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Abstract: Intelligent Transportation System (ITS) is one of the revolutionary
technologies in smart cities that helps in reducing traffic congestion and
enhancing traffic quality. With the help of big data and communication
technologies, ITS offers real-time investigation and highly-effective traffic
management. Traffic Flow Prediction (TFP) is a vital element in smart
city management and is used to forecast the upcoming traffic conditions
on transportation network based on past data. Neural Network (NN) and
Machine Learning (ML) models are widely utilized in resolving real-time
issues since these methods are capable of dealing with adaptive data over a
period of time. Deep Learning (DL) is a kind of ML technique which yields
effective performance on data classification and prediction tasks. With this
motivation, the current study introduces a novel Slime Mould Optimization
(SMO) model with Bidirectional Gated Recurrent Unit (BiGRU) model for
Traffic Prediction (SMOBGRU-TP) in smart cities. Initially, data preprocess-
ing is performed to normalize the input data in the range of [0, 1] using min-
max normalization approach. Besides, BiGRU model is employed for effective
forecasting of traffic in smart cities. Moreover, the novelty of the work lies
in using SMO algorithm to effectively adjust the hyperparameters of BiGRU
method. The proposed SMOBGRU-TP model was experimentally validated
and the simulation results established the model’s superior performance in
terms of prediction compared to existing techniques.
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1 Introduction

The tremendous growth experienced in the total number of automobiles in recent years, without
any additional supporting means of transportation architecture, is one of the major issues in smart
city development [1]. Due to countless number of cars on road, urban regions are overcrowded which
in turn causes multiple effects such as increased air and noise pollution, reduced fuel proficiency
and increased velocity of traffic. This scenario stimulates the intersection traffic by major alterations
in pace control structures of metropolitan cities and towns [2]. Since these systems further disturb
traffic signal control mechanisms and pollution control strategies, logistics and traffic management
have become major issues to deal with. In earlier times, traffic signal controlling tools were used in
traffic administration system whereas such tools are used for traffic management these days in smart
cities. It plays a major role in ensuring the safety of people who experience traffic [3]. Traffic data
accumulations act as a significant input in both management and understanding of the traffic. Traffic
counting process is commonly executed these days while conventional city or state governments have
certain ways to track the count of traffic such as microwave sensors, cameras, radar weapons, and
speed guns [4]. Fig. 1 illustrates the structure of ITS.

Figure 1: Structure of intelligent transportation systems

For a known period of time, researchers are working on automobile traffic prediction and
proposed few models to achieve it. In specialized publications, various solutions have been proposed
[5] which function in a fair and accurate manner under regular circumstances i.e., no unplanned
incidents on road network. But, on many occasions, these methodologies are unprepared to find
out the convoluted congestion propagation patterns. This lack of preparation results in erroneous
predictions under severe conditions, although exact predictions are required during these important
times [6,7]. Such serious conditions occur through multiple factors such as events, traffic threats,
extreme weather conditions, and so on. Even though it is not easy to get rid of the suspicious element
entirely from traffic estimation, it is possible to reduce the adverse effect of the blockage by considering
exogenous data resources [8–10].

The advancements made in technology and unique ideas for smart cities have encouraged great
deals of development in smart cities. The application areas of Artificial Intelligence (AI) such as big
data, Deep Learning (DL), Machine Learning (ML), and Internet of Things (IoT) [11], have gained
importance in assisting technological evolution of smart cities. Amongst them, ML approaches have
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endowed numerous applications in different fields such as air pollution monitoring and estimation,
city planning, energy demand, consumption estimation, mobility management and monitoring of food
supply and production estimation, resource distribution, etc. [12,13].

The current article introduces a novel Slime Mould Optimization (SMO) with Bidirectional Gated
Recurrent Unit (BiGRU) model for Traffic Prediction (SMOBGRU-TP) in smart cities. Initially, the
data is pre-processed to normalize the input data within a range of [0,1] using min-max normalization
approach. Besides, BiGRU model is employed for effective forecasting of traffic in smart cities.
Further, SMO algorithm is utilized for fine tuning the hypervariables involved in BiGRU design.
In order to validate the superior prediction performance of the proposed SMOBGRU-TP model,
numerous analyses were conducted and the results established the supremacy of the proposed model.

