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Abstract: Coronary artery disease (CAD) is one of the most common
pathological conditions and the major global cause of death. Myocardial
perfusion imaging (MPI) using single-photon emission computed tomography
(SPECT) is a non-invasive method and plays an essential role in diagnosing
CAD. However, there is currently a shortage of doctors who can diagnose
using SPECT-MPI in developing countries, especially Vietnam. Research on
deploying machine learning and deep learning in supporting CAD diagnosis
has been noticed for a long time. However, these methods require a large
dataset and are therefore time-consuming and labor-intensive. This study aims
to develop a cost-effective and high-performance CAD classification model
to support doctors in these countries. In this paper, we propose a transfer
learning framework for a multi-stage training process with different learning
rates. The process consists of two training stages: a warming up stage in which
all layers of a pre-trained model (on ImageNet dataset) are frozen; and a fine-
tuning stage in which a small amount of the top layers are unfrozen and then
retrained with a lower learning rate. The dataset for this study consists of
the polar maps from 218 patients. Various popular CNN-based pre-trained
models have been investigated, and ResNet152V2-based model has obtained
the highest performances with an accuracy of 95.5%, area under the receiver
operating characteristic curve (AUC) score 0.932, sensitivity 94.4%, precision
96.4%, and F1-score 95.2%. These performances are competitive or even
better than all state-of-the-art approaches in terms of classification accuracy
and sensitivity. We also apply the class activation mapping technique to help
explain the model’s predictions and increase the model’s reliability, proving
capable of assisting the SPECT image readers in the CAD diagnosis.
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1 Introduction

Coronary artery disease (CAD) is one of the most common pathological conditions and the
major global cause of death [1]. According to statistics of the Ministry of Health, in Vietnam, about
200,000 people die from cardiovascular disease each year, accounting for 33% of these deaths. CAD
is an atherosclerotic disease usually developed by various causes, including genetic and environmental
factors such as unhealthy diet, alcohol use, stress, diabetes, etc. The diagnosis and treatment for CAD
require a large proportion of national healthcare budgets, while in low-and middle-income countries,
the mortality rate from CAD has increased recently [2]. Thus, cost-effective and accurate diagnosis
decisions are crucial for both patients and the socioeconomic status of these countries.

A variety of imaging methods have been used in clinical diagnoses to improve the accuracy,
such as single-photon emission computed tomography (SPECT), myocardial perfusion imaging
(MPI), positron emission tomography (PET), and cardiovascular computed tomography (CT) [3–8].
According to the European Association of Nuclear Medicine (EANM) [9], SPECT-MPI is a remark-
ably efficient method regarding CAD diagnosis [3]. This method provides 3D information on the
distribution of a radioactive compound within the heart [10], reduces the number of unnecessary
angiographies, and enables proper treatment planning [11].

MPI is a non-invasive imaging modality where the uptake of the injected radiopharmaceutical
can be measured using SPECT for CAD diagnosis [12]. MPI is a common technique in developed
countries because of its outstanding diagnostic quality. However, it is still a complex technique, and
the diagnostic results critically depend on the experience and level of expert readers. In developing
countries with a large number of patients, such as Vietnam, there is a problem of lacking qualified
readers who can make accurate diagnostic decisions using MPI, specifically SPECT-MPI. Machine
learning (ML) and deep learning (DL) in medical imaging have become disruptive technologies.
We believe that these artificial intelligence (AI) technologies will help improve diagnostic accuracy,
reducing healthcare costs and diagnostic time. Moreover, a second reader by AI in CAD diagnosis
will be significant for Vietnam cottage hospitals that lack qualified doctors.

