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Abstract: The repeatability rate is an important measure for evaluating and
comparing the performance of keypoint detectors. Several repeatability rate
measurements were used in the literature to assess the effectiveness of keypoint
detectors. While these repeatability rates are calculated for pairs of images, the
general assumption is that the reference image is often known and unchanging
compared to other images in the same dataset. So, these rates are asymmetrical
as they require calculations in only one direction. In addition, the image
domain in which these computations take place substantially affects their
values. The presented scatter diagram plots illustrate how these directional
repeatability rates vary in relation to the size of the neighboring region
in each pair of images. Therefore, both directional repeatability rates for
the same image pair must be included when comparing different keypoint
detectors. This paper, firstly, examines several commonly utilized repeatability
rate measures for keypoint detector evaluations. The researcher then suggests
computing a two-fold repeatability rate to assess keypoint detector perfor-
mance on similar scene images. Next, the symmetric mean repeatability rate
metric is computed using the given two-fold repeatability rates. Finally, these
measurements are validated using well-known keypoint detectors on different
image groups with various geometric and photometric attributes.

Keywords: Repeatability rate; keypoint detector; symmetric measure;
geometric transformation; scatter diagram

1 Introduction

Keypoints can be defined as the significant image features used in various applications, including
image matching, registration, remote sensing, computer vision, and robot navigation [1–6]. Over
the last few decades, numerous keypoint detectors have been proposed, each with its own set of
characteristics, computation methods, intended applications, geometrical transformation invariance,
and immunity to image artifacts. Consequently, a variety of measurements have been published in
the literature to evaluate the performance of these detectors [7–13]. One of these critical metrics is
the repeatability rate, which quantifies how well the keypoint detector produces the same keypoint for
images taken of the same scene but with varying capturing viewpoints and conditions. The repeatability
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rate has been calculated using diverse interpretations and, as a result, different equations. While these
measurements are derived from the same definition, the calculation criteria vary, resulting in different
values when the same image set is used.

Moreover, the calculations for these measurements assume that one of the two images used to
calculate the repeatability rate is a reference image that has not been altered. Usually, the first image
in each group represents the reference image, while the following images exhibit increasing degrees
of transformation or photometric variation, such as in [14]. However, this is not always true for
other datasets used by researchers in this field, and it cannot always be guaranteed [10]. Thus, as
a consequence, if the same repeatability rate calculation is performed while traversing the image
order, the repeatability rate value may differ. Most often, calculations are performed on one image’s
coordinates (referred to as an image domain in this paper), onto which the other image and its
keypoints are projected. This paper examines this issue using repeatability rate plots and a scatter
diagram. Additionally, a symmetric measure based on a two-fold repeatability rate definition is used
to resolve the problem.

This article’s main aspects are:

• A review of the most commonly used repeatability rates for keypoint detector evaluation;
• A two-fold repeatability rate measure;
• A scatter diagram that depicts the directional repeatability rates as a function of the size of the

keypoints’ neighboring region; and,
• A symmetric measure based on the two-fold repeatability rate for each pair of images.

This paper will be organized as follows: Section Two follows the definition of the repeatability
rate with a generalized formula and discusses the most frequently used repeatability rate measures.
Section Three illustrates and analyses the two-fold and symmetric repeatability rate measures. The
fourth section contains detailed descriptions of the experiments and analyses of the results. Finally, in
Section Five, conclusions are drawn based on the study’s findings and analysis.

2 Repeatability Rate Measurement

The repeatability rate measurement was introduced in [15] and later in [7] to assess and compare
different feature detectors and keypoint detectors. For two images, Ia and Ib, the geometrical changes,
such as rotation, scale, and translation, between the two images, are described by the homography
matrix (H). This H matrix also maps the features (or keypoints) of the image Ia into the “domain”
of image Ib. A keypoint or feature on the image Ia is said to be repeatable if it appears in the second
image in nearly the same visible “scene” location as it should be. Consequently, the repeatability rate is
defined as the number of repeated features within the two images divided by the number of all possible
features that could be repeated. In general, the repeatability rate (R) is defined by:

R = #{repeated features}
#{features allocated fornormlization}% (1)

The repeatability rate has been used to compare feature detectors’ performance on images [1,7,8].
Despite their agreement on the definition in Eq. (1), the literature contains varying interpretations and
equations. This can be attributed to the determination method of repeated features and the number of
normalizing features. The type of distance measurement, the maximum distance for repeated features,
and the image domain that hosts the calculations are all considered factors. This section will first
formulate a general equation of a two-fold repeatability rate that shows how these factors affect
calculations differently. The most common repeatability rates will be presented next, along with their
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calculations. The term “keypoint” is used instead of “feature” throughout this article since it focuses
on keypoint detector measurements than other features.

