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Abstract: Osteosarcoma is a type of malignant bone tumor that is reported
across the globe. Recent advancements in Machine Learning (ML) and Deep
Learning (DL) models enable the detection and classification of malignancies
in biomedical images. In this regard, the current study introduces a new
Biomedical Osteosarcoma Image Classification using Elephant Herd Opti-
mization and Deep Transfer Learning (BOIC-EHODTL) model. The pre-
sented BOIC-EHODTL model examines the biomedical images to diagnose
distinct kinds of osteosarcoma. At the initial stage, Gabor Filter (GF) is
applied as a pre-processing technique to get rid of the noise from images.
In addition, Adam optimizer with MixNet model is also employed as a
feature extraction technique to generate feature vectors. Then, EHO algorithm
is utilized along with Adaptive Neuro-Fuzzy Classifier (ANFC) model for
recognition and categorization of osteosarcoma. EHO algorithm is utilized
to fine-tune the parameters involved in ANFC model which in turn helps
in accomplishing improved classification results. The design of EHO with
ANFC model for classification of osteosarcoma is the novelty of current
study. In order to demonstrate the improved performance of BOIC-EHODTL
model, a comprehensive comparison was conducted between the proposed
and existing models upon benchmark dataset and the results confirmed the
better performance of BOIC-EHODTL model over recent methodologies.
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1 Introduction

Osteosarcoma is a type of primary bone malignancy reported among children, teens and young
adults, according to American cancer society. The present treatment modality comprises of surgery
and neoadjuvant chemotherapy which have significantly increased the five-years’ survival rate of
osteosarcoma-affected patients. Between 1975 and 2010, there was an increase found in five-years’
survival rate from 40 to 76 percent among osteosarcoma children aged below 15 years and from 56 to
66 percent among adolescent elders aged between 15 and 19 years [1]. But the prognosis for patient who
develops distal metastases is still miserable. The five-years’ survival rate for metastatic Osteosarcoma
is less than 20 percent. In medical settings, metastasectomy is one of the approaches to cure metastatic
osteosarcoma that demands early diagnosis of metastasis. However, it is challenging to diagnose
the early stages of disease development, due to sub-medical manifestation. Moreover, high rate of
pulmonary metastases, increasing frequency of chemo-resistance, and non-targeted therapy are some
of the challenges involved in treatment process. Osteosarcoma harbor highly complicated genomic
landscape, and heterogeneity within as well as among tumors [2]. Until now, no target mutation is
authenticated to increase the treatment of this lethal disease [3].

Primary bone tumors are accountable for 5–10 percent of each pediatric tumor diagnosed every
year. Osteosarcoma is a primary form of malignant primary bone cancer. Notwithstanding the
restricted 1,000 new cases every year in the United States, the prognoses of osteosarcoma remain a
challenge [4]. Two age peaks of occurrence are observed such as people at adolescent stage i.e., age
range of 10–20 and the peak age of children under 10 years. Usually, Osteosarcoma starts at the
metaphysis of long bones in low limbs which is accountable for 40–50 percent of overall cases [5].
Usually, osteosarcoma symptoms include redness, warmth at the site of tumor, and mild localized
bone pain. The patient experiences an increase in pain in the course of time and it frequently affects the
patient’s movement and joint functions. If osteosarcoma is not diagnosed at early stages, it is predicted
to reach a wide-range of metastasis that include lungs, soft tissues, and other bones [6]. Magnetic
Resonance Images (MRI), histological biopsy tests, and X-rays are important diagnostic methods
that are currently under use for osteosarcoma diagnosis. At present, the diagnosis of osteosarcoma
comprises of physical examinations and a comprehensive patient history analysis [7].

Typically, the presented symptoms include constant, deep-seated, swelling, and gnawing pain
at the stimulated site. Pain in various regions might portend skeletal metastasis; thus, it needs
to be properly examined [8]. With regards to disease diagnosis, the normal investigation methods
for the assessment of possible osteosarcoma include laboratory tests, X-ray of the infected bone,
chest Computed Tomography (CT) scan, Magnetic Resonance Imaging (MRI) scans of the infected
bone, whole-body technetium bone scan, percutaneous image-guided biopsy and chest X-ray [9].
Even though biopsy-based method identifies the malignancy in an efficient manner, the limitation
of histological-guided biopsies and MRI scans has constrained the detection ability. In addition,
histological specimen-based investigation is a laborious process. For instance, a precise diagnosis of
osteosarcoma malignancy needs the investigation of a minimum of 50 histology slides to denote a plane
of large 3D tumors [10]. In this background, the current study proposes the application of Artificial
Intelligence and Machine Learning models for early diagnosis of osteosarcoma. Fig. 1 illustrates the
contributions of AI in healthcare system.
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Figure 1: AI in healthcare