Research on deploying ML in supporting CAD diagnosis using SPECT MPI data has been
noticed for a decade. From the beginning, the typical ML algorithms such as support vector machine
(SVM) [13], artificial neural network (ANN) [14], and ensemble learning [15,16] have been commonly
investigated. However, since these ML algorithms require features engineering processes from the raw
data (clinical data and SPECT MPI data), ML-based diagnostic models’ performance thoroughly
depends on the quality of the features engineering processes. This brings the limitation in improving
the diagnostic accuracy. With the ability to automatically extract features from the data, DL tends to
be more widely utilized in the context of CAD diagnosis. This trend also comes from the significant
improvement in training time and cost for DL in these few years. Thus, several DL-based CAD
diagnosis models have been published, and they have improved the diagnostic efficiency quite well.
Specifically, in [12], the accuracy of the CAD classification problem reached 0.91 in 2019 from 0.88
in 2013 [13]. However, a DL-based model (and even ML) requires a large dataset to achieve a high
accuracy CAD diagnosis. For example, in [13,16–19], the numbers of patients are 957, 1980, 1413,
1638, and 1160, respectively. Furthermore, these such big datasets are not always available. Creating
a large enough labeled dataset to deploy an application based on a traditional DL method is time-
consuming and labor-intensive [20]. Meanwhile, all data sets used in related studies are not published.
Therefore, it is significantly challenging for Vietnamese researchers to have a large enough data set
to use the above methods to build a diagnostic model for Vietnamese people. Fortunately, Transfer
Learning, a DL technique, can help address this limitation.
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Instead of building a new convolutional neural network (CNN) architecture from scratch, which is
the traditional strategy in DL, an alternative technique called Transfer Learning (TL) [21] has recently
become more popular. TL will offer many benefits: a higher starting accuracy, faster convergence, and
higher asymptotic accuracy with a small dataset. By TL, we can transfer knowledge of a well-trained
CNN model on a large dataset (e.g., ImageNet [22]) to solve classification problems in medical image
analysis, particularly in CAD diagnosis.

In medical image analysis, TL has shown its effectiveness for almost all anatomical sites and
image types, such as X-Ray (X-radiation) images of the skeletal system [23, 24], breast X-Ray [25,26],
lung X-ray [4,27], breast MRI (Magnetic Resonance Imaging) [28,29], brain MRI images [30,31], CT
(Computed tomography) scan images [32], OCT (Optical Coherence Tomography) images [33], and
skin lesion images [34].

In the context of SPECT MPI images, TL is considered a method for CAD prediction in [3,10,35].
However, the limitation of these previous studies is adopting a simple FT strategy that unfreezes some
specific layers before retraining the pre-trained CNN model [3]. They did not consider the differences
in the domain between SPECT MPI dataset and the ImageNet dataset, so the achieved models did
not have full the benefits of TL.

Moreover, the dataset used in the related works can be organized into two categories: sliced images
and polar maps. The sliced images contain various helpful information for the CAD diagnosis, but
using the sliced images to diagnose is very complicated and requires a highly experienced and expert
reader to make an accurate prediction. In contrast, polar images, synthesized from sliced images,
provide a better overview of the heart and are easier to read and diagnose than sliced images. A CAD
diagnosis using polar images is more explainable than using sliced images because of the ability to
integrate visualization techniques such as Class activation mapping (CAM) [36]. The visualization
techniques will significantly assist the doctors, especially in cottage hospitals in Vietnam, in diagnosing
and explaining the model’s prediction to patients. However, while the existing methods for sliced
images bring a high performance (accuracy of 93.4% in [3] and accuracy of 94% in [10]), the method
for polar images is not much effective (accuracy of 75% in [35]).

In this paper, we propose a transfer learning framework focusing on an accurate CAD diagnosis
from polar images. The main contributions of this paper are as follows:

i) We propose a multi-stage transfer learning framework with an original learning rate scheduler
from SPECT MPI polar maps.

ii) We compare our method with different 05 strategies to evaluate the effectiveness of the
proposed transfer learning framework. Moreover, we adopt CAM to visualize the prediction
of the model as a way to evaluate the performance.

iii) We evaluate the proposed method using 15 pre-trained models, and all of them show high
performances with accuracy > 86.4%

iv) The proposed method provides state-of-the-art accuracy and sensitivity compared to related
works.

The organization of this paper is structured as follows. Section 2 reviews related works on
CAD classification using. Section 3 describes the methodology and materials. Section 4 presents the
experimental results. In Section 5, the proposed method results are discussed and compared to the
related works. Finally, the conclusions of this paper are presented in Section 5.
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2 Related Works

Recent years, some transfer learning methods have been proposed for supporting CAD diagnosis.
As mentioned early, based on the data, the existing related works can be organized into two categories:
sliced images and polar maps.