2.1 Generalized Repeatability Rate Definition

Following the detection of the keypoints on both images separately, producing Ka and Kb, the
first image Ia and its keypoints are projected onto the second image Ib using the H matrix, illustrated
in Fig. 1. The projection of the image Ia onto the image Ib domain determines their common region
where keypoints outside this region are excluded from correspondence computation. Therefore, these
projections and common region can be represented as follows:

I
′
a = HIa (2.a)

K
′
a = HKa (2.b)

Ic = I
′
a ∩ Ib (2.c)

where Ic is the common region between the projected image I ′
a and the second image Ib. Only

the survived keypoints, K ′
as and Kbs, located in the common visible region Ic are considered for

correspondence search. All these keypoints are also a subset of the original keypoints:

K
′
as ∈ Ic; K

′
as ⊆ K

′
a (3.a)

Kbs ∈ Ic; Kbs ⊆ Kb (3.b)

The repeated keypoints, defined as KB
rp(d), were found by searching the proximity of each keypoint

Kbs with a projected keypoints K ′
as within a permissible region contoured by a distance (d), as illustrated

in Fig. 1.

KB
rp(d) = {

Kcr

∣∣dist(Kbs, K
′
as) < d

}
(4.a)

where KB
rp is the repeated keypoints based on the projection onto the domain of the image Ib, Kcr is the

one-to-one correspondences, dist(.) is the distance measure, and d is the maximum allowable distance
between keypoints to consider as repeatable. The computation of the repeated keypoints is influenced
by the direction of the image and keypoints projection; therefore, another repeated keypoints’ measure
defined by KA

rp(d) exists. This is similar to Eqs. (2)–(4.a); however, this time, by projecting the image Ib

and its keypoints Kbs into the first image domain A yields an image I ′
b with K ′

bs keypoints, the following
repeated keypoints are given:

KA
rp(d) = {

Kcr

∣∣dist(Kas, K
′
bs) < d

}
(4.b)

Typically, the Euclidean distance metric is used to calculate the proximity of keypoints. This means
that any projected keypoint is considered a candidate for matching if it lies in a disk region centered
at a keypoint in its image domain with a maximum radius of d, as exampled in Fig. 1. Most of the
repeatability measures in the literature are computed using either the repeatable keypoints KB

rp(d)or
KA

rp(d) defined in Eqs. (4.a) and (4.b), respectively.
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Figure 1: The repeatability is calculated either by (a) projecting the first image Ia and its keypoints Ka

into the second image Ib (Domain B) using matrix H, or (b) projecting the second image Ib and its
keypoints Kb into the first image Ia (Domain A) using matrix H−1. Then, the projected keypoints that
fall in the d-neighbor region (dashed circles) located around the domain’s keypoints in the common
visible area are used to determine repeated keypoints, which are presented by green dashed arrows and
denoted by KA

rp(d) and KB
rp(d). Both directions have the same d value. The red dashed arrows represent

keypoints projected outside the common area, while the black dashed arrows represent keypoints
projected within the common area but with no correspondences

Calculating the repeatability rate may differ depending on the number of keypoints allocated (the
dominator of Eq. (1). This value is used as a normalization factor to adjust the repeatability to a range
of 0 to 1. As a result of the reasons mentioned above, the repeatability rate of Eq. (1) is calculated as
follows:

RX(d) = NX
rp(d)

Nn

(5)

where X is the domain in which the distance d is applied, NX
rp (d) = #{KX

rp (d)} is the number of repeated
keypoints in the domain of image Ix, Nn is the number of the allocated keypoints that normalizes
the repeatability rate measure and ensures that its upper limit equals 1. For example, if X = B and
the image Ia is projected onto the domain of of the image Ib, then NB

rp (d) = #{KB
rp (d)}, whereas vice

versa, X = A and NA
rp (d) = #{KA

rp (d)}. To identify a match, each keypoint’s d-neighborhood is searched
for a keypoint projected from another image. The distance metric used to detect the repeating keypoints
shapes the d-neighborhood around them.

