Step2: Generate
AK={pubAK, privAK},

sigAK=Sign(pubAK)

Reply

Step8: Save certAK

Store certAK

Trusted execution environment (TEE) platform initialization completed

Figure 2: The process of TEE platform initialization

Step 1: Privilege TA performs remote attestation and requests OP-TEE OS to generate attestation
data;

Step 2: Remote attestation service process the command request sent by the privilege TA in the
NW and generate AK, sigAK;

Step 3: After the TEE generates the attestation data, remote attestation service sends AD to the
privilege TA;

Step 4: Privilege TA sends AD to the attestation server;

Step 5: The attestation server verifies AD. The verification results include trusted and untrusted;
if the attestation server verifies that sigAK is credible, it will issue a certificate for the pubAK, certAK;

Step 6: The attestation server sends the remote attestation results and the certAK to the privi-
lege TA;

Step 7: Privilege TA executes the import certificate command and saves the certAK in TEE;

Step 8: TEE processes the commands and saves the certAK issued by the attestation server.

After TEE platform initialization, the client can verify the authenticity of the TA. First, the TA
generates a pair of public and private keys for creating a secure channel, signs the TA’s public key and

CMC, 2022, vol.73, no.3 5693

measurements with privAK, and then the TA sends the message to the client. The qualified Message
is shown in Eq. (4). Then, the client requests the attestation server to get the root certificate, verifies
certAK, extracts the public key to verify the signed data after successful verification, and finally verifies
the TA’s measurement, and gets the data after successful verification. Note that the data can be the
public key or other data. When the client gets the public key, it will first generate a secrete key K, then
encrypt K with the public key and send the encryption result to TA, so that both parties negotiate the
encryption secret key and subsequently encrypt the data by symmetric encryption. One advantage of
this is to avoid the performance degradation problem caused by using asymmetric encryption.

Message = {data||Signature||certAK} (4)

We provide an interactive process between the OP-TEE OS, TA, client, and the attestation server
execution workflow, providing further step details on Fig. 3.

Open-source portable trusted
execution environment

operating system
(OP-TEE OS)

Secure channel established

signData=signprivAK(TA
measurement, TA public

key),
get signData and certAK

Attestation serverClientsTrusted application (TA)

Generates the key pair
TA public key and private

key
Obtaining a root

certificate

Root certificate

Verifying certAK,
signData, getting the

measurement and data

Send(signData, certAK)

Verifying measurement

data

Figure 3: The process of performing remote attestation

4.2 Remote Dynamic Code Injection

Remote dynamic code injection provides a secure method of code injection that dynamically
injects legitimate code remotely. At the same time, remote dynamic code injection provides two modes:
temporary code injection and long-term code injection, thus providing different storage methods for
codes with different needs. In this way, we can easily add and modify the function code to improve the
authenticity and reliability of data processing results.

The remote dynamic code injection process is concluded as Algorithm 1.

DOs and DUs send registration requests, and then the TEE platform generates registration data.
The registration request from the DO includes preset user information, such as account number
and password, the attribute information of the original data, such as whether the data is public or

5694 CMC, 2022, vol.73, no.3

semi-public, and the attribute information of the DO, such as enterprise and individual. The DU
registration request includes predefined code information of the DU, such as whether the injected
code is temporarily stored or permanently stored. After the initial registration, the TEE platform will
distribute secret key pairs for DOs and DUs. And the registration result includes a predefined user
identifier and a monotonic counter. The monotonic counter specifically refers to the logical mechanism
provided for TEE technology to prevent data from being replayed. In addition, the monotonic counter
identifies the number of times the data has been used, for example, if the data has been used 3 times,
the monotonic counter is 3 to prevent the data from being used secretly. The TEE platform receives
the function code injection request sent by the DU. Then it verifies the security of DU based on the
registered data (line 3 in Algorithm 1). Note that the TEE platform receives data and function code
only if the DU and DO pass the security verification. The TEE platform generates authentication
data based on the remote function code and sends the authentication data to the remote attestation
server (lines 4–6 in Algorithm 1). The attestation server verifies the authentication data and returns the
result. The DO receives the attestation result and verifies its authenticity (lines 12–13 in Algorithm 1).
The DO provides the raw data only based on the true attestation result (line 14 in Algorithm 1), thus
ensuring that the raw data can be processed with the expected behavior. The TEE platform receives
the raw data after verifying the security of the DO (lines 18–19 in Algorithm 1).