For sliced images, Berkaya et al. proposed two different TL-based models [10]. The first one uses
pre-trained deep CNNs as feature extractors and SVM as a classifier, called Feature Extractor (FE).
The second one uses a simple Fine-tuning (FT) strategy to retrain deep CNNs with a new fully-
connected layer as the classifiers. The results on SPECT dataset, including the summed stress and
rest slice images of 192 patients, show that VGG16 pre-trained network with the SVM deep feature
shallow performed the best classification accuracy up to 0.94. On the contrary, the accuracy of the
second model using FT was not very high, only 0.86.

Papandrianos et al. introduced an approach of TL for CAD diagnosis [3]. Instead of using popular
pre-trained deep CNNs (VGG16, ResNet, GoogLeNet, . . . ), they applied the RGB-CNN model,
which they proposed in the domain of bone scintigraphy, to classify CAD or not by using SPECT
sliced images from 224 patients. The accuracy 93.4 ± 2.81%, AUC (area under the receiver operating
characteristic (ROC) curve) score = 0.936 were achieved. The results show that implementing a deep
learning classification model utilizing TL can help to improve the CAD diagnosis significantly.

Instead of sliced images, Apostolopoulos et al. used polar maps from 216 patients to predict CAD
[35]. They adopted data augmentation to expand the training data, including two attenuation correc-
tion images, two non-attenuation corrections images (stress and rest condition), and concatenated
them to create a dataset as the input of VGG16 based classification model. As a result, the model
achieved an accuracy of 75%, a sensitivity of 0.75, and a specificity of 0.73.

From the related works above, compared with ML and DL methods, TL does not require a
large dataset. However, while the existing methods for sliced images bring very high performance,
the method for polar images is not much effective. To address this problem, we focus on developing a
TL framework that could achieve high performance on a small dataset.

3 Methodology
3.1 Overview of the Proposed Method

This subsection introduces the overview of the proposed framework for CAD diagnosis from
SPECT MPI polar maps. Firstly, the polar images will be preprocessed in the data preparation step.
Then, we create a classification model using a pre-trained model and train the model in two stages:
Warming up stage and Fine-tuning stage with differential learning rates. The difference between the
proposed method and the related works [3,10,22] is using two training and testing times. In addition, to
optimize the advantages of TL, we proposed an original learning rate scheduler (this will be described
below). Furthermore, we adopt a greedy algorithm to determine the best model at each stage: selecting
the best model which showed the highest accuracy at every stage. The flow diagram is described in
Fig. 1, and the details are explained in the following subsections.
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Figure 1: The flow diagram of the proposed method

3.2 Dataset and Data Preparation

The dataset used in this paper corresponds to a retrospective review that includes SPECT MPI
polar maps from 218 patients collected in the Department of Nuclear Medicine of 108 Hospital,
Hanoi, Vietnam. This dataset was obtained after a processing procedure and consultation with many
technicians and doctors. The dataset consists of AC (attenuation correction) images and NAC (non-
attenuation correction) images in both stress and rest conditions. This study only used the stress AC
images. The description of the dataset is summarized in Tab. 1.

Table 1: Description of the dataset

Characteristics Value

Number of patients 218
Number of CAD 112 (51.37%)
Number of non CAD 106 (48.63%)
Average age 64.48

In the data preparation phase, a raw polar map image is processed as follows:

i) Crop image: The polar images in the dataset were reconstructed from SPECT MPI sliced images
by specialized software. The reconstructed polar map image is a high-resolution jpeg image
(1640 × 1068), so it is required to crop to pick up the essential area and reduce noises as much
as possible.

ii) Remove noises: As shown in Fig. 2a, the reconstructed polar map image has a white text
line showing the information, including image type, scanning time, or machine name. These
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noises may affect the model’s performance. After cropping and removing noises, a clean image
containing only a polar map is obtained. A sample of this image is shown in Fig. 2b.

iii) Resize and Scale: Images are resized and scaled (if need be) to fit each pre-trained CNNs. For
example, for ResNetV2, the input size has to be 224x224, and the value in each pixel has to be
scaled between [−1, 1] [37]. Tab. 2 shows the properties of all pre-trained CNNs used in this
paper.

iv) Split: Split the dataset into training data (80%) and test data (20%) for each class.