The following section introduces a variety of repeatability rate definitions used in the literature to
evaluate keypoint detectors and their differing interpretations of the numerators and dominators used
to compute Eq. (5).

2.2 Common Repeatability Rates

The computation of the repeatability rate introduced in [7] was carried out after projecting the
reference image and its features to the domain of the second image (i.e., X = B), similar to the
upper graph of Fig. 1. In addition, the authors choose to normalize the repeatability by dividing it
by the minimum number of features in the common visible region of the two images. Therefore, the
repeatability rate concerning Eq. (5) is defined as follows:

RB
1 (d) = NB

rp(d)

min(N ′
a, Nb)

(6.a)
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where NB
rp(d) is the number of repeated keypoints in the domain of the second image for d search

distance. N ′
a = #{K ′

as} is the number of the survived keypoints of the image Ia when projected to domain
B, and Nb = #{Kbs} is the number of the survived keypoints of the image Ib in the same domain and
same shared region Ic.

The authors of [8] calculated the repeatability; however, this was done as a function of overlapping
regions. They proposed a method for calculating repeatable regions by normalizing elliptic regions
between images to overcome geometric transformations such as scale change. In their work, the second
image regions were projected to the first image’s domain, and then the overlay error was calculated
after normalization. The repeatability of this method was found to be biased, as described in [9,16].
Furthermore, calculating the precise area of digitized elliptical regions is challenging, particularly for
small sizes. The procedures in [7–9] may be appropriate for region detectors; however, for keypoint
detectors, the repeatability rates using Eq. (5) are more convenient and easier to calculate because it
relays more on keypoint proximity rather than overlap areas. Thus, the repeatability rate depends on
computing the number of repeated keypoints and the normalizing factor dominated by the minimum
number of visible keypoints in both images.

The repeatability rate of Eq. (6.a) can also be expressed in the domain of the first image:

RA
1 (d) = NA

rp (d)

min
(
Na, N ′

b

) (6.b)

where NA
rp(d) is the number of repeated keypoints in the domain of the first image within the d-neighbor

region, Na = #{Kas} and N ′
b = #{K ′

bs} represent the number of keypoints in the common area for the
image Ia and the number of keypoints of the second image when projected onto domain A, respectively.

Despite being used by several authors [7, 17–19], the repeatability rate computed from Eqs. (6.a)
and (6.b) has the following limitations:

• This repeatability measurement is unreliable in terms of the effect of inter-image changes [10].
• The minimum number of keypoints largely influences repeatability. This is especially noticeable

in images with significant differences in keypoints, found in their common region, due to image
scale or scene content changes [10].

• The repeatability rate results depend on the image domain which hosts the projected keypoints.

Instead of taking the minimum value, an alternative repeatability measure proposed in [10]
recommends normalizing the repeated keypoints by the average number of the survived keypoints
of both images.

RX
2 (d) = NX

rp (d)

average
(
Na, N ′

b

) (7)

Although the repeatability measure, given in Eq. (7), attempted to resolve the mentioned short-
comings of the previous repeatability, its value is still dependent on the projected image domain.

Another measure, as used in [10,11], defines the repeatability rate as follows:

RX
3 (d) = NX

rp (d)

Nref

(8.a)

where NX
rp (d) is the number of repeated keypoints between the two images in the domain of image Ix,

and Nref is the number of keypoints in the reference image that appear in the common area. The same
definition has recently been applied to 3D datasets [20] and far-infrared and thermal images [21]. In
[22], the authors used a similar criterion but divided by a fixed number of keypoints.
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For a sequence of images, the paper in [23] demonstrated a repeatability rate for visual camera
tracking that was similar to Eq. (8.a) First, the number of repeatable keypoints between two images
was calculated relative to the sequence’s reference image, then divided by the number of keypoints in
the first image alone.

Before performing the repeatability rate measurement described in Eq. (8.a), the authors of [17]
used a “virtualized 3D scene” to pre-select the closest repeatable points in 2D and 3D spaces.

According to [12], to measure repeatability precisely, the keypoints of an image must be visible
on the second image. This measurement can be performed by tracking the location of each keypoint
on the images being examined using a 3D surface model. Keypoints can also be found in common
regions between images, which can be used to identify them approximately. The repeatability measure
used in [12]:

RX
3 (d) = NX

rp (d)

Nu

(8.b)

where NX
rp (d) is the number of repeated keypoints between the two images in the domain of image Ix.