2 Literature Review

Vijayalakshmi et al. [14] projected an attention-based multi-stage predictive method named
Convolution Neural Network(CNN)-Long Short Term Memory (LSTM). The suggested system used
spatial and time-based traffic information extracted with the help of CNN and LSTM systems in
order to enhance the accuracy of the model. Attention-based method assists in identifying the nearby
traffic information, since the speed is an important parameter to forecast the upcoming values of
the flow. In literature [15], the authors presented ML and optimization methods to empower an
intelligent ecosystem. For validation purpose, a computation was executed in this study with multi-
layer perceptron and Particle Swarm Optimization (PSO) approach.

Wang et al. [16] introduced a multi-task DL approach named ‘Multitask Recurrent Graph
Convolution Network (MRGCN)’ which precisely forecasts the traffic data in smart cities. Especially,
this study presented a multitasking architecture that consists of four major elements such as a task-
specific decoder to forecast the traffic flow, a region flow encoding unit to model region flow dynamics,
a transition flow encoding unit to explore transition flow correlation, and a context modelling module
for contextual combination of two kinds of traffic flow. Khan et al. [17] aimed at developing a data
fusion-related traffic congestion control scheme in smart city using DL method. A hybrid mechanism
was utilized in this study based on CNN and LSTM frameworks for region-related traffic flow
prediction in smart cities. CNN was employed here for spatial dataset categorization, whereas LSTM
was applied for temporal dataset classification.

Kuang et al. [18] presented a traffic signal control method based on reinforcement learning using
state reduction. At first, a reinforcement learning method was determined according to the previous
traffic flow dataset. In addition to this, the study also presented a dual-objective reward operation
that might improve the matching and degree decrease vehicle delay. Neelakandan et al. [19] developed
a powerful IoT-based traffic predictive model with OWENN approach and traffic signal control
scheme using Intel 80,286 microprocessor for smart cities. The presented technique comprised of five
stages such as traffic signal control system, categorization, optimization of traffic IoT values, feature
extraction and IoT data collection. At first, IoT traffic dataset is gathered from the information. Next,
weather, direction, and traffic dataset are extracted. Followed by, the extracted feature is fed as input
to the classification model that classifies the location as either heavy traffic or not.

3 The Proposed Model

In current study, a new SMOBGRU-TP model has been proposed to forecast the flow of traffic
in smart city environment. The presented SMOBGRU-TP model comprises of data pre-processing
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initially, during when the input data is normalized within a range of [0,1] using min-max normalization
approach. Further, SMO-BiGRU model is employed for effective forecasting of traffic in smart cities.

3.1 Data Pre-processing

At this preliminary level, the presented SMOBGRU-TP model comprises of data pre-processing
which is performed to normalize the input data within a range of [0,1] through min-max normalization
approach from scikit library. In these experiments, the preceding traffic flow of an hour i.e., a time
series of 12 data points, is considered. It is used in the prediction of traffic flow that approaches from
the following five minutes. Here, the list is generally grouped into 13 readings and the lists are utilized
for training and testing purposes.

3.2 Design of BiGRU Based Predictive Model

After data pre-processing, BiGRU model is employed for effective forecasting of traffic in smart
cities. The benefit of utilizing DL approaches is its capability to learn abstract features under several
hidden layers. Gated Recurrent Unit (GRU) method is different from LSTM since it combines forget
as well as input gates to a single upgrade gate. Further, it also integrates the cell as well as hidden
states [16]. Thus, the latest GRU technique is simple and fast compared to typical LSTM technique,
particularly when training big data. It is stored for several times with small performance variance
compared to typical LSTM method. Both GRU and LSTM maintain essential characteristics with
several gates so as to make sure that these characteristics are not lost from long-term broadcast. Fig. 2
illustrates the structure of GRU technique.