Figure 2: An example of a polar map image before and after processing

Table 2: The properties of all pre-trained CNNs used in this paper

Pretrained CNNS Input size Range of
scaling

Trainable
parameters∗

Non trainable
parameters∗

LR setting
rule∗∗

VGG16 224x224 [0, 255] 4,851,458 9,995,072 a = 3
VGG19 224x224 [0, 255] 4,851,458 15,304,768 a = 3
Xception 299x299 [−1, 1] 7,355,250 14,031,288 a = 4
MobileNetV2 224x224 [−1, 1] 740,610 1,845,824 a = 3
EfficientNetB0 224x224 [0, 255] 1,457,842 2,920,179 a = 3
EfficientNetB4 224x224 [0, 255] 5,379,878 12,753,467 a = 3
EfficientNetB7 224x224 [0, 255] 12,190,530 52,563,287 a = 3
InceptionV3 299x299 [−1, 1] 6,595,330 15,732,512 a = 4
InceptionResNetV2 299x299 [−1, 1] 7,656,258 47,074,464 a = 4
DenseNet121 224x224 [0, 1] 1,124,802 6,175,616 a = 3
DenseNet169 224x224 [0, 1] 1,772,994 11,296,640 a = 3
DenseNet201 224x224 [0, 1] 2,889,410 15,924,864 a = 3
ResNet50V2 224x224 [−1, 1] 1,579,778 22,510,080 a = 4
ResNet101V2 224x224 [−1, 1] 3,940,098 39,211,520 a = 4
ResNet152V2 224x224 [−1, 1] 4,989,698 53,867,008 a = 4

Note: ∗ Counted at Fine-tuning stage, ∗∗ Details are described in Eq. (1).
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3.3 Pre-trained Deep CNN Models

Instead of developing a deep CNN from scratch, we used 15 pre-trained deep CNNs, which
are well-trained on ImageNet [22] (more than 1 million images for 1000 classes). The properties
of the pre-trained deep CNNs are described in Tab. 2. As shown in Fig. 3, the architecture of the
proposed model consists of CNN-based layers for features extraction and fully connected (FC) layers,
which are reconstructed for the CAD classification. In particular, we replaced the original FC layers
(for ImageNet with 1000 classes) with new FC layers to classify CAD or non CAD (binary class).
Hyper-parameters (number units per layer, dropout rate) of these new FC layers are optimized by the
Hyperband algorithm [38].

Figure 3: The overall architecture of the proposed models

Since the dataset is small, we use Global Average Pooling (GAP) instead of Flatten function at
the end of the feature extraction to prevent overfitting [39]. Furthermore, the GAP is more native to
the convolution structure by enforcing correspondences between feature maps and categories so the
feature maps can be easily interpreted as category confidence maps [40].

3.4 Proposed Transfer Learning Process

As mentioned in Section 2.1, the model in our framework was trained and tested on a 2-stage
process as follows:

i) Warming up stage: By using the well-trained models on the ImageNet dataset, they are expected
to extract the critical features of the polar maps. Hence, the reconstructed layers (classifier)
need to be trained at first to determine how well the CNN-based layers can extract the critical
features. Thus, we froze all the CNN-based layers, left only the FC layers trainable, then trained
the model for 100 epochs. The training data was fed by batch. While all of the batches were fed
and a training epoch was complete, the weights were saved. Here, we use the following greedy
algorithm to determine the best model: after all training epochs were completed, the trained
model was used to determine the best model that showed the highest accuracy among all saved
weights. The best model was selected for the next stage.

ii) Fine-tuning stage: Since there are differences between SPECT MPI dataset and ImageNet, some
top layers of the model must be retrained to fit the weights to our dataset. Hence, we unfroze
some top layers of the best model that was selected at Warming up stage, then retrained the
model with a smaller learning rate (LR) for 30 epochs. The number of the trainable top layers
is set to be proportional to the depth of the pre-trained CNN and inversely proportional to the
number of trainable parameters. In particular, this value was set to a small value so that smaller
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than 1/3 of the total layers and the number of the trainable parameters was also smaller than
1/3 of the total parameters. The model testing and selection were executed in the same way as
in Warming up stage.