Nu is the number of useful keypoints of an image that appear in the common region without occlusion.
Although Eq. (8.b) is more precise than Eq. (8.a), it requires manual alignment of the 3D model before
applying gradient descent and simulated annealing procedures [12]. Furthermore, Eqs. (8.a) and (8.b)
can obtain similar results for the non-occluded scene images; therefore, the earlier one will be used
hereafter.

In [13], the repeatability rate was defined by the following:

RX
4 (d) = NX

rp (d)

2

(
1

Na

+ 1
Nb

)
(9)

where Nx
rp (d) is the number of repeated corners (keypoints) in image domain X , Na is the number of

corners (keypoints) in the original image, and Nb is the number of corners (keypoints) in the test image.
This repeatability measure is considered “average” since it uses the number of keypoints of both images
to compute it. However, repeated keypoints are found only in one image domain. The definition of
Eq. (9) has been used recently in the literature by several authors [6,24,25].

All the directional repeatability rates in this section are dependent on the image (domain) that
hosts the computations, as shown in the plots in Fig. 2. For example, RX

1 (d), RX
2 (d), RX

3 (d), and
RX

4 (d) of the two-fold repeatability rates for image groups with varying scales computed for the SURF
(Speeded Up Robust Features) keypoint detector [26] are shown in Fig. 2. As in [17], in this paper, the
d-neighbor distance for repeatability rates was set at d = 2.

The first group in Fig. 2, labeled “BIP,” contains images with zoom-out changes from the group’s
first image, while the second, labeled “Venice,” contains zoom-in changes from the group’s reference
image. The blue lines, for example, represent the repeatability rates for the image group “BIP,” with
the zoom-out scale changing when calculations are performed on the first image domain, A. In
contrast, the orange lines represent the repeatability rates for the same images but when computing the
repeatability according to the domain of the other image. The other image group, “Venice,” exhibits
zoom-in variation with gray colored lines for image domain A and yellow lines for domain B. The
results, detailed in Fig. 2, confirm the repeatability rates dependency on the image domain where the
distance is calculated. Therefore, a two-fold repeatability rate measure, inclusive of both calculation
directions, is preferred for a pair of images.
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Figure 2: Examples of the repeatability rates RX
1 (d), RX

2 (d), RX
3 (d), and RX

4 (d) at d = 2 in image
domains X = A and X = B for scale-change image groups. “BIP” and “Venice,” using SURF keypoint
detector

3 Two-Fold Repeatability Rate Measure

The previous section’s repeatability rates are directional and image domain-dependent; this affects
the measures. Consequently, all demonstrated repeatability rates are asymmetric, meaning that when
the same computational process performed on one image domain is repeated on another, the results
may vary. Additionally, not all the datasets’ images can be generally categorized according to their
type and degree of variation [19]. Therefore, unless otherwise indicated, both directions of calculation
should be considered when comparing image pairs, as long as both projections have the same d value,
which represents the two-fold repeatability rate.

R (d) =< RA(d), RB(d) > (10)

A scatter diagram representation is presented to visualize and compare the two repeatability rate
values concurrently.

3.1 Scatter Diagram Representation

The scatter diagram in Fig. 3 depicts the relationship between repeatability rates RA
1 (d) and RB

1 (d)

that compose the two-fold measure described in Eq. (10). The computation method for the two-
directional repeatability rates is similar but with different image domains (A or B). The diagram shows
the change in repeatability rates for the image group “Boat” at various d values for the d-neighbor
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regions ranging from d = 0.5 to d = 4, with a 0.5 increment generated by the Euclidian distance from
the keypoint centers to the neighbor region’s boundary. The shown curves deviate towards one axis
according to the relationships between the two repeatability rates. If the two repeatability rates are
equal, the plots should be on the equality line (green dashed line). The scatter diagram is helpful
for groups that have variations between images, particularly scale transformations, such as the image
groups shown in Figs. 3 and 4.

Figure 3: Scatter diagram for the two-fold repeatability rate < RA
1 (d) , RB

1 (d) > at different d values
for the image group “Boat.”