Remote dynamic code injection provides three important methods, namely install_TA, execu-
tion_TA, and uninstall_TA, which are presented as install, execute, and uninstall trusted dynamic
function code. When TEE platform receives a specific computation task from the DU, it will load the
corresponding TA for that task. Then TEE platform will remotely verify the authenticity and integrity
of TA. The immediate step before the DO sends the raw data is to remotely verify the function code.
Once the function code is successfully verified, the DO sends the raw data to the TEE platform, both
the TEE platform and DO can then extend their trust to the DU, knowing that the raw data is securely
processed by the trusted function code in the TEE platform until termination, while the computation
results will be genuine and reliable. This approach guarantees that the raw data is used for the intended
behavior. The TEE platform calls the install_TA method, loads the verified function code to process
the raw data, then sends the trusted data processing result to DU (lines 24–26 in Algorithm 1). After
the data is processed, we can call the uninstall_TA method to uninstall the function code (lines 30–31
in Algorithm 1). To prevent raw data leakage, the TEE platform also deletes the locally stored raw data
after the data processing is finished. The trusted function code is called to process the raw data, which
can prevent the DU from obtaining or reusing the raw data, thus effectively improving the security
and privacy of the raw data.

Algorithm 1: Algorithm for remote dynamic code injection
Input: remote dynamic code, raw data
Output: data processing result Res
1 procedure remoteDynamicCodeInjection
2 if requestReceived == true then
3 if DUAuthentication == true then
4 receive dynamic code
5 generate authentication data
6 send authentication data to remote attestation server
7 else
8 deny
9 end if

(Continued)

CMC, 2022, vol.73, no.3 5695

10 end if
11 wait() // wait for remote attestation result
12 if DOReceivedResult == true then
13 if verifyResult == true then
14 send raw data to TEE platform
15 end if
16 end if
17 if requestReceived == true then
18 if DOAuthentication == true then
19 receive raw data
20 else
21 deny
22 end if
23 end if
24 if install_TA() == true then
25 Res = execution_TA()
26 return Res
27 else
28 report install error
29 end if
30 if uninstall_TA() != true then
31 report uninstall error
32 end if
33 end procedure

5 System Implementation and Evaluation
5.1 Experiment Setup

One of the most well-known open-sourced TEE projects for ARM platforms is OP-TEE, an
open-source Linux-based TEE platform compatible with ARM TrustZone [34]. Many researchers
have utilized OP-TEE to evaluate their TEE prototype [35,36]. We provide an implementation
of TrustControl based on the OP-TEE project. And TrustControl applications were deployed in
a TrustZone-enabled development board based on the ARM aarch64. The main memory of the
development board is an 8GB DRAM. The TrustControl components include attestation server
service, client apps, secure TA, and data processing service. They were written in C based on OP-TEE
v3.8 and run on top of Ubuntu 18.04 LTS. The total software lines of code (SLOC) for TrustControl
components are shown in Tab. 1.

Table 1: Component’s LOC

Component Lines of code

Remote attestation service 365
Data processing service 418
Client apps 1389

(Continued)

5696 CMC, 2022, vol.73, no.3

Table 1: Continued
Component Lines of code

Privilege TA client 546
Attestation server 405
Total 3123

5.2 Remote Attestation Overhead

To improve the reliability of the remote attestation, the method which was Privilege_TA init,
Privilege_TA import_ak, Privilege_TA connect, and Privilege_TA export_cert was each tested 100
times, respectively. The comparison of the four methods’ average execution time is shown in Fig. 4. It
is apparent from Fig. 4 that the overhead of most remote attestation methods is very short. Among
the four methods, the numerical difference can be introduced because of the different functions of
code. The import_ak, connect, and export_cert method average runtime is only 0.19, 0.16, and 0.018
s, respectively. By contrast, there is a significant difference between the init method and the other three
methods. The average run time of the init method ranged from 2.8 to 4.8 s, indicating that it takes a
significant amount of time to obtain the remote attestation data for the first time. When the device
finishes running the init method or restarts, the method is only executed for 0.6 s, which is fast. We
remark that efficient remote attestation is very important.