Additionally, we adopted a differential LR approach in the training process, where the LR is
determined on a per-layer basis. The bottom layers will then have a very small LR or be set as non-
trainable layers. These generalize quite well, responding principally to edges, blobs, and other low-level
features, whereas the top layers respond to high-level features a higher learning rate [41]. In this paper,
we use the following LR setting rule:

LR1 = 10−a

LR2 = 10−(a+2) (1)

where LR1 and LR2 are LR values at Warming up stage and Fine-tuning stage, respectively. The value
of a was optimized between 3 and 4 for each pre-trained CNN model.

3.5 Class Activation Mapping for Visualization

It is challenging to explain CNN black-box models and understand their predictions. It is bene-
ficial to ensure that the neural network concentrates on appropriate parts of the image. Visualization
of the feature maps is one of the most common practices to understand and trust the decision-making
of the CNNs based models. In this paper, we used Class Activation Mapping (CAM) [36], also known
as a heatmap, to determine the discriminative image regions by taking the values from the gradients
in the model’s final feature layer.

4 Results

This paper focuses on the image classification problem considering the classification of SPECT
MPI polar maps into two classes: CAD and non CAD. The performances were evaluated by accuracy
(Acc), sensitivity (Sen), specificity (Spe), precision (Pre), F1-score, and area under the ROC curve
(AUC).

The experimental simulations were implemented using Keras and TensorFlow frameworks on a
computer with 16 Intel Xeon CPUs running at 3.40 GHz and an NVIDIA Quadro RTX 4000 GPU.
The experimental settings of pre-trained CNNs used in this paper are shown in Tab. 2.

4.1 Comparison of Different Pre-Trained CNNs

Tab. 3 presents the performances for each of the 15 models. We used all the most popular pre-
trained CNNs such as VGG, Xception, EfficientNet, Inception, DenseNet, ResNet, and the deeper
version (VGG19, ResNet152V2, etc). The results demonstrated that all the pre-trained CNNs models
showed very high performances with Acc > 86.4%. Moreover, we found that ResNet152V2-based
model showed the best performances for all metrics: Acc 95.5%, AUC 0.932, Sen 94.4%, Pre 96.4%,
and F1-score 95.2%.



CMC, 2022, vol.73, no.3 5933

Table 3: The properties of all pre-trained CNNs used in this paper

Network Acc AUC Pre Sen F1-score

VGG16 0.886 0.900 0.919 0.861 0.875
VGG19 0.864 0.859 0.866 0.850 0.856
Xception 0.909 0.919 0.915 0.897 0.904
MobileNetV2 0.864 0.844 0.906 0.833 0.848
EfficientNetB0 0.886 0.865 0.919 0.861 0.875
EfficientNetB4 0.886 0.876 0.886 0.878 0.881
EfficientNetB7 0.864 0.829 0.906 0.833 0.848
InceptionV3 0.909 0.902 0.933 0.889 0.901
InceptionResNetV2 0.886 0.855 0.919 0.861 0.875
DenseNet121 0.864 0.885 0.881 0.841 0.853
DenseNet169 0.864 0.887 0.906 0.833 0.848
DenseNet201 0.864 0.910 0.866 0.850 0.856
ResNet50V2 0.864 0.876 0.906 0.833 0.848
ResNet101V2 0.886 0.818 0.919 0.861 0.875
ResNet152V2 0.955 0.932 0.964 0.944 0.952

4.2 Comparison of Different Transfer Learning Strategies

Firstly, to evaluate the effectiveness of the proposed TL framework, we conducted experiments in
the following six TL strategies with the ResNet152V2 model:

• Strategy 1: Training the model from scratch (not using pre-trained weights on ImageNet) for
100 epochs.

• Strategy 2: Using pre-trained weights, setting all layers trainable, then training the model for
100 epochs.

• Strategy 3: Using pre-trained weights, freeze the bottom layers (first 200 layers), leaving the top
layers and the reconstructed layers trainable, then train the model for 100 epochs.

• Strategy 4: Warming up stage only.
• Strategy 5: Fine-tuning stage only.
• Strategy 6: The proposed method: Warming up stage + Fine-tuning stage with a differential

LR approach.