Fig. 4 illustrates the two-fold repeatability rate computed from the directional measures RA
1 (d)

and RB
1 (d) for the “BIP” and “Venice” groups’ zoom-out and zoom-in changes. When RA

1 (d) > RB
1 (d),

the curves for the zoom-out image group “BIP” are in the upper triangle, while those for the zoom-in
image group “Venice” are in the lower triangle because RA

1 (d)< RB
1 (d). Consequently, the values in

one of the two triangular zones in the diagram show that one repeatability rate measure is superior.
However, the scatter diagram reveals plots close to the equality line for images with other geometric
and photometric transformations, such as rotation changes and illumination variations. For example,
Fig. 5 represents the image group “NewYork,” which has rotation variations between its images. The
two repeatability rates have slight differences for such variation.
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Figure 4: Scatter diagram for the two-fold repeatability rate < RA
1 (d) , RB

1 (d) > computed for two
scale-change image groups: “BIP” and “Venice,” with varying values of d

Figure 5: Scatter diagram for the two-fold repeatability rate < RA
1 (d) , RB

1 (d) > computed for rotation
changes image group: “NewYork,” with varying values of d
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3.2 Symmetric Repeatability Rate Measurement

While the two-fold repeatability rate defined in Eq. (10) shows the values in both directions, for
performance comparisons, a single value is usually required for each image pair. Thus, the repeatability
rate is calculated independently for each direction. It is then combined using one of the mean
calculation methods, such as arithmetic, geometric, or harmonic means. The harmonic mean is not
suitable because it can divide by zero. However, the geometric mean will result in a zero-repeatability
rate if one case of the directional measure equals zero. As a result, the arithmetic mean is used as a
symmetric repeatability rate measurement, and it is defined as:

RM
i (d) = (RA

i (d) + RB
i (d))

2
(11)

where i ∈ {1, 2, 3, 4}. Tab. 1 shows the arithmetic-mean symmetric measurements for the four
repeatability rate measures found in the literature and defined in Eqs. (6)–(9). The four given symmetric
repeatability rates, Eqs. (11.a)–(11.d) shown in Tab. 1, have different responses to variations on the
images and different keypoint detectors. The relations among the keypoints affect the calculations
of the symmetric repeatability rate equations in Tab. 1. These effects are shown as different cases in
Tab. 2.

Table 1: Common domain-specific repeatability rate measurements, their nominator and denominator
differences, and their symmetric measures, where Nmn = min (Na, Nb), Nav = (Na + Nb) /2, and
Nav

rp (d) = (
NA

rp (d) + NB
rp(d)

)
/2

Repeatability
rate

Image
Domain X

Numerator Denominator
Nn

Symmetric mean repeatability rate
RM (d)

RX
1 (d) A NA

rp (d) Nmn RM
1 (d) = Nav

rp (d)

Nmn

(11.a)
B NB

rp (d) Nmn

RX
2 (d) A NA

rp (d) Nav RM
2 (d) = Nav

rp (d)

Nav

(11.b)
B NB

rp (d) Nav

RX
3 (d) A NA

rp (d) Na RM
3 (d) = NA

rp (d) Nb + NB
rp (d) Na

2NaNb

(11.c)
B NB

rp (d) Nb

RX
4 (d) A NA

rp (d) Nav NaNb RM
4 (d) = Nav

rp (d) Nav

NaNb

(11.d)
B NB

rp (d) Nav NaNb

Table 2: Symmetric mean repeatability rates at different cases for the accounted number of keypoints
(Na, Nb, Nav, Nmn, NMx, NA

rp (d) and NB
rp (d)), where Nmn = min(Na, Nb), NMx = max(Na, Nb) and Nav =

(Na + Nb)/2, i ∈ {1, 2, 3, 4}
Cases A. {NA

rp (d) �= NB
rp (d)} B. {NA

rp (d) = NB
rp (d) < Nmn} C. {NA

rp (d) = NB
rp (d) =

Nmn}
I. {Na �= Nb}

RM
1 (d)

NA
rp (d) + NB

rp (d)

2Nmn

NA
rp (d)

Nmn

1

(Continued)
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Table 2: Continued
Cases A. {NA

rp (d) �= NB
rp (d)} B. {NA

rp (d) = NB
rp (d) < Nmn} C. {NA

rp (d) = NB
rp (d) =

Nmn}

RM
2 (d)

NA
rp (d) + NB

rp (d)

2Nav

NA
rp (d)