Figure 2: Structure of GRU

Whereas Zt signifies the upgrade gate and rt denotes the reset gate. At time t, GRU computes the
novel state as follows.

ht = Z ∗ h(t−1) + (1 − Z) ∗ h̃ (1)

This is to compute a linear interpolation between the earlier state ht−1 and the existing candidate
state h̃t with novel sequence data. The upgrade gate zt resolves the issues like maintaining several past
data and adding several novel data. It manages to an extent up to which the data of the preceding state
is carried on to the existing state. The superior value of the state is denoted by zt while the additional
data of preceding state is taken forward. The state of zt is upgraded as follows.

zt = σ(WZ.xt + UZ.h(T−1) + bZ) (2)
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Here, xt refers to the instance vector at time t and h̃t denotes the candidate state which was
calculated similar to the hidden layer of typical Recurrent Neural Network (RNN).

h̃t = tanh (Wh.xt + r ∗ Uh.h(t−1) + bh) (3)

Here, rt refers to the reset gate that controls several preceding states and gives to the existing
candidate state, h̃t. Lesser the value, lesser the contribution is, in the preceding state. When rt = 0, it is
forgotten as the preceding state. The reset gate is upgraded as follows.

rt = σ(Wγ .xt + Uγ .h(t−1) + bγ ) (4)

In case of several sequence modelling tasks, it is useful to gain access to upcoming and past
contexts. But typical GRU network procedures perform sequence modelling in temporal manner and
it disregards the future context altogether. Bi-directional GRU network expands the unidirectional
GRU network by presenting an additional layer whereas the hidden-to-hidden associates flow from
the opposite temporal sequence. This technique is capable of exploiting data from both past and the
future. Similarly, GRUs provide a disappearing gradient issue by utilizing two gates such as update and
reset gates. Essentially, these are two vectors that choose the dissemination of data to the output gate
and these vectors are trained to retain the data even earlier. This permits it to pass the the applicable
data down a chain of events so as to achieve optimum forecasts.

3.3 SMO Based Hyperparameter Optimization

In this final stage, SMO algorithm is utilized for fine tuning the hyper-variables of BiGRU model
[20–23]. Benabbou et al. [24] proposed SMO algorithm which is inspired from natural simulation
as per the foraging and diffusion characteristics of slime mould. In current study, ‘slime mould’
(SM) represents Physarum polycephalum which is the major player in nutritious phase of SM. Here,
the organic material in SM is accountable for travelling near the food, finding and digesting. The
arithmetical model for the abovementioned stages is given below.

The individual objective optimization method is shown herewith.

min f (X) (5)

s.t.lb ≤ X ≤ ub

Here, f (x) denotes the optimization function, and lb, ub ∈ Rd indicate the upper and lower limits
of the parameter, χ ∈ Rd. For the abovementioned d dimension optimization issue, the initialized SM
population with n individuals is represented by n × d matrix named X(0) = {X1, X2, · · · , Xn. All the
individuals in this population are nothing but vectors with d components that can be calculated as
follows.

Xi = lb + rand · (ub − lb), i = 1, 2, . . . , n (6)

SM can approach the food based on the odor in air as given below.

X(t + 1)

{
Xb(t) + vb · (W · XA(t) − XB(t)), r < p
vc · X(t), r ≥ p

(7)
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Here, X signifies the location of SM, t indicates the existing iteration value, Xb denotes a separate
location with maximum odor concentration, XA and XB indicate two individuals that are arbitrarily
chosen from the population. Such behaviors are inspired by two variables, vb and vc, which lie within
[−a, a] and vc gets linearly reduced within [0,1]. W epitomizes the weight of the searching agents and
r denotes the arbitrary value within [0, 1]. It can be expressed as per the literature [25]:

p = tanh |S(i) − DP|, i = 1, 2, . . . , n (8)

Now, S(i) signifies the fitness value of the existing individuals whereas DF signifies the optimum
fitness value in existing iteration as shown in the following equation.

vb = [−a, a], a = arctanh
(

− 2
max− t

+ 1
)

(9)

Here, max− t embodies the maximal number of iterations. Weight W is calculated as given below.