In literature [11], Deep Learning (DL) and Machine Learning (ML) fusion models have been
validated for classification of malignant, benign, and intermediate bone tumors based on patient’s
clinical features and traditional radiographs of the lesion. DL and ML fusion methods have also
been developed for classification of tumors by traditional radiographs of the lesion and potentially
appropriate clinical data. In the study conducted earlier [12], a DL-related osteosarcoma classification
algorithm was suggested using ensemble approach and fusion approach. Multilevel features can be
derived from a pre-trained Efficient Nets which is well trained on imagenet1k dataset. Efficient Nets
are embedded with Convolutional Neural Networks (CNN) in terms of resolution, width, and depth.
The features are derived from opening layers, intermediate layers, and the last layers of the chosen
Efficient Net. The features are provided to fault-control output coding classifiers autonomously with
Support Vector Machine as base learner.

The authors [13] presented an efficient detection technique to diagnose osteosarcoma at early
stages and the technique is enhanced by the suggested Fractional-Harris Hawks Optimization-related
Generative Adversarial Network (F-HHO-based GAN). Here, the suggested F-HHO was created by
integrating HHO, Fractional and Calculus correspondingly. Tumor categorization was performed by
GAN with the help of histological image slides. Bansal et al. [14–17] exhibited the advancements
and implemented a Computer-Aided Diagnosis (CAD) system on the basis of image processing,
deep learning, and machine learning techniques. The datasets used were composed of Hematoxylin
and Eosin (H&E)-stained histology images, received by biopsy centers, at distinct phases of cancer.
The features were derived after image segmentation process. CNN is designed or customized for
categorization of tumors amongst patients into four categories.

The current study introduces a new Biomedical Osteosarcoma Image Classification using Ele-
phant Herd Optimization and Deep Transfer Learning (BOIC-EHODTL) model. The presented
BOIC-EHODTL model examines the biomedical images for the occurrence of distinct kinds of
osteosarcoma. At the initial stage, Gabor Filter (GF) is applied as a pre-processing technique to get
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rid of the noise from images. In addition, Adam optimizer with MixNet model is also employed as a
feature extraction technique to generate feature vectors. Followed by, EHO algorithm with Adaptive
Neuro-Fuzzy Classifier (ANFC) model is utilized for recognition and categorization of osteosarcoma.
In order to demonstrate the improved performance of BOIC-EHODTL model, a comprehensive
comparison study was conducted on benchmark dataset.

2 The Proposed Model

In this study, a novel BOIC-EHODTL model has been developed for the investigation of
biomedical images to identify distinct kinds of osteosarcoma. Primarily, GF technique is employed
as a pre-processing technique to get rid of the noise from images. At the same time, Adam optimizer
with MixNet model is also employed as a feature extraction technique to generate feature vectors.
Moreover, EHO algorithm, with ANFC model, is also utilized for recognition and categorization of
osteosarcoma. Fig. 2 illustrates the block diagram of BOIC-EHODTL technique.

Figure 2: Block diagram of BOIC-EHODTL technique

2.1 Image Pre-Processing

At the initial stage, GF technique is employed as a pre-processing technique to get rid of the
noise. GF is a bandpass filter that is widely used to remove noise. In 2-D coordinate (a, b) system, GF
comprises of real and imaginary components as given below.

Gδ,θ ,ψ ,σ ,γ (a, b) = exp(−a′2 + γ 2b′2

2σ 2
) × exp(j(2π

a′

δ
+ ψ)) (1)

where

a′ = a cos θ + b sin θ (2)

b′ = −a sin θ + b cos θ (3)

where δ denotes the sinusoidal factor wavelength, and θ denotes the orientation separation angle of
Gabor kernels.