Figure 4: Overhead of executing different methods

5.3 Computational Cost of Crypto Service

Due to the introduction of data encryption and decryption in TrustControl, so we evaluate and
compare the encryption and decryption efficiency in crypto service between SHA1, SHA256, AES128,
and AES256. Considering that users may deliver data of different sizes, we focus on the performance

CMC, 2022, vol.73, no.3 5697

overhead to compute different data sizes which are from 10 to 40 MB for SHA1 and SHA256, 10
to 300 MB for AES128 and AES256. We tested the encryption and decryption overhead using two
different ways on a real experiment board: software encryption and ARM instruction encryption. The
comparison result of encryption and decryption between software encryption and ARM instruction
encryption is presented in Tab. 2. We repeated each test 100 times to reduce the test errors and
report the average result. As shown in Tab. 2, SHA1 and SHA256 compute the message digest on
10, 20, and 40 MB, respectively. We can observe that as the encrypted data size grows from 10 to 40
MB, the encryption time for SHA1 and SHA256 increases regardless of whether software or ARM
instruction encryption is used, but the SHA1 (ARM instruction) and SHA256 (ARM instruction)
encryption overheads are very low compared to software encryption. For example, using the SHA256
algorithm to encrypt 40 MB of data, software encryption takes about 10 times as long as ARM
instruction encryption. For AES encryption and decryption, we can see that there is a significantly
different between software encryption and ARM instruction encryption. As the data increases, the
time spent on software encryption and decryption increase rapidly. However, AES (ARM instruction)
will greatly increase the encryption and decryption speed, which is especially obvious when encrypting
and decrypting large amounts of data. For example, when encrypting 100 MB of data, AES256 (ARM
instruction) takes only 0.099 s, and the time to decrypt the data is also similar. The experimental results
show that the encryption overhead using software encryption is 4 to 9 times higher than using ARM
instruction encryption when the encrypted data is small, and 18 to 27 times higher when the encrypted
data is large, demonstrating the excellent encryption and decryption efficiency of ARM instruction
encryption. In this experiment, encrypting the data which is 40 MB with SHA256 (ARM Instruction)
and 300 MB with AES256 (ARM Instruction) only needs 0.056 and 0.208 s, which has a tiny impact
on the whole crypto service. From these findings, we can infer that when the encrypted data size grows,
continuing to use software encryption imposes significant encryption and decryption overhead, while
using ARM instruction encryption a less computational cost.

Table 2: Computational cost of crypto service

Algorithm type Operation File size (MB) Secure world
time (second)

SHA1 Message Digest 10 0.139
SHA1 Message Digest 20 0.259
SHA1 Message Digest 40 0.501
SHA1(ARM
Instruction)

Message Digest 10 0.028

SHA1(ARM
Instruction)

Message Digest 20 0.038

SHA1(ARM
Instruction)

Message Digest 40 0.058

SHA256 Message Digest 10 0.153
SHA256 Message Digest 20 0.287
SHA256 Message Digest 40 0.555
SHA256(ARM
Instruction)

Message Digest 10 0.028

(Continued)

5698 CMC, 2022, vol.73, no.3

Table 2: Continued
Algorithm type Operation File size (MB) Secure world

time (second)

SHA256(ARM
Instruction)

Message Digest 20 0.037

SHA256(ARM
Instruction)

Message Digest 40 0.056

AES128 Encryption/Decryption 10 0.206/0.205
AES128 Encryption/Decryption 100 1.650/1.645
AES128 Encryption/Decryption 300 4.870/4.847
AES128(ARM
Instruction)

Encryption/Decryption 10 0.050/0.051

AES128(ARM
Instruction)

Encryption/Decryption 100 0.090/0.089

AES128(ARM
Instruction)

Encryption/Decryption 300 0.178/0.178

AES256 Encryption/Decryption 10 0.223/0.225
AES256 Encryption/Decryption 100 1.835/1.845
AES256 Encryption/Decryption 300 5.407/5.450
AES256(ARM
Instruction)

Encryption/Decryption 10 0.051/0.051

AES256(ARM
Instruction)

Encryption/Decryption 100 0.099/0.098

AES256(ARM
Instruction)

Encryption/Decryption 300 0.208/0.208

5.4 Remote Dynamic Code Injection and Runtime

Here we use a development board that supports ARM TrustZone technology as the TEE platform,
and use a personal computer (PC) as the attestation server, the manipulation device for DU and DO,
and the TEE platform console, as shown in Fig. 5.