W(SmellIndex(i) =

⎧⎪⎪⎨
⎪⎪⎩

1 + r · log
(

bF − S(i)
bF − wF

+ 1
)

, condition

1 + r · log
(

bF − S(i)
bF − wF

+ 1
)

, others
(10)

SmellIndex = sort(S) (11)

In this equation, the condition indicates the initial half of the population while r indicates an
arbitrary value within [0, 1]. SmellIndex denotes the series of fitness values arranged in the ascending
order with minimal value issue and bF and wF indicate the optimum and worst values attained in the
existing generation.

This phase mimics the contraction of venous tissues of the SM to search food. It alters the
searching pattern based on the quality of food [26]. It is arithmetically formulated in the following
equation,

X∗ =

⎧⎪⎨
⎪⎩

rand · (ub − lb) + lb, rand < z
Xb(t) + vb · (W · XA(t) − XB(t)), r < p
vc · X(t), r ≥ p

(12)

Now, rand and r indicates the arbitrary values within [0, 1] and ub and lb indicate the maximum and
minimum limits of the searching region, correspondingly. z represents a variable that balances both
exploration and exploitation abilities. Further, distinct values are chosen based on certain problems.
In current study, z is fixed to be 0.03. Fig. 3 demonstrates the steps involved in SMO.

In this work, SMO algorithm is applied to appropriately fine-tune the hyperparameters involved
in BiGRU model so as to minimize MSE. MSE is calculated as follows.

MSE = 1
T

L∑
j=1

M∑
i=1

(
yi

j − di
j

)2
, (13)

Here, M and L define the resultant values of layers and data correspondingly whereas yi
j and di

j

signify the attained and suitable magnitudes for jth unit from the resultant layer of network, at time t.
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Figure 3: Steps in SMO

4 Experimental Validation

In this section, the TFP outcomes of the proposed SMOBGRU-TP model were analyzed under
several aspects. Tab. 1 and Figs. 4 and 5 provide a detailed overview on TFP performance outcomes
achieved by the proposed SMOBGRU-TP model and other existing models under different measures.
The experimental results indicate that Radial Basis Function (RBF)+Principal Component Analysis
(PCA)+PIM and RBF+PCC+PCA+PIM models reached ineffectual outcomes compared to other
methods. At the same time, RBF+PIM and RBF+PCC models accomplished slightly enhanced
results. Though AT-TFP model reached a Mean Absolute Percentage Error (MAPE) of 21.364%,
Mean Square Error (MSE) of 299.636, and Root Mean Square Error (RMSE) of 17.310, the proposed
SMOBGRU-TP model attained the least MAPE of 18.560%, MSE of 256.350%, and RMSE of 16.011.

Table 1: Results of the analysis of SMOBGRU-TP technique under distinct measures

Algorithms MAPE (%) MSE RMSE

Radial Basis
Function+PIM

21.996 310.867 17.631

Radial Basis
Function+PCC

23.509 333.776 18.270

Radial Basis Function
+PCA+PIM

20.537 418.009 20.445

Radial Basis Function
+PCC+PCA+PIM

24.268 428.065 20.690

AI-TFP Model 21.364 299.636 17.310
SMOBGRU-TP 18.560 256.350 16.011

Tab. 2 and Figs. 6 and 7 provide a detailed overview on predictive outcomes accomplished by
the proposed SMOBGRU-TP model and other recent models. The experimental outcomes infer
that RNN-LSTM and RNN-GRU models reached ineffectual outcomes with maximal error values.
Followed by, the cascaded LSTM, cascaded GRU, and autoencoder methodologies produced slightly
lesser error values. Though NN, AE-RBF, and AI-TFP models accomplished reasonable error values,
the proposed SMOBGRU-TP model attained an effectual performance with a minimal MAPE of
9.523%, MSE of 142.265, and RMSE of 11.927.
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Figure 4: Results of the analysis of SMOBGRU-TP technique in terms of MAPE