CMC, 2022, vol.73, no.3 6447

2.2 Feature Extraction

After image pre-processing, Adam optimizer with MixNet model is employed as a feature
extraction technique to generate feature vectors [18]. In general, it is an observation that good
efficiency and accuracy are attained by imposing a balance among each dimension of the network.
So, EfficientNet is presented to improve the efficiency of Convolution Neural Network (CNN) by
scaling in 3D values i.e., resolution, width, and depth, with a subset of scaling coefficients that meet
certain constraints. With a total of 18 convolutional layers i.e., D = 18, all the layers are armed with
kernel k(3,3) or k(5,5). The input image contains R, G, and B channels that correspond to the size,
224 × 224. The second layer is scaled down in terms of resolution to minimize the feature map size,
while on the other hand, it is scaled up in terms of width to improve the performance. For example, the
next convolution layer contains W = 16 filters, and the amount of filters using second convolutional
layer is W = 24. The maximal amount of filters is D = 1,280 and for the final layer, it is 200 which
is fed to Fully Connected (FC) layer. It uses k(3,3), k(5,5), or k(7,7) kernels. But large kernel tends
to enhance both efficiency and accuracy. Moreover, large kernel assists in capturing high-resolution
patterns, whereas smaller kernels allows the extraction of low-resolution patterns. In order to retain
a balance between efficiency and accuracy, MixNet family is constructed on the basis of MobileNet
architecture. It has an aim to achieve i.e., to reduce FLOPs and the number of parameters.

Adam optimization, ‘Adaptive Moment estimate optimization’ follows an approach for 1st-order
gradient-based optimization [19]. It depends upon adaptive estimate of low-order moment. At this
point, gt signifies the gradient, θt represents the parameter at time t, β1 and β2 go to [0,1], and α signifies
the rate of learning. g2

t represents element-wise square of gt�gt and projects the default settings i.e.,
α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. All the procedures on vector are determined
element-wise, while β t

1 and β t
2 represent β1 and β2 to the power of t.

2.3 Image Classification

For image classification, ANFC model is utilized to recognize and categorize osteosarcoma [20].
ANFC structural method is a dynamic network that utilizes supervised learning method and is similar
to Takagi-Sugeno method. Assume a set of two inputs, x and y between which one output f has the
structure. A collection of if-then rules is employed and sample rules are shown herewith.

• Rule 1: If x is A1 and y is B1 Then f1 = p1x + q1y + r1.
• Rule 2: If x is A2 and y is B2 Then f2 = p2x + q2y + r2.

Here A1, A2 and B1, B2 indicate the membership functions of input x and y, p1, q1, r1 and p2, q2, r2

indicate the linear variables that exist in the resulting portion of Takagi-Sugeno method. ANFC
structure involves five layers as demonstrated in the following section. The 1st and 4th layers include an
adoptive node, while the residual layer has a static node.

Layer 1

All the nodes might adapt themselves to a function variable. The outcome, from all the nodes,
is a degree of membership value that is represented by the input of membership function. Especially,
bell-shaped Membership Function (MF) is applied as given below.

μAi (x) = 1

1 +
∣∣∣∣
x − c

a

∣∣∣∣
2b (4)
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Here, μAi indicates the degree of MF for fuzzy set Ai, and {a, b, c} denotes the variable of MF
which alters its shape.

Layer 2

All the nodes in the layer are either static or pre-determined with a product operator, �. It
describes the firing strength of all the rules.

Layer 3

All the nodes in this layer are static or non-adoptive and are represented as N. It standardizes the
firing strength i.e., wi = wi/�wi.

Layer 4

All the nodes in this layer are dynamic in nature with a function as given below.

wifi = pix + qiy + ri (5)

The variable in this layer is determined by the succeeding parameters.

Layer 5

All the nodes in this layer are either static or non-dynamic that define the overall results by
calculating the received signals from previous node as �wifi.

Both 1st and 4th layers involve the adjustable variables in training phase. Epoch rate, MF, and fuzzy
rule amount should be accurately selected using ANFC proposal after which the result is achieved for
data over-fitting. It can be performed by integrating the least-square with gradient descent method.