The remote dynamic injection and runtime of the function code were evaluated through a series
of experiments. The install_TA, execution_TA, and uninstall_TA methods were run 100 times and
the average value was recorded. Due to the different DUs may have different processing purposes for
raw data, in this experiment, we choose a simple remote dynamic code injection example. When the
TEE platform receives function code from the DU, it invokes the pseudo TA to perform operations
on the function code, including installation, execution, and uninstallation. When the function code is
installed, the raw data can be processed by means of API calls. When the pseudo TA calls the function
code for installation and uninstallation, the installation time and uninstallation time are shown in the
first and third columns of Fig. 6, respectively. The second histogram in Fig. 6 shows the time taken to
execute the function code. The results show that the installation time for the function code is 0.294 s
and the uninstallation time is 0.194 s. In addition, both the installation and uninstallation times are
low and well acceptable. Thus, we can conclude that the introduction of the remote dynamic code
injection method has little impact on the efficiency of processing data.

CMC, 2022, vol.73, no.3 5699

Remote
attestation server

Remote dynamic
code injection

Trusted execution environment (TEE) platform

Figure 5: Implementation of TrustControl on PC and a development board

Figure 6: Remote dynamic code injection and runtime

6 Conclusion

The privacy and control of data are being increasingly threatened as huge amounts of data are
collected, analyzed, exchanged, and stored in various ways. TrustZone is a widely available system-
level security solution that can provide a trusted execution environment to protect the security and
privacy of data and code. In this paper, we propose TrustControl, a user-centric prototype for secure

5700 CMC, 2022, vol.73, no.3

data-trusted computing. We design the remote attestation mechanism to validate the security of the
TEE platform and remote function codes to achieve secure data processing on the TEE platform. To
ensure that the raw data of the data owner is processed under the expected behavior, we implement
remote dynamic code injection to provide installation, execution, and uninstall features. This study
has shown that TrustControl can be used to implement a variety of secure applications that strengthen
data usage control. Our solution provides a higher level of security for user privacy and the evaluation
results show that TrustControl can work efficiently with acceptable performance.

Funding Statement: This work was supported by the National Key R&D Program of China (No.
2021YFB2700601), Research Project of Hainan University (No. HD-KYH-2021240), Finance Science
and Technology Project of Hainan Province (No. ZDKJ2020009 and ZDKJ2020012), National
Natural Science Foundation of China (No. 62163011, 62162022 and 62162024), and Key Projects in
Hainan Province (No. ZDYF2021GXJS003 and ZDYF2020040).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. Abd Razak, N. H. Mohd Nazari and A. Al-Dhaqm, “Data anonymization using pseudonym system to

preserve data privacy,” IEEE Access, vol. 8, pp. 43256–43264, 2020.
[2] M. Yamaç, M. Ahishali, N. Passalis, J. Raitoharju, B. Sankur et al., “Multi-level reversible data anonymiza-

tion via compressive sensing and data hiding,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 1014–1028, 2021.

[3] R. Bild, K. A. Kuhn and F. Prasser, “SafePub: A truthful data anonymization algorithm with strong privacy
guarantees,” Proc. on Privacy Enhancing Technologies, vol. 2018, no. 1, pp. 67–87, 2018.

[4] S. Qi, Y. Lu, W. Wei and X. Chen, “Efficient data access control with fine-grained data protection in cloud-
assisted IIoT,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2886–2899, 2021.

[5] I. Ullah, H. Zahid and M. A. Khan, “An access control scheme using heterogeneous signcryption for iot
environments,” Computers, Materials & Continua, vol. 70, no. 3, pp. 4307–4321, 2022.

[6] S. Yu, C. Wang, K. Ren and W. Lou, “Achieving secure, scalable, and fine-grained data access control in
cloud computing,” in Proc. 2010 Proc. IEEE Int. Conf. on Computer Communications, San Diego, CA,
USA, pp. 1–9, 2010.