Figure 5: Results of the analysis of SMOBGRU-TP technique in terms of MSE

Table 2: Predictive analysis results of SMOBGRU-TP technique and other existing approaches

Algorithms MAPE (%) MSE RMSE

RNN-LSTM 15.894 188.626 13.734
RNN-GRU 13.023 182.593 13.513
Cascaded LSTM 11.533 175.741 13.257
Cascaded GRU 11.148 175.382 13.243

(Continued)
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Table 2: Continued
Algorithms MAPE (%) MSE RMSE

AutoEncoder 11.113 165.035 12.847
Neural Networks 10.924 164.913 12.842
AutoEncoder-RBF 10.898 162.353 12.742
AI-TFP Model 10.528 157.846 12.564
SMOBGRU-TP 09.523 142.265 11.927

Figure 6: MAPE analysis results of SMOBGRU-TP technique and other existing approaches

Figure 7: MSE analysis results of SMOBGRU-TP technique and other existing approaches
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Tab. 3 and Fig. 8 shows the predictive results achieved by SMOBGRU-TP model and other recent
models under distinct time durations [27–29]. The experimental results exhibit that the proposed
SMOBGRU-TP model accomplished the least MAPE under all-time durations. For example, with
a time duration of 5 mins, SMOBGRU-TP model provided the least MAPE of 15.894%, whereas
RNN-LSTM, RNN-GRU, cascaded LSTM, cascaded GRU, AE, NN, AE-RBF, and AI-TFP models
reached high MAPE values such as 15.894%, 13.023%, 11.533%, 11.148%, 11.113%, 10.924%,
10.898%, and 10.528% respectively. Along with that, with a time duration of 30 mins, the proposed
SMOBGRU-TP method provided a low MAPE of 17.820%, whereas RNN-LSTM, RNN-GRU,
cascaded LSTM, cascaded GRU, AE, NN, AE-RBF, and AI-TFP techniques reached high MAPE
values such as 25.073%, 24.995%, 22.787%, 22.174%, 21.761%, 21.656%, 20.957%, and 17.820%
correspondingly.

Table 3: MAPE analysis results of SMOBGRU-TP technique and other recent algorithms under
distinct time durations

MAPE (%)

Algorithms Time (min)

5 10 15 20 25 30

RNN-LSTM 15.894 18.448 20.113 21.284 23.371 25.073
RNN-GRU 13.023 15.798 18.500 20.762 22.386 24.995
Cascaded LSTM 11.533 13.862 16.488 19.320 21.382 22.787
Cascaded GRU 11.148 13.593 15.774 18.514 20.298 22.174
AutoEncoder 11.113 13.526 15.487 17.638 20.004 21.761
Neural Networks 10.924 12.951 14.981 16.333 18.781 21.656
AutoEncoder-RBF 10.898 12.582 14.260 16.317 18.707 20.957
AI-TFP Model 10.528 12.117 13.347 15.446 17.886 20.205
SMOBGRU-TP 9.523 10.755 12.655 15.123 16.341 17.820

Tab. 4 and Fig. 9 portrays the predictive output produced by SMOBGRU-TP model and other
recent models under distinct time durations. The experimental results exhibit that the proposed
SMOBGRU-TP model accomplished a minimal MSE under all-time durations. For instance, with
a time duration of 5 mins, the proposed SMOBGRU-TP model provided a low MSE of 142.265,
while RNN-LSTM, RNN-GRU, cascaded LSTM, cascaded GRU, AE, NN, AE-RBF, and AI-TFP
methodologies reached high MSE values such as 188.626, 182.593, 175.741, 175.382, 165.035, 164.913,
162.353, and 157.846 respectively. Likewise, at 30 mins duration, SMOBGRU-TP system provided the
least MSE of 235.966, but RNN-LSTM, RNN-GRU, cascaded LSTM, cascaded GRU, AE, NN, AE-
RBF, and AI-TFP techniques reached high MSE values such as 452.353, 449.797, 441.446, 428.327,
414.809, 398.998, 372.006, and 289.229 correspondingly.
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Figure 8: MAPE analysis results of SMOBGRU-TP technique under distinct time durations