2.4 Parameter Optimization

In this final stage, EHO algorithm is applied to fine tune the parameters [21–24] involved in
ANFC model [25]. EHO technique is performed with the help of characterized procedures, while the
performance is determined as given herewith; Assume an elephant clan to be ci. Next, the upcoming
location of elephant is j in a clan and is upgraded by the following equation.

xnew,ci,j = xci,j + α × (
xbest,ci − xci,j

) × r, (6)

whereas xnew,ci,j demonstrates the extended position, xci,j represents the latest place of an elephant j in
clan ci. xbest,ci indicates a matriarch of clan ci; in which female is an optimum elephant. A scaling factor
α ∈ [0, 1] defines the efficacy of leader i.e., ci on xci,j. r ∈ [0, 1], while it is determined as a stochastic
distribution that offers a better objective in diversified population. Recently, a standard distribution is
exploited. It is apparent that xci,j = xbest,ci, indicates that a matriarch in a clan could not be upgraded.
So, it is removed by expanding the optimum elephant using the following equation.

xnew,ci,j = β × xcenter,ci, (7)

Here, the power of xcenter,ci on xnew,ci, is normalized using β ∈ [0, 1]. The dataset from an individual
in clan ci is utilized for the development of a novel individual xnew,ci,j. The intermediate of clan ci, xcenter,ci,
can be evaluated for d-th dimension vector using D calculation, where D denotes the whole dimension
as follows:

xcenter,ci,d = 1
nci

×
nci∑

j=1

xci,j,d (8)
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Now, 1 ≤ d ≤ D denotes d-th dimensional vector, nci indicates the count of individuals in ci, xci,j,d

indicates the d th dimensional vector of individual xci,j. In each clan, male elephant leaves the family
and lives individually, when it grows as an adult. This separation is called isolation operator, thus the
optimization problem is resolved. In order to enhance the exploration capability of EHO technique,
consider that an elephant with poor fitness can execute a separate operator for all the generations as
given below.

xworst,ci = xmin + (xmax − xmin + 1) × rand (9)

Now xmax and xmin indicate the upper and lower limits, correspondingly. xworst,ci describes the lesser
individual elephant in clan ci. rand ∈ [0, 1] represents the group of stochastic distribution and standard
distribution within [0,1] as applied recently. For EHO, similar to metaheuristic approach, a kind of
elitism strategy is employed to secure the optimal individual by separating operators and ending the
clan extension. Initially, an elephant is secured while a lesser individual is swapped with the protected
elephant subsequently. The elitism pattern guarantees that the second elephant population is efficient
than the previous one.

EHO method develops a Fitness Function (FF) to increase the classifier’s performance. During
this event, minimum classifier error rate is assumed so that FF is measured using Eq. (10). Low error
rate denotes the best results, while the worst result translates into maximal error rate.

fitness (xi) = ClassifierErrorRate (xi) = number of misclassified samples
Total number of samples

∗ 100 (10)

3 Results and Discussion

In this section, the proposed BOIC-EHODTL model was experimentally validated using a
benchmark dataset [26] and the results are discussed under different parameters. The benchmark data
includes 1,144 images with 345 images into Viable Tumor (VT), 263 images into Non-Viable Tumor
(NVT), and 536 images into Non-Tumor (NT). A few sample images is demonstrated in Fig. 3.

Fig. 4 exhibits a set of confusion matrices generated by the proposed BOIC-EHODTL model
on distinct sizes of training (TR) and testing (TS) datasets. With 70% of TR data, BOIC-EHODTL
model classified 243 images into VT, 175 images into NVT, and 368 images into NT. Moreover, with
30% of TS data, the proposed BOIC-EHODTL technique categorized 96 images into VT, 83 images
into NVT, and 164 images into NT. In line with this, at 80% of TR data, BOIC-EHODTL model
recognized 281 images into VT, 212 images into NVT, and 397 images into NT. At last, with 20% of
TS data, the proposed BOIC-EHODTL approach classified 63 images into VT, 41 images into NVT,
and 122 images into NT.

Fig. 5 shows the results produced by BOIC-EHODTL model on 70% of TR data. The experimen-
tal values denote that the proposed BOIC-EHODTL model showed high performance under every
class. For instance, BOIC-EHODTL model identified the samples under VT class with accuy, precn,
recal, specy, and Gmeasure values such as 98.88%, 98.38%, 97.98%, 99.28%, and 98.18% respectively. Along
with that, BOIC-EHODTL system identified the samples as NVT class with accuy, precn, recal, specy,
and Gmeasure values such as 98.88%, 97.77%, 97.22%, 99.35%, and 97.49% respectively. Moreover, the
proposed BOIC-EHODTL algorithm categorized the samples under NT class with accuy, precn, recal,
specy, and Gmeasure values such as 98.75%, 98.40%, 98.92%, 98.60%, and 98.66% respectively.
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Figure 3: Sample images