[7] V. Rajkumar, M. Prakash and V. Vennila, “Secure data sharing with confidentiality, integrity and access
control in cloud environment,” Computer Systems Science and Engineering, vol. 40, no. 2, pp. 779–793,
2022.

[8] N. R. R. Paul and D. P. Raj, “Enhanced trust based access control for multi-cloud environment,”Computers,
Materials & Continua, vol. 69, no. 3, pp. 3079–3093, 2021.

[9] G. Zyskind, O. Nathan and A. Pentland, “Decentralizing privacy: Using blockchain to protect personal
data,” in Proc. 2015 IEEE Security and Privacy Workshops, San Jose, CA, USA, pp. 180–184, 2015.

[10] G. Zyskind, O. Nathan and A. Pentland, “Enigma: Decentralized computation platform with guaranteed
privacy,” 2015. [Online]. Available: https://arxiv.org/abs/1506.03471.

[11] T. Feng, H. Pei, R. Ma, Y. Tian and X. Feng, “Blockchain data privacy access control based on searchable
attribute encryption,” Computers, Materials & Continua, vol. 66, no. 1, pp. 871–890, 2021.

[12] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner, D. Garg and P. Druschel, “Thoth: Comprehensive policy
compliance in data retrieval systems,” in Proc. the 25th USENIX Conf. on Security Symp., Austin, TX,
USA, pp. 637–654, 2016.

[13] A. Datta, M. Fredrikson, G. Ko, P. Mardziel and S. Sen, “Use privacy in data-driven systems: Theory and
experiments with machine learnt programs,” in Proc. the 2017 ACM Special Interest Group on Security,
Audit and Control Conf., Dallas, TX, USA, pp. 1193–1210, 2017.

https://arxiv.org/abs/1506.03471

CMC, 2022, vol.73, no.3 5701

[14] Y. Xiao, N. Zhang, W. Lou and Y. Hou, “PrivacyGuard: Enforcing private data usage control with
blockchain and attested off-chain contract execution,” in Proc. the 25th European Symp. on Research in
Computer Security, Guildford, United Kingdom, pp. 610–629, 2020.

[15] GlobalPlatform, “TEE internal API specification v1.3,” 2021. [Online]. Available: https://globalplatform.
org/specs-library/tee-internal-core-api-specification/.

[16] T. Zheng, Y. Luo, T. Zhou and Z. Cai, “Towards differential access control and privacy-preserving for
secure media data sharing in the cloud,” Computers, & Security, vol. 113, no. 1, pp. 102553, 2022.

[17] F. Zhang, E. Cecchetti, K. Croman, A. Juels and E. Shi, “Town crier: An authenticated data feed for smart
contracts,” in Proc. the 2016 ACM Special Interest Group on Security, Audit and Control Conf. on Computer
and Communications Security (CCS), Vienna, Austria, pp. 270–282, 2016.

[18] W. Dai, C. Dai, K. -K. Choo, C. Cui, D. Zou et al., “SDTE: A secure blockchain-based data trading
ecosystem,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 725–737, 2020.

[19] F. Brasser, D. Gens, P. Jauernig, A. R. Sadeghi and E. Stapf, “Sanctuary: Arming trustzone with user-space
enclaves,” in Proc. 2019 Network and Distributed System Security Symp., San Diego, California, 2019.

[20] H. Sun, K. Sun, Y. W. Wang, J. W. Jing and H. N. Wang, “TrustICE: Hardware-assisted isolated computing
environments on mobile devices,” in Proc. IEEE/IFIP Int. Conf. on Dependable Systems and Networks, Rio
de Janeiro, Brazil, pp. 367–378, 2015.

[21] M. Sabt, M. Achemlal and A. Bouabdallah, “Trusted execution environment: What it is, and what it is not,”
in Proc. 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, pp. 57–64, 2015.

[22] S. Johnson, V. Scarlata, C. Rozas, E. Brickell and F. Mckeen, “Intel® software guard extensions:
EPID provisioning and attestation services,” 2016. [Online]. Available: https://cdrdv2.intel.com/v1/dl/
getContent/671370?explicitVersion=true&wapkw=EPIDprovisioningandattestationservices.