Table 4: MSE analysis results of SMOBGRU-TP technique and other recent algorithms under distinct
time durations

Mean Squared Error

Algorithms Time (min)

5 10 15 20 25 30

RNN-LSTM 188.626 251.810 299.685 373.490 411.059 452.353
RNN-GRU 182.593 221.044 294.174 349.806 399.869 449.797
Cascaded LSTM 175.741 218.048 285.264 340.920 381.915 441.446
Cascaded GRU 175.382 216.170 276.808 336.721 381.524 428.327
AutoEncoder 165.035 215.751 259.057 323.966 381.500 414.809
Neural Networks 164.913 211.089 258.491 320.641 363.263 398.998
AutoEncoder-RBF 162.353 210.627 252.652 281.474 338.353 372.006
AI-TFP Model 157.846 178.504 195.675 218.776 238.698 289.229
SMOBGRU-TP 142.265 157.254 176.923 199.115 213.294 235.966

Tab. 5 and Fig. 10 showcases the predictive results attained by the proposed SMOBGRU-TP
model and other recent models under distinct time durations. The experimental results demonstrate
that the proposed SMOBGRU-TP model accomplished the least RMSE at all-time durations. For
example, for 5 mins time duration, SMOBGRU-TP system provided the least RMSE of 11.927,
while RNN-LSTM, RNN-GRU, cascaded LSTM, cascaded GRU, AE, NN, AE-RBF, and AI-TFP
techniques reached high RMSE values such as 13.734, 13.513, 13.257, 13.243, 12.847, 12.842, 12.742,
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and 12.564 correspondingly. In addition, with a time duration of 30 mins, the proposed SMOBGRU-
TP approach reached a low RMSE of 15.361, whereas RNN-LSTM, RNN-GRU, cascaded LSTM,
cascaded GRU, AE, NN, AE-RBF, and AI-TFP techniques reached high RMSE values such as
21.269, 21.208, 21.011, 20.453, 19.870, 19.209, 18.493, and 17.007 correspondingly. Based on the
comprehensive comparative analyses and the simulation results, the proposed SMOBGRU-TP model
proved its superiority to other models, in terms of performance.

Figure 9: MSE analysis results of SMOBGRU-TP technique under distinct time durations

Table 5: RMSE analysis results of SMOBGRU-TP technique and other recent algorithms under
distinct time durations

Root Mean Square Error

Algorithms Time (min)

5 10 15 20 25 30
RNN-LSTM 13.734 15.869 17.311 19.326 20.275 21.269
RNN-GRU 13.513 15.364 17.152 18.703 19.997 21.208
Cascaded LSTM 13.257 15.101 16.890 18.464 19.543 21.011
Cascaded GRU 13.243 14.703 16.638 17.513 18.749 20.453
AutoEncoder 12.847 14.688 16.095 17.145 18.480 19.870
Neural Networks 12.842 14.181 15.764 16.451 17.980 19.209
AutoEncoder-RBF 12.742 13.807 14.922 15.858 17.842 18.493
AI-TFP Model 12.564 13.361 13.988 14.791 15.450 17.007
SMOBGRU-TP 11.927 12.540 13.301 14.111 14.605 15.361
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Figure 10: RMSE analysis results of SMOBGRU-TP technique under distinct time durations

5 Conclusion

In current study, a new SMOBGRU-TP model has been proposed to forecast the flow of traffic in
smart city environment. In the initial stage of SMOBGRU-TP model, data pre-processing is performed
to normalize the input data within a range of [0,1] using min-max normalization approach. BiGRU
model is employed for effective forecasting of the traffic in smart cities. At last, SMO algorithm is
utilized to fine tune the hyperparameters involved in BiGRU approach. In order to experimentally
validate the superiority of the proposed SMOBGRU-TP models in terms of prediction performance,
different analyses were conducted. The simulation outcome confirmed the superior results achieved
by SMOBGRU-TP model than the existing techniques. In future, the efficiency of SMOBGRU-TP
methodology can be improved with the help of hybrid DL models.
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