Figure 4: (Continued)
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Figure 4: Confusion matrix of BOIC-EHODTL technique on distinct TR and TS datasets

Figure 5: Results of the analysis of BOIC-EHODTL technique on 70% of TR data

Tab. 1 provides a brief overview on classifier results achieved by BOIC-EHODTL model under
distinct class labels. Fig. 6 demonstrates the results accomplished by BOIC-EHODTL model on 30%
of TS data. The experimental values represent that the proposed BOIC-EHODTL system increased its
performance under every class. For instance, the proposed BOIC-EHODTL technique identified the
samples under VT class with accuy, precn, recal, specy, and Gmeasure values such as 99.71%, 100%, 98.97%,
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100%, and 99.48% correspondingly. Likewise, BOIC-EHODTL approach classified the samples under
NVT class with accuy, precn, recal, specy, and Gmeasure values like 99.71%, 98.81%, 100%, 99.62%, and
99.40% correspondingly. Furthermore, BOIC-EHODTL model categorized the samples under NT
class with accuy, precn, recal, specy, and Gmeasure values such as 100%, 100%, 100%, 100%, and 100%
correspondingly.

Table 1: Results of the analysis of BOIC-EHODTL technique under different measures on 70% of TR
and 30% of TS

Class labels Accuracy Precision Recall Specificity G-measure

Training set (70%)

Viable tumor 98.88 98.38 97.98 99.28 98.18
Non-viable tumor 98.88 97.77 97.22 99.35 97.49
Non-tumor 98.75 98.40 98.92 98.60 98.66

Average 98.83 98.18 98.04 99.08 98.11

Testing set (30%)

Viable tumor 99.71 100.00 98.97 100.00 99.48
Non-viable tumor 99.71 98.81 100.00 99.62 99.40
Non-tumor 100.00 100.00 100.00 100.00 100.00

Average 99.81 99.60 99.66 99.87 99.63

Figure 6: Results of the analysis of BOIC-EHODTL technique on 30% of TS data

Tab. 2 offers an overview on classifier results accomplished by BOIC-EHODTL technique under
distinct class labels. Fig. 7 portrays the results attained by BOIC-EHODTL approach on 80% of TR
data. The experimental values denote that the proposed BOIC-EHODTL methodology obtained an
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increased performance under every class. For instance, BOIC-EHODTL model found the samples
under VT class with accuy, precn, recal, specy, and Gmeasure values such as 98.80%, 96.56%, 99.65%,
98.42%, and 98.09% respectively. Similarly, the presented BOIC-EHODTL model categorized the
samples under NVT class with accuy, precn, recal, specy, and Gmeasure values such as 98.03%, 96.36%,
95.50%, 98.85%, and 95.93% correspondingly. Eventually, the proposed BOIC-EHODTL system
classified the samples under NT class with accuy, precn, recal, specy, and Gmeasure values like 97.70%,
98.27%, 96.59%, 98.61%, and 97.43% respectively.

Table 2: Results of the analysis of BOIC-EHODTL technique under different measures on 80% of TR
and 20% of TS

Class labels Accuracy Precision Recall Specificity G-measure

Training set (80%)

Viable tumor 98.80 96.56 99.65 98.42 98.09
Non-viable tumor 98.03 96.36 95.50 98.85 95.93
Non-tumor 97.70 98.27 96.59 98.61 97.43

Average 98.18 97.06 97.24 98.63 97.15

Testing set (20%)

Viable tumor 99.56 98.44 100.00 99.40 99.22
Non-viable tumor 99.13 95.35 100.00 98.94 97.65
Non-tumor 98.69 100.00 97.60 100.00 98.79

Average 99.13 97.93 99.20 99.44 98.55

Figure 7: Results of the analysis of BOIC-EHODTL technique on 80% of TR data
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Fig. 8 depicts the results accomplished by BOIC-EHODTL method on 20% of TS data. The
experimental values infer that the proposed BOIC-EHODTL model achieved an increased perfor-
mance under every class. For instance, BOIC-EHODTL model identified the samples under VT
class with accuy, precn, recal, specy, and Gmeasure values such as 99.56%, 98.44%, 100%, 99.40%, and
99.22% respectively. Followed by, BOIC-EHODTL model classified the samples under NVT class
with accuy, precn, recal, specy, and Gmeasure values such as 99.13%, 95.35%, 100%, 98.94%, and 97.65%
correspondingly. In addition, BOIC-EHODTL approach categorized the samples under NT class
with accuy, precn, recal, specy, and Gmeasure values such as 98.69%, 100%, 97.60%, 100%, and 98.79%
correspondingly.