Nav

Nmn

Nav

< 1

RM
3 (d)

NA
rp (d) Nb + NB

rp (d) Na

2NaNb

NA
rp (d) Nav

NaNb

Nav

NMx

< 1

RM
4 (d)

(
NA

rp (d) + NB
rp (d)

)
Nav

2NaNb

NA
rp (d) Nav

NaNb

Nav

NMx

< 1

II. {Na = Nb = N}

RM
i (d)

NA
rp (d) + NB

rp (d)

2N

NA
rp (d)

N
1

The number of surviving keypoints is assumed to be identical before and after projection to the

other image domain for convenience, i.e., N ′
a = Na and N

‘

b = Nb. Furthermore, the Nmn value is
significant because it represents the highest limit of keypoints count that can be repeated in the shared
viewable region of the two images. Tab. 2’s findings lead to the following:

• The number of repetitive keypoints in both domains, rather than the relationships between Na

and Nb, influences the symmetrical mean repeatability rate RM
1 (d) because the denominator

always takes the lesser of the two values. Therefore, RM
1 (d) has the same responses for I and II

at A, B, and C cases.
• Despite having the same numerator, RM

2 (d) will always be less than RM
1 (d) when Na �= Nb because

of Nav > Nm in this case.
• Except for the case (A-I), where the numbers of repeated keypoints and keypoints in the

common region are not identical for both domains, RM
3 (d) and RM

4 (d) resemble the same
equations.

• When two conditions are satisfied (case C-II), all repeatability rates converge to one (=100%);
the number of repeatable keypoints in both domains is equal to the number of visible survived
keypoints in the common region of the two images. While the number of repeated keypoints in
images with no scale changes (e.g., rotated images) can be similar, images meeting this criterion
are uncommon unless they are nearly identical or force these numbers to be equal.

• When {Na = Nb}, all the symmetric mean repeatability rates RM
i (d) (i = 1,2,3, and 4) for the

three cases A, B, and C will be similar. As a result, regardless of the relationships between
repeated keypoints in the two image domains, all repeatability rate metrics in this scenario will
have the same equation and thus produce the same results. In practice, case A of this situation
is an uncommon for similar images.

• Each repeatability rate may produce a different value if the common region of both images does
not contain the same number of keypoints (i.e., Na �= Nb), as in the cases of I in Tab. 2.

Although some of these cases are challenging for images with noticeable changes, for example,
when the repeatability rate equals 1, most of the findings in Tab. 2 are experimentally verified in the
following section.
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4 Experimental Results

Experiments are conducted using the symmetric measure of the two-fold repeatability rates for the
four measures studied in this article. For each symmetric repeatability rate, three different keypoint
detectors are tested on eight groups of images taken from two datasets ( [14] and [27]). Each group
consists of 6 images and exhibits geometric or photometric changes, as shown in Fig. 6. These
geometric and photometric changes, including scale (zoom-in and zoom-out), rotation, viewpoint,
blur, and illumination changes, as demonstrated in Fig. 6.

Image1 Image2 Image3 Image4 Image5 Image6 Image1 Image2 Image3 Image4 Image5 Image6

BIP: Scale (zoom-out) Bikes: Blur

Venice:  Scale (zoom-in) Leuven:  Illumination 1

NewYork:  Rotation Kurhaus:  Illumination 2

Boat:  Scale+rotation Bird: Viewpoint

Figure 6: The eight image groups utilized in the experiments. Each group’s name and the primary
variation are displayed above its images

Several keypoint evaluations have been proposed in the literature [5,28,29]. However, there is
no consensus on a universally optimal detector for all possible image geometrical and photometric
variations [23]. Conversely, the results in these papers indicate that the detectors tested proclaim
superiority interchangeably over the others for various geometric and photometric image changes such
as scale, rotation, and illumination. Consequently, the three keypoint detectors, SURF (Speeded Up
Robust Features) [26], SIF (Scale Invariant Feature Transform) [30], and KAZE (which translates to
‘wind’ in Japanese) [31], were selected as examples to demonstrate the variety of responses of these
detectors to the dataset presented. In addition, other keypoint detectors can be used to confirm
the results. A comparison of the performance of the three mentioned keypoint detectors using the
symmetric repeatability measures is in the following experiments. The experiments are conducted using
built-in keypoint detectors in MATLAB 2021b software by their default parameters.