Fig. 4 shows the evolution of accuracy and loss plots at each strategy in the case of ResNet152V2-
based model. As shown in Figs. 4a, 4b, and 4c, overfitting occurred after a few epochs. The reason
is that a deeper model and more trainable layers would make the model prone to overfitting. On the
contrary, by freezing all CNN-based layers, only the reconstructed layers (a single layer and an output
layer) were trainable, and the model avoided overfitting (Fig. 4d). In strategy 4, the best model that
showed the highest accuracy with as small as possible overfitting was retrained in the Fine-tuning stage
(strategy 6). Fig. 4f showed that both training and testing Acc were improved. The overfitting also did
not appear in strategy 5 when only the first few top layers were trained. However, as shown in Tab. 4,
Strategy 5 provided better performances than Strategy 3 did but worse than Strategy 4 did. A small
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LR causes the classifier layers not to update the appropriate weights, while a large LR causes the well-
trained weights of the top layers to be changed a lot. This problem was solved by Strategy 6. Fig. 4f
showed that fine-tuning some top layers improved both training and testing Acc with a small LR.

Figure 4: Accuracy and loss plots at each strategy in the case of the ResNet152V2-based model. LR
rule: a = 4. ∗The best model achieved at strategy 4 was then fined tuning
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Table 4: Performances of ResNet152V2 based model

Metric Strategy1 Strategy2 Strategy3 Strategy4 Strategy5 Strategy6

Acc 0.750 0.841 0.886 0.932 0.886 0.955
AUC 0.812 0.893 0.917 0.915 0.897 0.932
Spe 0.444 0.611 0.722 0.889 0.883 0.889
Sen 0.703 0.806 0.861 0.925 0.878 0.944
Pre 0.802 0.894 0.919 0.934 0.886 0.964
F1-score 0.706 0.820 0.875 0.929 0.881 0.952
Training time (s) 3128 3125 1488 845 998 1120

As shown in Tab. 4, the TL strategy in which the bottom layers were frozen during training
(strategy 3, 4, 5, and 6) showed higher Acc and better training time. Furthermore, unfreezing some
top layers and retraining the model one more stage with a small LR (Fine-tuning stage) could make
the model adapt better to the polar maps dataset. The proposed method with ResNet151V2 improved
the performances significantly in all metrics: Acc up to 0.955 from 0.75 while training from scratch
and 0.932 while training in only warming up stage; AUC up to 0.932, Sen up to 0.944, Spe up to 0.889,
Pre up to 0.964, and F1-score up to 0.952.

Fig. 5 presents a comparison of the diagnosis results using the CAM technique. The left images
are original images in which the upper is non CAD, and the lower is CAD. The center one is the
heatmap created by CAM with the prediction results: CAD (label 0) or non CAD (label 1) with a
probability score. The right one represents the activation regions. The areas with higher intensity in
these two images are the heatmap with the highest activation response from the last convolutional
layer. As can be seen, while at other strategies, the model seemed to make a wrong decision by looking
at the black area (strategy 1 and 5) or scattering the whole image (strategy 2, 3, and 4), the proposed
method (strategy 6) enables the model to focus on lower radiotracer activity area (purple area) in the
4th quadrant for the CAD classification. These results seem to be close to the diagnosis of the experts.
In addition, with the softmax activation function, the model shows a prediction with its probability
(below the center heatmap). The probability of the prediction and the heatmaps will support the
readers make faster and more accurate decisions.

Figure 5: (Continued)
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Figure 5: Diagnosis results using CAM technique. The left images are original images in which the
upper is non CAD, and the lower is CAD. The center one is the heatmap created by CAM with
the prediction results: CAD (label 0) or non CAD (label 1) with a probability score. The right one
represents the activation regions

5 Discussion

A comparison to the related works in CAD classification using Machine Learning (ML) and Deep
Learning (DL) methods is presented in Tab. 5.
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Table 5: Comparison of the proposed models to the related works

Input data Methods References Patients Acc/AUC/Spe/Sen

Quantitative
and clinical
data from
polar maps

SVM Arsanjani
et al. 2013 [13]