[23] V. Scarlata, S. Johnson, J. Beaney and P. Zmijewski, “Supporting third party attestation for Intel® SGX
with Intel® data center attestation primitives,” 2018. [Online]. Available: https://www.intel.com/content/
dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf.

[24] R. Coombs, “Adapting mobile security architecture for IoT,” 2018. [Online]. Available: https://community.
arm.com/arm-community-blogs/b/embedded-blog/posts/adapting-mobile-security-architecture-for-iot.

[25] X. Zheng, L. Yang, J. Ma, G. Shi and D. Meng, “TrustPAY: Trusted mobile payment on security enhanced
ARM TrustZone platforms,” in Proc. 2016 IEEE Symp. on Computers and Communication (ISCC),
Messina, Italy, pp. 456–462, 2016.

[26] P. Wilson, A. Frey, T. Mihm, D. Kershaw and T. Alves, “Implementing embedded security on dual-virtual-
CPU systems,” IEEE Design & Test of Computers, vol. 24, no. 6, pp. 582–591, 2007.

[27] T. Alves and D. Felton, “TrustZone: Integrated hardware and software security enabling trusted computing
in embedded system,” Government Information Quarterly, vol. 3, no. 4, pp. 18–24, 2005.

[28] N. Zhang, K. Sun, W. Lou and Y. T. Hou, “CaSE: Cache-assisted secure execution on ARM processors,”
in Proc. 2016 IEEE Symp. on Security and Privacy (SP), San Jose, CA, USA, pp. 72–90, 2016.

[29] ARM Limited, “TrustZone technology for the ARMv8-M architecture version 2.0,” 2017. [Online].
Available: https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology.

[30] R. Keegan, “Hardware-backed heist: Extracting ECDSA keys from qualcomm’s TrustZone,” in Proc. the
2019 ACM Special Interest Group on Security, Audit and Control Conf. on Computer and Communications
Security, London, United Kingdom, pp. 181–194, 2019.

[31] P. F. Qiu, D. S. Wang, Y. G. Lyu and G. Qu, “VoltJockey: Breaching TrustZone by software-controlled
voltage manipulation over multi-core frequencies,” in Proc. the 2019 ACM Special Interest Group on
Security, Audit and Control Conf. on Computer and Communications Security, London, United Kingdom,
pp. 195–209, 2019.

[32] “ARM Speculation Barrier,” 2020. [Online]. Available: https://github.com/ARM-software/speculation-
barrier.

https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification/
https://cdrdv2.intel.com/v1/dl/getContent/671370?explicitVersion=true&wapkw=EPIDprovisioningandattestationservices
https://cdrdv2.intel.com/v1/dl/getContent/671370?explicitVersion=true&wapkw=EPIDprovisioningandattestationservices
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sgx-support-for-third-party-attestation-801017.pdf
https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/adapting-mobile-security-architecture-for-iot
https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/adapting-mobile-security-architecture-for-iot
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology
https://github.com/ARM-software/speculation-barrier
https://github.com/ARM-software/speculation-barrier

5702 CMC, 2022, vol.73, no.3

[33] GlobalPlatform, “GlobalPlatform device technology TEE client API specification v1.0,” 2010. [Online].
Available: https://globalplatform.org/specs-library/tee-client-api-specification/.

[34] Linaro, “OPTEE secure OS,” 2020. [Online]. Available: https://github.com/OP-TEE/optee_os.
[35] S. Y. Wan, M. S. Sun, K. Sun, N. Zhang and X. He, “RusTEE: Developing memory-safe ARM TrustZone

applications,” in Proc. Annual Computer Security Applications Conf., Austin, USA, pp. 442–453, 2020.
[36] Linaro, “OPTEE device,” 2020. [Online]. Available: https://optee.readthedocs.io/en/latest/building/index.

html.

https://globalplatform.org/specs-library/tee-client-api-specification/
https://github.com/OP-TEE/optee_os
https://optee.readthedocs.io/en/latest/building/index.html
https://optee.readthedocs.io/en/latest/building/index.html

	TrustControl: Trusted Private Data Usage Control Based on Security Enhanced TrustZone
	1 Introduction
	2 Background
	3 Overview of TrustControl
	4 System Design
	5 System Implementation and Evaluation
	6 Conclusion