Figure 8: Results of the analysis of BOIC-EHODTL technique on 20% of TS data

Both Training Accuracy (TA) and Validation Accuracy (VA), attained by BOIC-EHODTL model
on test dataset, were determined and the results are demonstrated in Fig. 9. The experimental outcomes
imply that the proposed BOIC-EHODTL model achieved the maximum TA and VA values. To be
specific, VA seemed to be higher than TA.

Both Training Loss (TL) and Validation Loss (VL), achieved by the proposed BOIC-EHODTL
model on test dataset, were determined and the results are portrayed in Fig. 10. The experimental
outcomes infer that the proposed BOIC-EHODTL model accomplished the least TL and VL values.
To be specific, VL seemed to be lower than TL.

Tab. 3 offers the comparison study results between BOIC-EHODTL model and other models.
Fig. 11 shows the accuy values obtained by BOIC-EHODTL model and other recent models. The figure
shows that Support Vector Machine (SVM) model achieved ineffectual results with a minimal accuy of
89.90%. In line with this, CNN, DL, and Visual Geometry Group (VGG)-19 models reached moderate
accuy values such as 92.40%, 91.20%, and 93.91% respectively. Along with that, Xception model
accomplished a reasonably accuy of 99.54%. But the proposed BOIC-EHODTL model produced the
maximum accuy of 99.81%.
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Figure 9: TA and VA analyses results of BOIC-EHODTL technique

Figure 10: TL and VL analyses results of BOIC-EHODTL technique
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Table 3: Comparative analysis results of BOIC-EHODTL technique and recent algorithms

Methods Accuracy Precision Sensitivity Specificity

CNN model 92.40 97.00 96.00 93.00
Deep learning model 91.20 94.21 92.15 92.65
SVM model 89.90 95.00 93.00 93.00
VGG 19 model 93.91 95.37 95.90 95.90
Xception model 99.54 99.23 99.17 99.12
BOIC-EHODTL 99.81 99.66 99.60 99.87

Figure 11: Accy analysis results of BOIC-EHODTL technique and other recent algorithms

Fig. 12 shows the precn values obtained by the proposed BOIC-EHODTL model and other recent
models. The figure highlights that SVM model resulted in ineffectual outcomes with a minimal precn

value of 95%. Eventually, CNN, DL, and VGG-19 systems reached moderately closer precn values such
as 97%, 94.21%, and 95.37% respectively. In addition, Xception model accomplished a reasonable precn

of 99.23%. However, the proposed BOIC-EHODTL technique produced the highest precn of 99.66%.

Fig. 13 portrays the sensy values obtained by BOIC-EHODTL model and other recent models.
The figure highlights that SVM model produced ineffectual results with a minimal sensy value of
93%. Besides, CNN, DL, and VGG-19 algorithms reached moderately closer sensy values such as
96%, 92.15%, and 95.90% respectively. Similarly, Xception model accomplished a reasonable sensy of
99.17%. At last, the proposed BOIC-EHODTL methodology produced a high sensy of 99.60%. From
the detailed results and discussion, it is apparent that BOIC-EHODTL model is superior to recent
models under different measures.
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Figure 12: Precn analysis results of BOIC-EHODTL technique and other recent algorithms

Figure 13: Sensy analysis results of BOIC-EHODTL technique and other recent algorithms

4 Conclusion

In this study, a novel BOIC-EHODTL model has been developed to analyze biomedical images
and identify distinct kinds of osteosarcoma. Primarily, GF technique is employed as a pre-processing
technique to get rid of the noise from images. At the same time, Adam optimizer with MixNet
model is also employed as a feature extraction technique to generate feature vectors. Moreover, EHO
algorithm with ANFC model is utilized for both recognition and categorization of osteosarcoma.
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EHO algorithm is used to fine tune the parameters involved in ANFC model. In order to demonstrate
the improved performance of BOIC-EHODTL model, a comprehensive comparison analysis was
conducted upon benchmark dataset and the results portrayed better performance of BOIC-EHODTL
model over recent methodologies. In future, hybrid DL models can be employed in the classification
of other biomedical images too.
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