957 0.88/0.94/0.93/0.81

Ensemble Learning Arsanjani
et al. 2014 [15]

713 0.86/0.92/0.88/0.84

Hu et al. 2020
[16]

1980 0.72/0.79/NA/NA

ANNs Rahmani
et al. 2019 [14]

923 0.86/NA/1.0/0.92

Sliced
images

Deep CNNs Trung
et al. 2020 [17]

1413 0.86/NA/NA/NA

Transfer
Learning

Features
Extractor

Berkaya
et al. 2020 [10]

192 0.94/NA/1.0/0.88

Fine-tuning Papandrianos
et al. 2021 [3]

224 0.94/0.93/0.78/0.94

Polar maps
(Images)

Graph CNNs Spier
et al. 2019 [12]

946 0.91/NA/0.96/0.86

Deep CNNs Betancur
et al. 2018 [18]

1638 NA/0.8/0.58/0.82

Betancur
et al. 2019 [19]

1160 NA/0.81/0.83/0.66

Transfer Learning:
Fine-tuning

Apostolopoulos
et al. 2020 [22]

152 0.75/NA/0.75/0.73

Proposed
method

218 0.96/0.93/0.89/0.94

As mentioned early, in the related works using ML, the models’ performance thoroughly depends
on the quality of the features extraction process. Some of the related works focused on improving
the quality of this process to archive high performances, especially the AUC up to 0.94 [13] and Spe
up to 1.0 [14]. Nevertheless, the lack of an automatic features extraction (FE) process is a significant
drawback that made these methods less popular in recent years. On the contrary, as there is no need for
a feature extraction process, DL has become more prevalent in recent years. Among many research on
DL for CAD classification, the highlight is the study on the deployment of graph convolutional neural
networks (Graph CNNs) by Spier et al. [12]. This study improved the performances significantly: Acc
up to 91% and Spe up to 96%, which was state-of-the-art at that time.

Compared with the DL methods, TL method requires fewer data and still gives high performance.
The reason is to use the well-trained models on ImageNet, which has more than 1 million images for
1000 classes. Thus, TL is considered an effective method to solve the problem of data shortage in
medical imaging.
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In related works, while the TL methods for slided images have been archived with very high
performance (Acc 94% in [3,10]), TL method for polar maps proposed by Apostolopoulos et al. [35]
has not yielded high efficiency. Focusing on this problem, we proposed a multi-stage transfer learning
framework to optimize the advantages of TL concept. Compared with the research of Apostolopoulos
et al., the proposed method outperformed [35] in every metric: Acc 95.5% and 75%, Spe 0.89 and 0.75,
Sen 0.94 and 0.73.

Moreover, compared with the other related works in CAD classification, the proposed method
obtained the highest classification accuracy of 95.5% and highest sensitivity of 94.4%. In particular,
among the related works using polar maps, our model showed the highest performances in almost
metrics, even compared to the study of Spier et al. [12].

However, this work has some limitations that need to be considered in future works. Firstly, the
proposed method has been evaluated on only one dataset due to the lack of available datasets. Secondly,
we have disregarded clinical data (such as chest pain and shortness of breath) and demographic data
(such as age and sex), which might improve the CAD diagnosis.

6 Conclusion

This study proposed a multi-stage transfer learning framework for coronary artery disease
diagnosis by polar maps. In the training process, we use different learning rates for each stage.
We fine-tune a small amount of the top layers selectively to optimize the valuable benefits of the
transfer learning technique. We also investigated our framework on various popular CNN-based pre-
trained models, and ResNet152V2-based model obtained the highest performances with the accuracy
of 95.5%, AUC 0.932, sensitivity 94.4%, precision 96.4%, and F1-score 95.2%. To the best of our
knowledge, the results are competitive or even better performances than all state-of-the-art approaches
regarding classification accuracy and sensitivity. Consequently, the proposed method can be used to
assist SPECT polar maps readers in coronary artery disease diagnosis.

In future works, we intend to improve the performances of the proposed model by using ensemble
learning in which the outcomes of multiple pre-trained models can be strategically combined. We
also plan to consider combining clinical data, demographic data, and polar maps to deploy a deep
diagnostic model comparable to clinicians and SPECT image expert readers.
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