Fig. 7 shows the comparisons of the symmetric mean repeatability rates RM
1 (d), RM

2 (d), RM
3 (d),

and RM
4 (d) at d = 2 using the keypoint detectors SURF, SIFT, and KAZE on the eight image groups.

The results verify the derivations of Tab. 1 and Tab. 2, in which RM
1 (d) has the highest values because

its repeatable keypoints are always divided by the minimum allocated keypoints in the common region
of the tested images. RM

2 (d) has the lowest values because the repeatable keypoints are divided by the
average keypoints in this common region. The remaining repeatability measures the range between
these values as each number of repeated keypoints is individually weighted by a ratio of the survived
keypoints observed in the common region. Except for the case where repeated keypoints differ in both
directions, and the number of allocated keypoints in the common region is not equal, the repeatability
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rates RM
3 (d) and RM

4 (d) are identical in their responses. In general, the later repeatability represents
the lower limit for the earlier one.

The response of the three keypoint detectors differs for the four repeatability rates due to the
varying criteria for allocating keypoints. RM

1 (d) fails to capture the degree of transformation change,
particularly for scale changes, whereas RM

2 (d) is more convenient in this issue. However, RM
2 (d) has

low values even with minor image variations. The RM
2 (d) measure, on the other hand, attempts to

maintain the trend across all keypoint detectors. While they start with the same value in most cases,
RM

3 (d) diverges from RM
2 (d) toward RM

1 (d) in the “Boat” image group, resulting in an undesirable trend.
RM

4 (d) has better values than RM
2 (d) for these images but has a lower slope than the other measures.

The four rates have nearly identical values for images with rotations, such as those in the “NewYork”
group, and images with modest natural illumination change, such as those in the “Kurhaus” group.
In the “Leuven” group, the illumination changes uniformly on the whole image from one image to
another, producing more challenges in obtaining similar keypoints in the dataset. Therefore, RM

3 (d)

and RM
4 (d) have similar values that are close to RM

2 (d) , while RM
1 (d) exceeds all other measures due to

the difference between Na and Nb. The differences in repeatability rates are rather noticeable for image
groups that include scale or blur changes. Uniform scale differences, such as those caused by zooming
in and out, significantly affect directional computations over non-uniform scale differences caused by
affine and higher geometric transformations.

Figure 7: (Continued)
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Figure 7: (Continued)
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Figure 7: The symmetric mean repeatability rate measurements RM
1 (d), RM

2 (d), RM
3 (d), and RM

4 (d),
as defined in Tab. 2, at d = 2, when applied to various image groups with different geometric and
photometric changes

Comparing the performance of the three keypoint detectors depicted in Fig. 7 shows that the
KAZE keypoint detector outperforms the other methods. Furthermore, for image groups with scale
changes (e.g., scale, scale+rotation, and viewpoints), the SIFT method is superior to the SURF
method, while SURF is better for blur and illumination changes.

5 Conclusions

The repeatability rate measurement is critical for evaluating and comparing the performance
of keypoint detectors. However, the traditional repeatability rates demonstrated in this paper are
biased with regard to the image domain in which the calculations are performed. Therefore, two-fold
repeatability that represents the two values is introduced instead. The scatter plots reveal the directional
repeatability rate variations that are affected by changes occurring between images. For further
comparison, a symmetric measure that calculates the arithmetic mean for the two-fold repeatability
rates is recommended.

When image groups with illumination, blur, and geometric variations are used to test the
repeatability rates, the symmetric measurements of the four examined repeatability rates exhibit a
range of responses. The repeatability rate RM

1 (d) produces acceptable results for images with low
variation but continues a trend of disregarding the degree of transformation change. While RM

2 (d)

resolves the issue, it returns low values for small image transformations. The other two repeatability
rates have nearly identical values for small transformations. However, RM

3 (d) begins differing toward



6510 CMC, 2022, vol.73, no.3

RM
1 (d) for more significant transformations. While the repeatability rate RM

4 (d) illustrates a good trend,
it has a low slope compared to other measurements. Variation in the repeatability rates of RM

3 (d) and
RM

4 (d) is limited to the values of RM
1 (d) and RM

2 (d) . In general, the relationship between the four
symmetric repeatability rate measurements satisfies RM

2 (d) ≤ RM
4 (d) ≤ RM

3 (d) ≤ RM
1 (d).
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